

A Porcine Commotio Retinae Model for Pre-clinical evaluation of Post Traumatic Photoreceptor Degeneration

Juan Amaral, Irina Bunea, Arvydas Maminishkis, Maria M. Campos, Francesca Barone, Rohan Gupta, Mitra Farnoodian, Jonathan Newport, M. Joseph Phillips, Ruchi Sharma, David M. Gamm, Kapil Bharti, Richard J. Blanch

JCI Insight. 2026. <https://doi.org/10.1172/jci.insight.192799>.

Research [In-Press Preview](#) [Neuroscience](#) [Ophthalmology](#)

Commotio retinae (CR) resulting from retinal trauma can lead to focal photoreceptor degeneration and permanent vision loss. Currently no therapies exist for CR-induced retinal degeneration, in part due to a lacking large animal model that replicates human injury pathology and allows testing of therapeutics. Severe CR is clinically characterized by subretinal fluid and focal photoreceptor outer nuclear layer thinning. To develop a porcine CR model, we developed a laser-guided projectile apparatus and optimized projectile delivery procedure using porcine cadaveric eyes embedded in a 3D-printed porcine skull. Scleral and corneal impacts, resulted in retinal damage consistent with patient injury but corneal impacts also led to cornea damage and opacification, which precluded follow up imaging. In live porcine eyes, scleral impacts of 39.5 m/s induced transient blood retinal barrier breakdown evidenced by subretinal fluid on optical coherence tomography (OCT), leakage observed on fluorescein and indocyanine green angiography, and transient photoreceptor outer segment disruption seen by OCT and multifocal electroretinography. Impacts above 39.5 m/s induced longer-lasting photoreceptor degeneration, but only transient blood retinal barrier breakdown. This porcine model, combined with clinically relevant imaging and diagnostic modalities will be valuable for testing the safety and efficacy of therapies to restore vision after focal photoreceptor degeneration.

Find the latest version:

<https://jci.me/192799/pdf>

23 **A Porcine Commotio Retinae Model for Pre-clinical evaluation of Post Traumatic
24 Photoreceptor Degeneration**

25 Juan Amaral¹, Irina Bunea², Arvydas Maminishkis¹, Maria M. Campos³, Francesca Barone²,
26 Rohan Gupta², Mitra Farnoodian², Jonathan Newport⁴, M. Joseph Phillips^{5,6}, Ruchi Sharma²,
27 David M. Gamm⁵⁻⁷, Kapil Bharti*², Richard J. Blanch^{*8-10}

28 1: NEI/ Translational Research Core/OGVFB, Bethesda, MD, USA

29 2: NEI/OSCTRS/OGVFB, Bethesda, MD, USA

30 3: NEI/Biological Imaging Core/Histology core, Bethesda, MD, USA

31 4: NEI/ Laboratory of Sensorimotor Research, Bethesda, MD, USA

32 5: Waisman Center, University of Wisconsin- Madison, Madison, WI, USA

33 6: McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA

34 7: Department of Ophthalmology, University of Wisconsin-Madison, Madison, WI, USA

35 8: Academic Department of Military Surgery and Trauma/Royal Centre for Defense Medicine,
36 Birmingham, United Kingdom

37 9: Neuroscience and Ophthalmology, School of Infection, Inflammation, and Immunology,
38 University of Birmingham, Birmingham, United Kingdom

39 10: Department of Ophthalmology, University Hospitals Birmingham NHS Foundation Trust,
40 Birmingham, United Kingdom

41

42

43

44 *Corresponding authors:

45 **Kapil Bharti**

46 10 Center drive, Bldg 10, Rm 10B10, Bethesda, MD 20892; kapil.bharti@nih.gov; +1-3014519372

47 **Richard Blanch**

48 FRCOphth, Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of

49 Birmingham, Birmingham B15 2TH, United Kingdom. blanchrj@bham.ac.uk; +44 (0)121 414 3344

50

51 **Keywords**

52 Pig model, age-related macular degeneration, large animal model, cell therapies, gene therapies,

53 tunable outer retinal degeneration, battle-field injuries, military trauma

54

55

56

57

58

59

60

61

62

63

64

65 **Abstract**

66 Commotio retinae (CR) resulting from retinal trauma can lead to focal photoreceptor degeneration
67 and permanent vision loss. Currently no therapies exist for CR-induced retinal degeneration, in
68 part due to a lacking large animal model that replicates human injury pathology and allows testing
69 of therapeutics. Severe CR is clinically characterized by subretinal fluid and focal photoreceptor
70 outer nuclear layer thinning. To develop a porcine CR model, we developed a laser-guided
71 projectile apparatus and optimized projectile delivery procedure using porcine cadaveric eyes
72 embedded in a 3D-printed porcine skull. Scleral and corneal impacts, resulted in retinal damage
73 consistent with patient injury but corneal impacts also led to cornea damage and opacification,
74 which precluded follow up imaging. In live porcine eyes, scleral impacts of 39.5 m/s induced
75 transient blood retinal barrier breakdown evidenced by subretinal fluid on optical coherence
76 tomography (OCT), leakage observed on fluorescein and indocyanine green angiography, and
77 transient photoreceptor outer segment disruption seen by OCT and multifocal
78 electroretinography. Impacts above 39.5 m/s induced longer-lasting photoreceptor degeneration,
79 but only transient blood retinal barrier breakdown. This porcine model, combined with clinically
80 relevant imaging and diagnostic modalities will be valuable for testing the safety and efficacy of
81 therapies to restore vision after focal photoreceptor degeneration.

82

83

84

85

86

87

88 **Introduction**

89 Traumatic retinopathy is a significant cause of vision loss and blindness, with eye injury–
90 associated vision impairment affecting 4.5 per 1,000 Americans. Among those affected, 5.1 per
91 1,000 experience unilateral blindness, and 4.5 per 10,000 have bilateral blindness (1-3). Globally,
92 55 million eye injuries occur annually, resulting in bilateral visual impairment in 2.3 million people
93 and unilateral blindness or low vision in nearly 19 million individuals (4, 5). Furthermore, traumatic
94 vision loss is often acute (4), affects relatively younger individuals, is associated with occupational
95 and psychiatric complications, and contributes significantly to lost productivity and reduced quality
96 of life (6).

97

98 One form of traumatic retinopathy is commotio retinae (CR), a condition affecting the outer retina,
99 associated with temporary or permanent visual function loss following a closed-globe injury (7-
100 11). The incidence of CR in civilian population is approximately 0.4%, but it accounts for up to
101 15% of military ocular trauma cases and leaves a significant number of veterans with lifelong
102 visual impairment (8, 10, 12). In real-world scenarios, the location of impact leading to CR is
103 sporadic, unpredictable and often unknown. Depending upon the location, the damage can also
104 be variable. Of concern are the CR cases where the macula is involved – in such cases visual
105 acuity can be significantly reduced without any treatment possibility. Macular CR can occur after
106 anterior segment trauma (*contra-coup*) or direct scleral impact (13, 14). After macular CR, 15-
107 20% of patients suffer permanent visual impairment, primarily related to photoreceptor
108 degeneration (7, 8, 15). Rats, rabbits, cats, pigs, and rhesus and owl monkeys have been used
109 as animal models for commotio retinae (15-27), however, none fully or consistently replicate the
110 macular pathology observed in human injury. Some models, such as rabbits and rat, lack a
111 macula-homologue, while others, such as pigs and non-human primates that have a macula
112 homolog, were developed predominantly with direct peripheral injuries rather than central (where

113 energy of impact transmitted to macular region) as seen in the human CR pathology. Another
114 unresolved aspect of CR injury is the nature of Berlin's edema, which has been described as a
115 hallmark feature of CR pathology (28). But there is ongoing debate about the degree to which the
116 outer blood-retinal barrier is disrupted following CR injury (16, 18, 20, 23, 29, 30). The heretofore
117 inability to perform clinically relevant longitudinal live imaging modalities has further limited
118 translation of previous CR models to test human relevant treatment modalities. Moreover,
119 because CR injury can affect a relatively large retinal area—including the entire macula (up to 20
120 mm²) - there is a clear need for a large animal model of CR that accurately replicates human
121 closed-globe macular injury. Such a model would enable proper characterization of the injury
122 response and facilitate testing of clinically relevant imaging techniques and allow preclinical
123 evaluation of regenerative therapies aimed at replacing lost photoreceptors and/or restoring
124 photoreceptor function through other approaches.

125 Pigs are an ideal preclinical animal to develop such a model, as the porcine eye lacks a tapetum,
126 has a human comparable average axial length of 23.9 mm, and a holangiotic retinal blood supply
127 with a capillary meshwork of similar caliber that supplies identical retinal layers as in human eyes
128 (31). While pigs don't have a macula, they have a central visual streak rich in cone photoreceptors
129 (31, 32). Because of their comparability to human eyes, pig eyes are suitable for surgical
130 procedures such as vitrectomy and subretinal transplantation of large constructs that can cover a
131 significant portion of the macula (33, 34). Furthermore, pigs are significantly more cost effective
132 and easier to handle and obtain as compared to non-human primates (33, 35, 36).

133 Using a scleral impact approach, we developed a closed-globe macula-injury specific CR pig
134 model to characterize the acute and chronic injury response. Scleral impact allowed us to test
135 clinically relevant imaging modalities, not feasible with corneal impact (36, 37), such as optical
136 coherence tomography (OCT), OCT angiography (OCTA), fluorescein and indocyanine green
137 angiography (FA/ICG-A), and multifocal electroretinography (mfERG) to evaluate and diagnose

138 the cone photoreceptor response to injury. Our data suggest that the porcine CR model closely
139 mimics the human macular CR injury, mimicking the human closed-globe macular CR injury. Our
140 model showed retinal whitening, preretinal hemorrhage, transient outer blood retinal barrier
141 breakdown, and progressive photoreceptor outer segment degeneration – symptoms seen in
142 patients with a CR injury. This clear longitudinal analysis is useful for the development of
143 treatments for severe macular CR and may aid in the development of treatments for other forms
144 of outer retinal degenerations.

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159 **Results**

160 **Development of a pressure application device (PAD) for inducing closed-globe CR injury**

161 To develop a reproducible closed-globe CR porcine model that mimics human macular CR injury,
162 we developed a pressure application device (PAD) that is used to injure the eye using a fixed
163 diameter projectile impact. To induce injury, PAD delivers predetermined energy by propelling a
164 plastic projectile ($\varnothing 12\text{mm}$) towards the pig eye at a measured speed using a laser-guided
165 mechanism. The PAD was designed as a closed pneumatic system that operates using
166 compressed nitrogen gas to generate precise pressure (measured in PSI) that can be
167 reproducibly applied to a propel a plastic ball at a specific speed (measure in m/s). To accurately
168 target the injury location at the visual streak, the eye fundus was visualized using binocular indirect
169 ophthalmoscopy and different projectile impact areas (cornea, limbus, and sclera) were tested.
170 The plastic ball is “loaded” into acceleration tube using the loading port; then, propelled using
171 pressure from the compressed nitrogen gas and a solenoid-actuated fast opening valve with
172 remote trigger; tube is aimed at the desired location using the laser beam (Fig. 1A, Supplementary
173 Video 1, Supplementary Figs. 1A, B). The impact of the plastic ball transfers its kinetic energy to
174 the eye, modelling blunt force or concussive injury such as after a blast (Fig. 1B). To determine
175 projectile speed reproducibility, we evaluated linearity between PSI and projectile speed
176 (Supplementary Fig. 1B) and confirmed a linear relationship between PSI and the projectile speed
177 within the range of pressures tested for the projectile release (Fig. 1C). This data confirms our
178 ability to deliver the projectile consistently at a specific speed.

179

180

181

182

183 ***Ex vivo* Evaluation of PAD Induced CR**

184 To develop an animal model with reproducible macular CR injury, we set out to optimize the injury
185 location that would lead to ellipsoid zone (inner outer segments of the photoreceptors) and
186 photoreceptor outer nuclear layer (ONL) damage in pig's visual streak. With the goal of reducing
187 the number of animals, we chose to perform initial testing of optimal injury location and projectile
188 speed *ex vivo* on cadaveric pig eyes. Since slaughterhouse eyes lack the orbital support (muscle,
189 fat, ligaments, optic nerve), to reduce artificiality of an *ex vivo* model and to mimic as closely
190 possible the *in vivo* environment, we developed a 3D-printed pig skull in which we mounted the
191 cadaveric pig eyes. A high-resolution computer tomography (CT) scan of a pig head was
192 performed and was used to construct a 3D image of the pig skull using the CT scan software (Fig.
193 2A). This 3D image was used to 3D-print a pig-skull. The skull was printed commercially using
194 material that has similar mechanical properties to bone (<https://www.anatomicalworldwide.com>)
195 (Fig. 2B). A ballistic gel® (see methods) made from synthetic gelatin was used to fill the 3D printed
196 pig skull, mimicking the elastic properties of the orbital and cranial tissues, thus explicitly helping
197 assess the impact of projectile kinetic energy transfer to the eye simulating what happens in a live
198 animal and human injury. Freshly obtained cadaveric pig eyes were placed in the eye sockets of
199 the 3D-printed pig skull (Figs. 2C; Supplementary Figs. 2A, B). Despite lacking anatomical
200 structures around the eye (muscles, blood vessels, and the fat deposits), these cadaveric eyes
201 provided the first best approximation of injury location and impact intensity allowing us to rule out
202 conditions incompatible with our goal of central retinal injury with minimal corneal damage. PAD
203 was used to deliver projectiles at different speeds to determine the optimal speed and the optimal
204 impact location (Fig. 2C). Injury damage was evaluated by gross evaluation in dissected eyes and
205 by histology (Figs. 2D-H, Supplementary Figs. 2, 3). We first tested the hypothesis that direct
206 corneal impacts can lead to visual streak damage. With projectile speed of 40.5 m/s, although we
207 detected damage to the retina and the visual streak, the impact caused retinal folds and

208 discernable damage to the cornea with epithelial displacement (Figs. 2D, E; Supplementary Figs.
209 2C, D; Supplementary Table 1). Since retinal folds were not a desired outcome and corneal
210 damage would preclude longitudinal live imaging, we didn't pursue this approach further. Next,
211 we asked whether projectile impacts at the limbus will damage the retina. Unexpectedly, limbal
212 impacts with projectile speed of 40.5 m/s only a peripheral damage to the cornea was induced
213 and a peripheral retinal dialysis (retinal tear at the *ora serrata*) was also seen (Supplementary
214 Figs. 2E, F; Supplementary Table 1). This led us to test whether direct scleral impacts could result
215 in desired retinal damage. With progressively increasing projectile speed from 33-40 m/s damage
216 to the retina at the impact site increased from displacement of retinal layers at 33 m/s; edema and
217 fibrosis at 35.7 m/s to almost complete retinal atrophy at 40 m/s (Supplementary Figs. A-E). In
218 comparison, in the visual streak, projectile speeds at and below 39.5 m/s caused desired damage
219 to the ellipsoid zone and the ONL, whereas speed of 40 m/s or more caused atrophic changes
220 and retinal folds, as well random preservation of retinal structures outside the impact area (Figs.
221 2F-H; Supplementary Figs. 3F-J; and Supplementary Table 1). Based on our analysis of
222 cadaveric pig eyes, we hypothesized that, living pig eyes will be more sensitive to scleral damage,
223 so relatively lower velocities will be required to damage the visual streak area and minimize
224 collateral damage to the anterior segment of the eye that will preclude longitudinal post-injury
225 evaluations.

226

227 **Acute Outer Blood Retinal Barrier (oBRB) Damage in PAD-induced CR**

228 Based on our *ex vivo* analysis, we began testing on living pig eyes with projectile impact speed
229 of 35.7 m/s. Five pigs were enrolled in this study. In all cases, fundus examination immediately
230 after injury revealed the presence of preretinal hemorrhage at the area of impact (zone 1) and
231 retinal whitening adjacent to it (zone 2) (Fig. 3A). There was extensive oBRB breakdown at zone
232 1 extending into zone 2, as evidenced by fluorescein leakage within a min after dye injection

233 continuing until the 10-minute evaluation time point (Figs. 3B, C; left panels). ICGA changes were
234 minimal, suggesting no disruptions in retinal or deeper choroidal vessels (Figs. 3B, C; right
235 panels). Fluorescein Leakage subsided within 8-11 days post-injury, suggesting a transient
236 disruption of the oBRB with no additional changes in ICGA (Figs. 3D-E). OCT examination
237 immediately after the injury revealed retinal detachment and subretinal fluid accumulation at the
238 site of impact extending into zone 2 (Figs. 3F, G). OCT analysis also revealed extensive ellipsoid
239 zone disruption extending from zone 2 into the visual streak (zone 3) (Figs. 3F, G). Quantification
240 of OCT data revealed a range of sizes for different zones illustrated in Fig. 3F (zone 1: 2.0-4.0
241 mm; zone 2: 3.0-8.0 mm; zone 3: 2.0-8.0 mm). These findings were confirmed by histological
242 analysis of the cadaveric pig eyes four days after the CR injury, revealing preretinal hemorrhage
243 and extensive retinal damage with retinal atrophy in zone 1, thinning of outer retina and layer
244 disorganization in zone 2, and photoreceptor disruption extending away from this area (Fig. 3H).
245 Follow-up by OCT confirmed FA/ICGA findings revealing subretinal fluid accumulation seen at
246 day 0 (Figs. 3I, J) that was resolved in the first 2 weeks (Fig. 3K). Interestingly, disruptions of the
247 ellipsoid zone seen on day 0 persisted beyond day 14 (Figs. 3J-L). These findings were further
248 confirmed by histological analysis of the retina (Figs. 3M, N), where photoreceptor outer segments
249 shortening and ONL thinning and disruptions was evident. mfERG analysis showed reduced
250 signal in the visual streak, confirming functional defects in cone photoreceptors (Supplementary
251 Fig. 4; Figs. 3O,P). Overall, our data suggest that with impact speed up to 35.7 m/s, there was an
252 acute oBRB breakdown that recovered by day 11, while the ellipsoid zone disruptions persisted.

253

254 **Long-term Photoreceptor Damage in PAD-induced CR**

255 Short-term evaluation of the CR injury provided findings that were consistent with the patient data
256 in terms of specificity of damage to photoreceptors(7, 38-43). Short-term evaluation also revealed
257 acute oBRB damage not previously described for CR patients. With the goal of developing a

258 suitable large animal model for testing potential therapies, next we set out to determine if PAD-
259 induced CR injury at a projectile speed of 35.7 m/s persists longer term. Five pigs were enrolled
260 in this part of the study and evaluated for up to 60 days after injury. As seen in the short-term
261 studies, in all cases there was preretinal hemorrhage (zone 1) and retinal whitening - likely
262 associated with an acute oBRB breakdown, which progressively healed by 16 days, as confirmed
263 by fluorescein angiographs (Figs. 4A, B, D, E). ICGA changes continue to be unremarkable by
264 day 16 of evaluation, suggesting no damage to retinal or choroidal vessels (Figs. 4B, E). OCT
265 analysis confirmed sub retinal edema on day 0 in zone 2, which reabsorbed by day 16 (Figs. 4C,
266 F). Surprisingly, the ellipsoid zone disruption evident in higher magnifications at day 15, recovered
267 by day 30 (compare Figs. 4G with H and I). This transient structural defect and its recovery was
268 corroborated by initial loss and subsequent recovery of the mfERG signal, measured over the
269 visual streak area (Figs. 4J-L). Because of this finding, we decided to increase the projectile
270 impact speed to 39.5 m/s. Expectedly, higher speed caused deeper impact that was evident even
271 at the 60 days follow up and there was no recovery of the ellipsoid zone on OCT (Figs. 4M, P).
272 However, this high impact led to higher variability in structural damage to the retina with larger
273 areas of retinal atrophy and relatively smaller EZ disruption areas as assessed by OCT (compare
274 Figs. 4M, P); variable non-perfusion of the choriocapillaris as seen by OCTA (compare Figs. 4N,
275 Q), and variable functional changes in the visual streak as seen by mfERG (compare Figs. 4O,
276 R). This variability, combined with the evidence of collateral damage to the posterior lens capsule
277 and anterior segment (Supplementary Fig. 5), prompted us to seek an alternative impact method
278 to generate more reproducible, long-term, and specific injury to the photoreceptors without
279 extensive anterior segment collateral damage.

280

281

282

283 **Scleral Patch Improves Reproducibility of the CR injury**

284 During post hoc analysis of evaluated eyes and based on literature evidence of variable scleral
285 thickness in pigs, we asked if we could control variability in injury extent by temporarily adding a
286 scleral patch to the injury location (44). We used a commercially available cadaveric human
287 scleral patch and glued it to the posterior sclera by disinsertion of the median rectus and release
288 of the limbal traction (see Methods for surgery details). After the impact, cadaveric scleral patch
289 was removed, and median rectus was re-sutured back to sclera (Figs. 5A-D, Supplementary Fig.
290 6).

291 Four pigs were subjected to a projectile impact at a speed of 39.5 m/s and monitored for up to 60
292 days post-injury. As seen with injury without the scleral patch, preretinal hemorrhage (zone 1) and
293 retinal whitening (zone 2) seen immediately after the impact was also seen with the scleral patch,
294 by color fundus photography (Fig. 6A). Fluorescein angiography confirmed retinal whitening was
295 caused by oBRB disruption (Fig. 6B – left panel). Similar to the CR injury without the scleral patch,
296 ICGA didn't show any signal suggesting no damage to the choroidal vessels (Fig. 6B, right panel).
297 Edema seen on day 0 by OCT analysis resolved by day 30, suggesting oBRB heals by this time.
298 (Figs. 6D and E). In contrast, the ellipsoid zone disruption continued beyond day 30 until day 60
299 evaluation timepoint (Figs. 6D-F). OCT angiography revealed a non-statistically significant
300 decrease in CC density in the first 15 days after injury, with partial recovery by 60 days (Figs. 6G-
301 J).

302 To confirm reproducibility of this approach, we compared OCT data across four eyes. As
303 expected, by day 60 edema seen after projectile impact was reabsorbed (Supplementary Fig. 7).
304 The area of the impact showed noticeable retinal degeneration, and the adjacent area showed
305 progressively improving retinal thickness with consistently missing ellipsoid zone (Supplementary
306 Fig. 7). To quantify changes seen in OCT, we performed segmentation of retinal layers using our
307 recently published AI-based algorithm for OCT segmentation (34). Segmentation analysis

308 confirmed that use of the scleral patch results in a milder (~20%) reduction in ONL thicknesses
309 as compared to injury without the patch (~50% reduction in ONL thickness) (Fig. 6K). Multifocal
310 ERG heatmap analysis showed a corresponding decrease in signal, persisting up to 60 days (Fig.
311 6L-N), consistent with longer term photoreceptor damage. Our results indicate that the addition
312 of a scleral patch to the impact area generated reproducible visual streak lesions and yielded a
313 model that allows better understanding of human CR injuries and will help develop effective
314 therapies for photoreceptor degeneration.

315

316 **Histologic evaluation of PAD-induced CR injury to the retina**

317 To further evaluate the impact of CR injury on porcine retina, we performed histological analysis
318 of eyes at the end of 60 days of longitudinal live imaging. Consistent with the OCT data (Fig. 7A),
319 histological (Figs. 7B-F) and immunostaining analysis provide qualitative analysis of three distinct
320 areas of injury (Figs. 7G-J). The impact zone: H&E staining showed complete atrophy of both
321 inner and outer retinal layers (compare Figs. 7B, C and F); immunostaining further confirmed
322 missing signals for cone photoreceptors (PNA) and RPE (RPE65) (compare Figs. 7G-J). A
323 transition zone: H&E and immunostaining showed partial preservation of the inner retina and
324 rosette-like structures with disruptions in outer retinal layers including the RPE, OS, and ONL;
325 barely visible RPE layer with faint RPE65 immunostaining and no PNA signal suggesting missing
326 cone photoreceptor outer segments (compare Figs. 7B, D and F and 7H and J). The EZ disruption
327 zone with a thinned ONL, lacking PNA signal but relatively intact RPE and INL (compare Figs.
328 7B, E and F and 7I, J). Overall, this histological analysis (H&E and immunostaining) corroborated
329 our *in vivo* structural and functional evaluations, confirming the loss of photoreceptors for the
330 evaluation period of up to 60 days in PAD-induced closed-globe CR injury.

331

332 **Discussion**

333 We report a reproducible large animal model of post traumatic photoreceptor degeneration that
334 mimics macular injury seen in patients with closed-globe CR injuries. Injury in this porcine model
335 recapitulates several features of the human macular CR injury, including: **1)** involvement of the
336 macula-equivalent visual streak in pigs; **2)** a transient oBRB breakdown; **3)** a transient subretinal
337 fluid accumulation that resolves by 7-14 days; **4)** with lower energy projectile impacts (at or below
338 38 m/s projectile speed), damage is limited to photoreceptor outer segments and recovered by
339 30 days post injury; **5)** damage caused by projectile impact speed of 39.5 m/s leads to persistent
340 absence of the ellipsoid zone and ONL thinning for the entire evaluation period of 60 days,
341 suggesting permanent damage.

342

343 Commotio retinae was originally named Berlin's oedema and was described as retinal whitening
344 involving loss or disruption of photoreceptor outer segments (28, 45). Previous reports of oBRB
345 breakdown in closed-globe injuries have been contradictory. In a series of 21 patients evaluated
346 with FA and ICGA, findings varied (46). More specifically, fluorescein dye leakage occurred in
347 nine out of 21 eyes, and a "salt and pepper" appearance was observed in one, which the authors
348 felt indicated a more severe injury (though visual acuity was not reported in these cases). In some
349 cases, the early increase in choriocapillaris permeability developed into choriocapillaris vascular
350 occlusion by day four. In cases where evaluated, abnormal FA and ICGA showed delayed filling
351 of CC (20, 22-24, 29, 45, 46). This finding led the authors to speculate that in severe CR,
352 occlusion of the choriocapillaris causes outer retinal ischemia, impairing recovery. More recent
353 studies report subretinal fluid (SRF) only in the most severe injuries (29). In comparison to these
354 previous reports, in our model, oBRB breakdown and SRF was seen in all cases, including those
355 that do not recover defects in outer retina structure and function. It is likely that previous reports,
356 in which patients were assessed at variable times after injury, transient and localized (outside the

357 posterior pole) oBRB breakdown may have been missed. Another possible reason for this
358 discrepancy may have to do with location of injury, which is variable in human blunt force injuries.
359 Our ability to generate a reproducible injury, combined with our subsequent systematic and
360 comprehensive analysis, leads us to speculate that oBRB breakdown may be a common, if not a
361 universal, feature of CR injuries, and that the loss of the choriocapillaris does not directly correlate
362 with outer retina damage or its recovery. While retinal detachment in the context of severe ocular
363 trauma is a concern, acute SRF accumulation after blunt trauma at the site of commotio or
364 sclopetaria retinae may be serous, as indicated by previous studies (46, 47). But the oBRB
365 breakdown seems to resolve with time for most cases. This finding is consistent with published
366 clinical reports (20), supporting the transient nature of the oBRB breakdown.

367

368 The impact sites and speed reported in previous animal models of commotio retinae (47) are
369 variable, but in general, higher speed impacts of low weight projectiles were shown to cause
370 persistent and reproducible CR injury as compared to lower speed impacts from heavy projectiles
371 that caused more damage at the impact site and the neighboring retina (16, 19, 21, 27). Higher
372 projectile speed produces desired damage in our model; however, the site of injury was critical in
373 obtaining a reproducible and retina specific damage. We used a scleral injury site because
374 corneal impacts with energies sufficient to induce commotio retinae also damaged the anterior
375 segment - inducing corneal edema, cataract, iridodialysis and hyphema. These anterior segment
376 disruptions preclude proper evaluation of the retinal damage using clinically relevant imaging
377 modalities such as OCT, OCT-A, mfERG, FA/ICGA. Scleral impacts not only avoid anterior
378 segment disruption but also produce the same ultrastructural features of CR injury seen in
379 patients. Putting together these findings, scleral impact induced closed-globe CR injury provides
380 a more clinically relevant and reproducible animal model for better understanding CR etiology and
381 for testing injury-specific therapeutic approaches.

382

383 At optimized projectile speeds, photoreceptor outer segment damage was visible after one week
384 of injury and continued for the two-month evaluation period. Our OCT findings are consistent with
385 previous reports (38-42, 48); namely, with projectile speed of 37.5 m/s or less, there was an initial
386 increase in reflectivity of the inner/outer segment ellipsoid zone with disappearance of the thin
387 hyporeflective optical space. In these cases, OCT changes recovered over time. With projectile
388 speed of 39.5 m/s, OCT revealed disruption of the inner and outer segment layers with partial
389 atrophy of the outer nuclear layer, and no recovery of the ellipsoid zone and the ONL during the
390 evaluation period of 60 days. These results are consistent with Chen et al., who found that foveal
391 thickness and grade of outer retinal atrophy were predictors of final visual outcome(8, 41). The
392 ellipsoid zone and ONL thinning in the macular area may therefore also help predict which patients
393 could benefit from what kind of therapies.

394 Our mfERG findings are also in agreement with previous reports of transient decrease in mfERG
395 amplitude with lower projectile speed (43, 49). With projectile speed of 37.5 m/s, the mfERG
396 amplitude reduced significantly after the injury but recovered over a 30-day period while with
397 projectile speed of 39.5 m/s, the mfERG amplitude remained low for the entire evaluation period
398 of 60 days. Similar to Mansour et al (50), we report the presence of pre-retinal, retinal, and
399 subretinal hemorrhage around the area of impact as seen by fundus imaging and histology. The
400 preretinal hemorrhage being sub-hyaloid could explain its rapid reabsorption in our cases (11).
401 Furthermore, we provide the first immunofluorescence findings in a CR injury, confirming that
402 photoreceptor degeneration occurs while RPE cells remain viable 60 days after injury. Overall,
403 our model confirms what has been reported in previous rodent models of CR injury but also
404 furthers the field with findings that are consistent with the human injury.

405

406 Our model has several advantages over previous CR models: **1)** the pig eye is similar in size and
407 retinal structure to the human eye (32); **2)** the pig visual streak is cone rich, like the human macula;
408 **3)** using a posterior scleral injury approach, we were able to preserve the health and transparency
409 of the cornea and the lens, allowing us to perform longitudinal structural and functional
410 assessment of the retina using clinically relevant imaging modalities; **4)** retinal analysis led us to
411 discover three discrete areas, the impact zone, the transition zone - an area adjacent to the direct
412 impact site where the damage to the ONL and ellipsoid zone was extensive, and the EZ disruption
413 zone with photoreceptor specific damage to the ellipsoid zone and the ONL. One limitation of our
414 model is that it may not fully capture the disease-associated pathophysiology of photoreceptor-
415 specific retinal degeneration. Therefore, it will be important to also evaluate photoreceptor
416 transplants in disease models, such as the P23H rhodopsin mutation model of retinitis pigmentosa
417 (51). Nonetheless, our model represents a valuable platform for advancing the development of
418 vitreoretinal surgical techniques, instrumentation, and potential therapies for photoreceptor
419 degeneration.

420

421

422

423

424

425

426

427

428

429 **Methods**

430 **Study design**

431 All animals received a baseline examination prior to the CRR injury, including OCT, OCTA
432 FA/ICG-A and mfERG. The same examinations were repeated immediately after the CR injury
433 and at around 7-11, 15, 30 and 60 days after. Because of logistics of animal handling, different
434 animals could not be followed on the same day. Hence, they were followed within a window of a
435 few days. Animals were euthanized at different time points up to 60 days, and the eyes were
436 collected for histology (H&E, Masson and immunofluorescence evaluation).

437 **Sex as a biological variable** Sex was not considered as a biological variable. CR injury is not
438 anticipated to be different between males (castrated or non-castrated) and females. Castrated
439 males were used for this study because only they (not non-castrated males or females) are
440 amenable to social housing, allowing an enriched social environment for the animals (52).

441 **Animal care and procedures**

442 Yorkshire and Yucatan minipigs from Premier BioSource/S&S Farms and Sinclair Research were
443 enrolled in the study. Since pig eyes are fully developed by 6 months, the only limitation for long-
444 term evaluations between both breeds was the rate of growth which was slower in the Yucatan
445 breed. Animals (castrated males, 35-45 Kg) were housed in climate control rooms illuminated at
446 25-37 lux with a 12 hours on-cycle and wood shavings on the floor. Food was provided twice a
447 day, and water was offered *ab libitum*. For imaging and CR injury, pigs were anesthetized,
448 intubated, and maintained on a pressure-controlled ventilator, as previously described (52). Pigs
449 were positioned in custom cradles and water, and air-warming blankets were used to maintain
450 the body temperature. Blood pressure, heart rate, blood oxygenation, CO₂, and temperature were
451 monitored continuously. Sodium chloride (0.9% sodium chloride injection USP, Hospira) or
452 lactated Ringer's (Lactated Ringer's injection USP, ICU Medical) solutions were administered

453 throughout the procedure at an average flow rate of 10 mL/Kg/hour. Pupils were dilated with
454 tropicamide 1% (Tropicamide Ophthalmic solution 1% USP, Akron or Sandoz) and phenylephrine
455 10% (Phenylephrine hydrochloride ophthalmic drops 10%USP, Paragon Biotech). During image
456 acquisition and CR injury, rocuronium (2-3 mg/kg, IV, rocuronium bromide injection 10 mg/mL
457 USP, XGen) was administered and repeated as needed for relaxation of the extraocular muscles.
458 After CR injury, subconjunctival cefazolin (330 mg/mL) 0.4 mL was administered. Upon
459 completion of procedures, an ophthalmic ointment (neomycin and polymyxin B sulfates
460 ophthalmic ointment USP, Bausch and Lomb) was applied on the corneal surface. Ketoprofen (3
461 mg/kg, IM, Ketofen 100 mg/mL, Zoetis) was administered to reduce pain related to the procedures
462 performed. Fluorescein and indocyanine green were administered intravenously. In preparation
463 for enucleation, pigs were anesthetized using the protocol outlined above. Animals were
464 euthanized by administering B-euthanasia IV 1 mL per 10 lbs of body weight (Euthanasia solution,
465 VetOne) and eyes enucleated. The animal's heart rate, blood pressure, and respiration were
466 monitored to confirm euthanasia.

467

468 **Computed Tomography (CT scan) and 3D Skull Reconstruction**

469 CT scans of the pig head were performed in the Section on Cognitive Neurophysiology and
470 Imaging Laboratory of Neuropsychology (National Institute of Mental Health). An Epica Vimago™
471 HU Veterinary CT Scanner was used (ARO systems, Australia) to image anesthetized male
472 Yucatan mini pigs. Anatomical Worldwide (Evanston, IL, USA;
473 <https://www.anatomicalworldwide.com/>) company was contracted to use DICOM set images from
474 the CT scan to design and 3D print the porcine skull. Ballistic gel was purchased from
475 EnvironMolds ART MOLDS (Summit, NJ, USA). It consisted of a 10% non-gelatin clear synthetic
476 gel, which is clear as glass, odorless, reusable, temperature stable (up to 240 F), and mimics
477 human tissue elasticity. The ballistic gel covered the skull and was introduced into the orbit of the

478 3D printed porcine model to mimic as much as possible the consistency and resistance of the
479 orbital tissue at the time of projectile impact.

480

481 **Pressure Application Device (PAD)**

482 To deliver a small spherical plastic polyoxymethylene (POM) projectile (ball) ø12mm/0.75gr (VXB,
483 Anaheim CA), the PAD consisted of a simple closed pneumatic system, using a compressed gas
484 cylinder to generate precisely measured pressure, triggered by a solenoid-actuated valve (SMC
485 VQ31A1-5YH-C12 4/5 port solénoïde valve, from Automatic Distribution. Hartfield, PA) with a
486 bead loading port and an aiming laser beam for precise delivery to the specific area
487 (Supplementary Fig. 1A and Fig. 1A). The device was connected to a nitrogen tank and a pressure
488 manometer allowing precise control of the exerted pressure (measured in pounds per square
489 inch; PSI). A remote control triggered the projectile (Fig. 1A).

490 The exit speed of the projectile was measured using a laser photogate and the time-transit
491 method. Collimated laser light (Adafruit 1054, New York, NY) crosses the path of the launch tube's
492 diameter where it illuminates a photodiode (FDS100, Thorlabs, Newton, NJ) masked with a 1.0
493 mm wide aperture. A transimpedance amplifier (MCP6022, Microchip, Chandler, AZ) converts the
494 photocurrent to a voltage for readout (Supplementary Fig. 1A). A microcontroller and oscilloscope
495 were used to measure the transit-time (t) that the projectile blocked the laser during transit. The
496 diameter (d) of the projectile divided by time (t) yielded the projectile's exit speed ($v=d/t$ in m/s).

497

498 **Commotio Retinae (CR) Injury**

499 Closed-globe CR injury was created under general anesthesia, as described above. The nasal
500 sclera was exposed using 2 limbal traction sutures (6-0 Silk, black braided, Mani, Japan). A

501 perlimbal nasal peritomy with 2 radial incisions were made in the conjunctiva to expose the medial
502 rectus. Using a muscle hook, the muscle was isolated, its insertion highlighted with tissue marker
503 (Viscot medical, LLC Hanover, NJ) and a double armed suture (6-0 PGA, violet braided, Mani,
504 Japan) passed through the muscle close to the insertion before its disinsertion. Using binocular
505 indirect ophthalmoscopy, the center of the visual streak was identified, and the area of intended
506 impact overlying the visual streak was highlighted using a tissue marker. In latter experiments, to
507 allow for a more posterior impact (to minimize anterior segment damage) and to obtain a more
508 localized and reproducible damage, scleral traction sutures and a commercially available
509 cadaveric human scleral patch thickness ranging from 150-250 micron (Tutoplast processed
510 sclera, Katena Randolph, NJ) glued to the nasal sclera (Fig. 5, Supplementary Fig. 6) were used
511 (Vetbond tissue adhesive, 3M St. Paul, MN). After retracting conjunctiva, limbal traction sutures
512 are used to expose nasal sclera. The median rectus is identified; sutured, sectioned and retracted.
513 Scleral sutures are used to further expose nasal sclera. Cadaveric human scleral patch is
514 temporally glued to sclera below median rectus insertion and impact area is highlighted. Once
515 exposed, the PAD laser was aligned with the highlight, with the exit tube 2 inches from the sclera
516 and POM balls at different velocities were tested. After impact, cadaveric sclera is removed,
517 median rectus sutured in its insertion and conjunctiva re-sutured in limbus.

518

519 **Optical Coherence Tomography (OCT)**

520 OCT images were obtained using the Spectralis Spectral-Domain (SD)-OCT (HRA3, Heidelberg
521 Engineering, Germany) instrument and recorded as previously described (52). During each
522 imaging session, three OCT volumes were recorded for each eye: one radial scan (centered in
523 the visual streak) and two raster scans. Raster scans were recorded parallel and perpendicular
524 to the visual streak. To improve signal-to-noise ratio, speckle noise, and contrast, each scan was
525 averaged over 19 ± 2 images with the Automatic Real-time Tracking (ART) function. Radial and

526 raster scan volumes consisted of up to 48 images and 217 images, respectively. To quantify the
527 effect of the CR injury and the progression of damage, cross-sectional areas of retinal layers were
528 recorded in equally sized OCT-B scans and compared over time on co-registered follow up
529 images. All OCT B-scans were exported in TIFF format using the Heidelberg Eye Explorer 2
530 (HEYEX 2) software.

531

532 **OCT Segmentation**

533 For segmentation analysis, five cross-sectional areas, evenly divided throughout the OCT volume
534 were analyzed based on our recently developed algorithm (34). The outer border of the visual
535 streak was defined as the borders of the retinal arteries and veins that surround the visual streak.
536 The three equal inner longitudinal lines were used for the analysis (Supplementary Fig 4). To
537 ensure segmented areas were similar at all the time points, the eye tracking device was used in
538 parallel raster scans. All OCT B-scans were manually segmented by an unbiased observer with
539 no prior involvement in the study and the scan export process. Specifically, the inner and outer
540 boundaries of the outer nuclear layer (ONL) were segmented. Annotations were constrained
541 within the visual streak of the pig and outside of scarred regions.

542

543 **Segmentation data analysis**

544 All segmentation files were saved in JSON format. Subsequently, our recently developed
545 MATLAB scripts were used to calculate the axial thickness (34). Axial layer thickness was
546 averaged for each B-scan and was normalized to the corresponding B-scan at baseline. A
547 nonparametric repeated measures ANOVA (Friedman Test) was performed using GraphPad
548 Prism version 9.5.0 for Windows (GraphPad Software, San Diego, California, USA).

549

550 **Optical Coherence Tomography Angiography (OCT-A)**

551 Optical coherence tomography angiography (OCT-A) images were obtained using the Spectralis
552 Spectral-Domain (SD) OCT (Heidelberg Engineering, Germany) instrument. Each OCTA B-scan
553 contains between 384 and 768 A-scans and each OCT-A volume contains between 256 and 512
554 B-scans. OCTA volumes were centered on specific regions of interest (ROIs).

555

556 **OCT-A Analysis:** *En face* OCT-A scans were exported from the HEYEX Heidelberg software in
557 TIFF format. Choriocapillaris (CC) vasculature in each CR region was directly compared to CC
558 vasculature in baseline analysis of the same area. An experienced observer obtained the gray
559 value from each *en face* scan, of the average binary pixel intensity, for as big of an area as
560 possible in both CR and baseline regions. All gray value calculations were completed using
561 ImageJ (NIH, Bethesda, MD). For each image, the gray value ratio CR was compared with
562 baseline and was reported as a percent change.

563

564 **Fluorescein and Indocyanine Green Angiography (FA, ICGA)**

565 FA and ICGA were obtained using the SD OCT system after intravenous injection of 1 mL
566 Fluorescein 10% solution (AK Fluor 10% USP, Akorn) and 5 mg Indocyanine Green (Indocyanine
567 Green 25 mg USP, Diagnostic Green). A first-minute movie and 1-, 5-, and 10-minutes frames
568 were obtained after the injection.

569

570

571 **Multifocal Electroretinography (mfERG)**

572 The Reti-map-animal mfERG system (Roland Consult, Germany) was used with a 2-channel bio
573 signal amplifier (stimulus frequency selection 10-100Hz) to collect an array of 241 black-and-white
574 hexagons at 10 microvolts over 30 to 40 degrees of the central visual field thus allowing accurate
575 evaluation of the pig visual streak (Supplementary Figure 5). An active contact lens electrode was
576 placed on the cornea using a coupling gel (Genteal® Alcon pharmaceutical, USA). The electrode
577 was connected to an amplifier, and a second electrode was connected to the "ground input" of
578 the amplifier. The pupils were maximally dilated and centered within the ring of the corneal
579 electrode. Recordings were performed under photopic conditions, thus excluding rod
580 contributions to the signal, and ensuring a primarily cone-driven response (52). Considering the
581 variability of the photopic response even within the same day, the Reti-map was set to average
582 three scans for each selected area of the retina.

583

584 **Eye Fixation and Sectioning**

585 Cadaveric eyes were fixed in 4% paraformaldehyde for x min immediately after injury and
586 transferred to 1% PBS until histologic processing. Some eyes were open immediately after injury
587 for gross examination before fixation. After fixation, eyes were opened to identify area of interest
588 and send them for histology processing.

589 Animals were euthanized, and the eyes were collected and processed for histological evaluations.
590 Eyes were fixed for 8 days in paraformaldehyde 2% and glutaraldehyde 2% to maintain tissue
591 morphology, then, placed in 70% Alcohol overnight and washed in running tap water for 24 hours.
592 During histological processing, retinal retraction on intact sclera was minimized with 15% Alcohol.
593 Absolute ethyl alcohol and water (1:15) mixture was used to pretreat the sections 15 minutes

594 before transferred to tissue flotation bath and onto glass slides. The solution was freshly prepared
595 (53).

596 Paraffin-embedded tissues were sectioned at 4- μ m-thickness using a Leica microtome (Leica
597 Biosystems- Nussloch, Germany).

598 Cross sections contained all retinal layers from the *ora serrata* to the posterior pole. Sections
599 were deparaffinized and stained with Harris Hematoxylin and Eosin (H&E), Y Phloxine B to
600 counterstain H&E, and Mason trichromic (Stat lab-USA).

601

602 **Immunostaining of paraffin sections**

603 Deparaffinization was performed as previously described(54) followed by Antigen retrieval (water
604 bath 2x/Citrate Buffer 1X pH 6.0) pre heated in steamer (Life Technology #005000, Thermo Fisher
605 Scientific-US) for 15 minutes followed by: Primary antibody incubation was performed overnight
606 at room temperature. The following primary antibodies were used RPE65 mouse Ab 1:500
607 (Abcam Cat# ab175936, Abcam Inc., UK), peanut agglutinin (PNA) 5mg 1:500 (FL-1075-5)
608 conjugated with a 488 fluorophore. Secondary antibody Alexa fluor 568 1:300 (Invitrogen, Thermo
609 Fisher Scientific, USA) was incubated for 30 min at room temperature. Sections were also stained
610 with Hoechst 33342 1:1000 (Cat# 62249 Invitrogen, Thermo Fisher Scientific-USA).

611

612 **Statistical Analysis**

613 For average velocities analysis, GraphPad Prism version 9.5.0 was also used, and results were
614 analyzed using one-way ANOVA.

615

616 **Study Approval**

617 All animal procedures were performed in accordance with the guidelines of the Association for
618 Research in Vision and Ophthalmology statement for the use of animals in ophthalmic and vision
619 research. All animal procedures received prior approval from the National Eye Institute, NIH,
620 Animal Care and Use Committee.

621

622 **Author contributions**

623 JA, IB, AM, MMC, FB, RG, MF, JN developed and tested the CR porcine model. MJP, RS, DMG,
624 KB, ABD RJB contributed to study design, data analysis, and manuscript writing. KB approved
625 the manuscript.

626 The authors have declared that no conflict of interest exists.

627 **Data availability**

628 Raw values are provided in Supporting Data Values file in supplementary material. Segmented JSON
629 files for OCT are available from the corresponding author upon request.

630 **Disclosure**

631 The authors report no proprietary or commercial interest in any product mentioned or concept
632 discussed in this article.

633 This work is the result of Intramural Research Program NIH funding, in whole or in part, and is
634 subject to the NIH Public Access Policy. Through acceptance of this federal funding, the NIH has
635 been given a right to make the work publicly available in PubMed Central.

636 The contributions of the NIH authors were made as part of their official duties as NIH federal
637 employees, follow agency policy requirements, and are considered Works of the United States

638 Government. However, the findings and conclusions presented in this paper are those of the
639 author(s) and do not necessarily reflect the views of the NIH or the U.S. Department of Health
640 and Human Services.

641

642 **Acknowledgments**

643 This work was supported by NEI IRP funds to KB and by a Department of Defense (DoD) grant
644 W81XWH-20-1-0655 to DMG and KB, and Research to Prevent Blindness (DMG). Dr. Haohua
645 Qian head of the visual function core at the NEI for his invaluable help with the OCT set up and
646 evaluations and Dr. Krystal Allen-Worthington, head of the NEI Veterinary Research and
647 Resources Section for her help for performing the pig MRI.

648

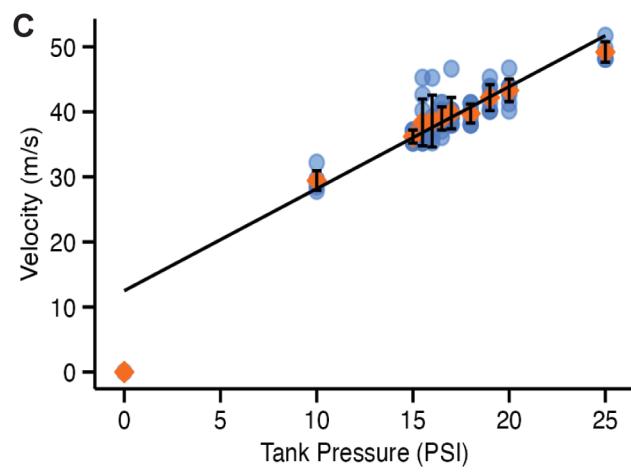
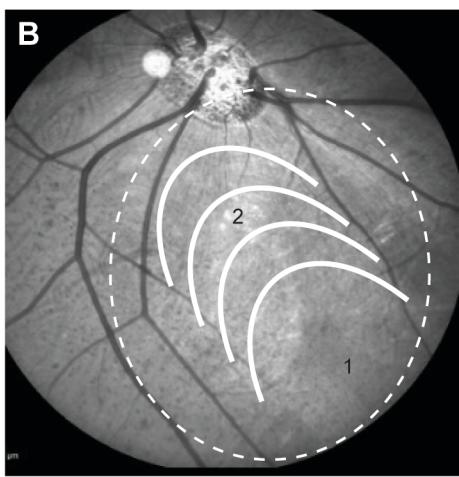
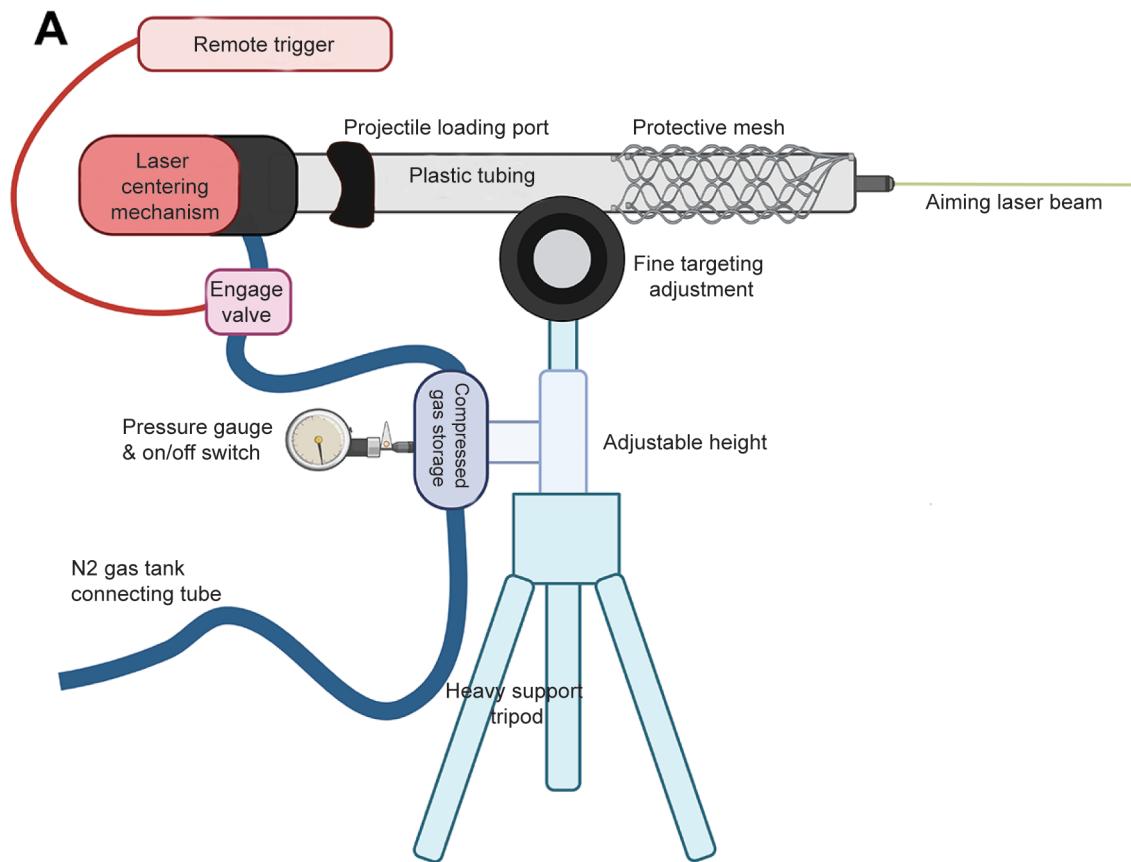
649

650

651

652

653




654

655

656

657

658

659 **Figure 1. Development of a pressure application device (PAD) for inducing closed globe**
660 **commotio retinae (CR) in porcine eyes. (A)** The PAD contains a plastic tube, a projectile
661 loading port, and an aiming laser beam. PAD connects to a nitrogen tank, and a pressure
662 manometer, allowing control of pressure (measured in PSI) used to propel the projectile
663 ($\varnothing 12\text{mm}/0.75\text{g}$). A remote trigger releases the pressure to propel the projectile. **(B)** Porcine
664 fundus infrared photograph showing the visual streak (white dotted circle); (1) the site of projectile
665 impact on peripheral retina; (2) semicircles show the projected path of the shockwave generated
666 by the impact, leading to an indirect visual streak damage. **(C)** Graph shows the average of
667 projectile speed (m/s) measurements as a function of nitrogen gas pressures (psi) ranging from
668 10.0 to 25.0 psi (gauge pressure). Results were analyzed using one-way ANOVA. The standard
669 deviation of the mean was used to estimate uncertainty in projectile speed for each tank pressure.

670

671

672

673

674

675

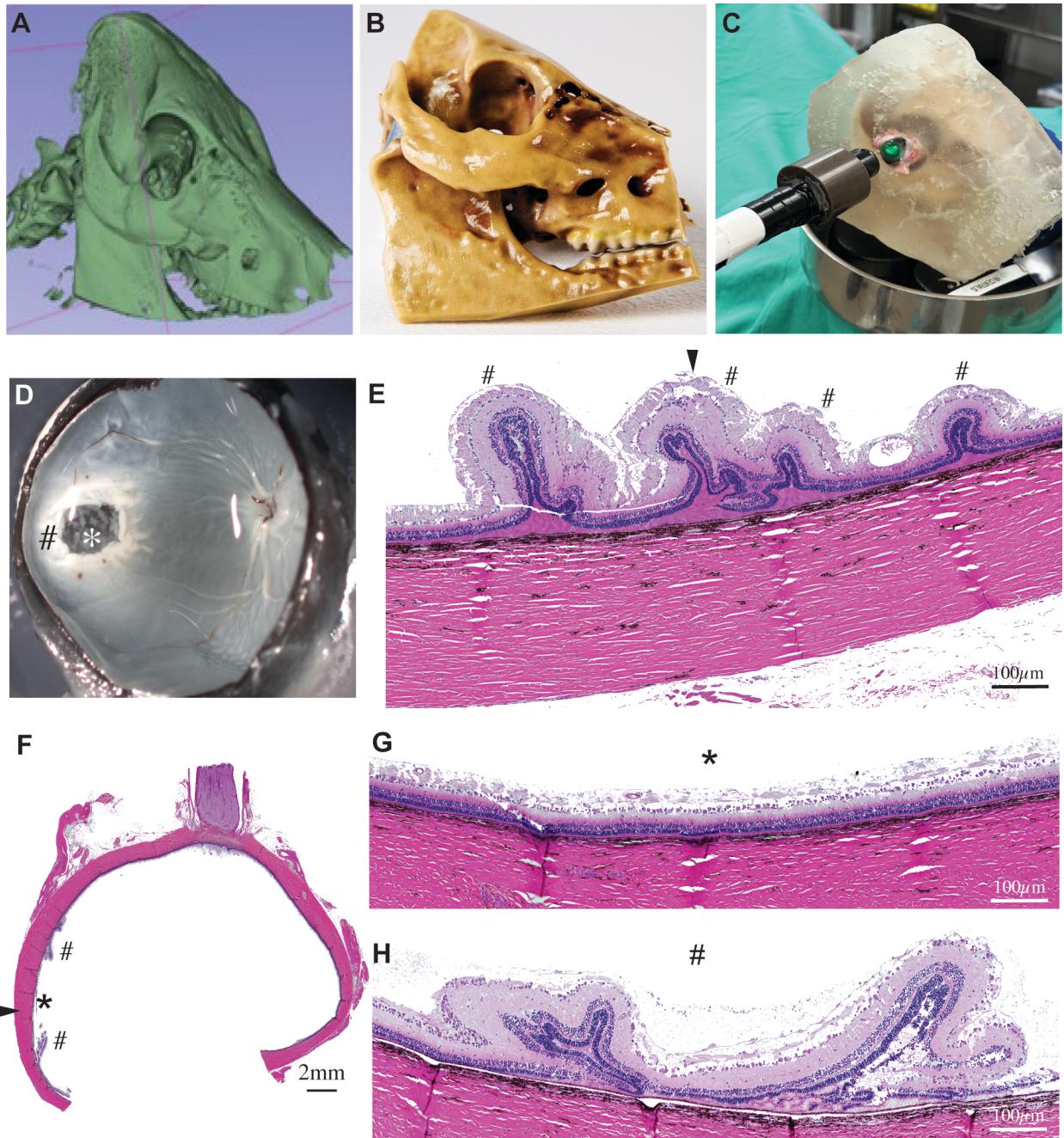
676

677

678

679

680


681

682

683

684

685

686 **Figure 2. *Ex vivo* evaluation of commotio retinae (CR) injury using 3D-printed porcine skull.**
687 **(A)** Computed tomography scan assisted 3D rendering of a pig skull. **(B)** 3D-printed model of a
688 pig skull from 3D rendering generated in (A). **(C)** 3D-printed pig skull with a fitted cadaveric pig
689 eye in the orbit along with non-gelatin based 10% ballistic gel®. Pressure application device
690 (PAD) aimed at the cadaveric pig eye (arrowhead). **(D)** Gross specimen view after the CR injury
691 showing the impact area in the sclera (*) and a surrounding whitened area (#). **(E)** Hematoxylin &
692 Eosin (H&E) stained sections from retinal region corresponding to the corneal impact (#) showing
693 retinal folds in the visual streak. Arrowhead shows the impact direction in the cornea. **(F)** H&E-
694 stained eye section showing the scleral impact zone (black arrowhead), impacted retina (*) in
695 lower (F) and higher **(G)** magnifications, and retinal region with folds (#) surrounding the impact
696 area, in lower (F) and higher **(H)** magnifications. N = 3 eyes per condition.

697

698

699

700

701

702

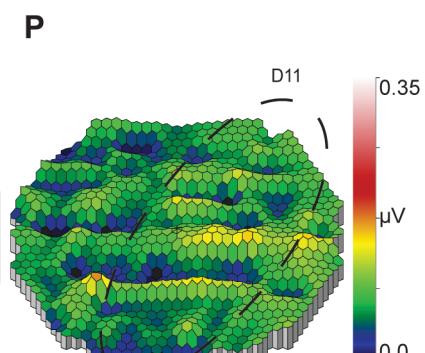
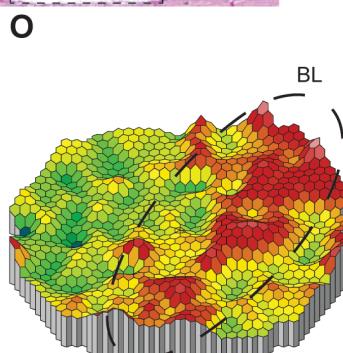
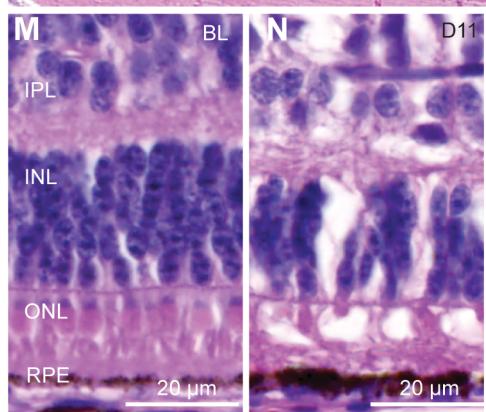
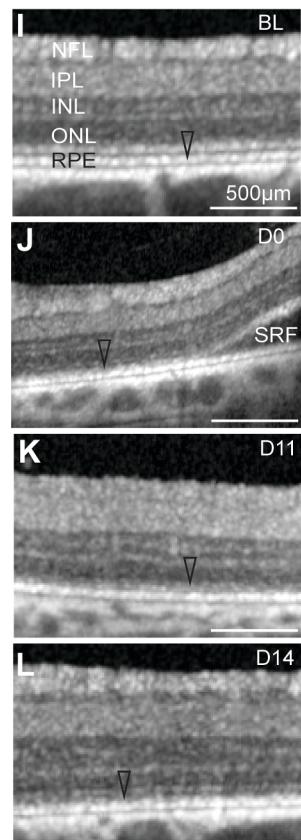
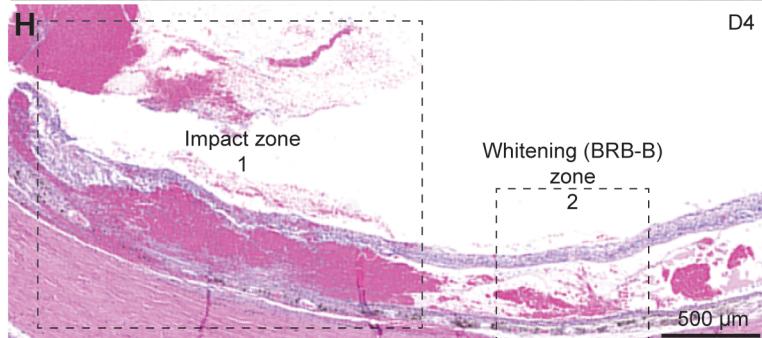
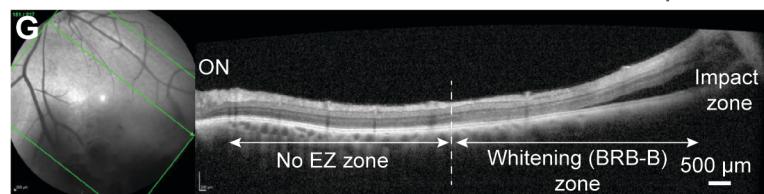
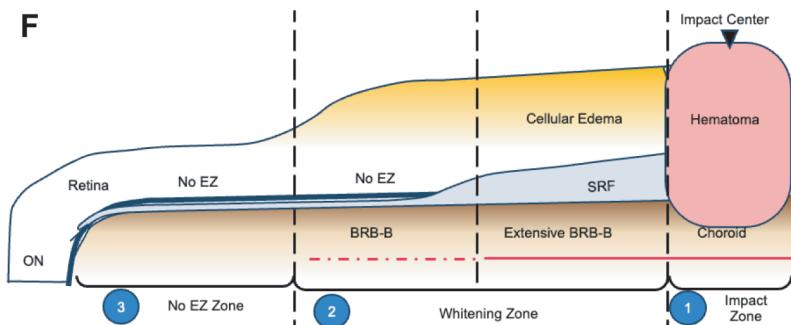
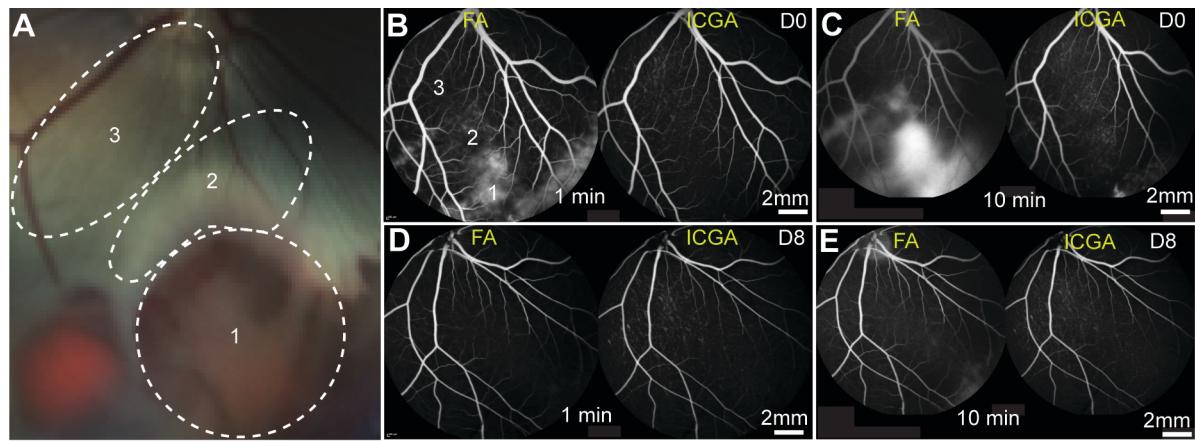
703

704

705

706

707









708

709

710

711

712

713 **Figure 3. Short term evaluation of pig eyes with CR injury. (A)** High magnification of color
714 fundus photograph of CR injured eye showing: preretinal hemorrhage at the impact site (1), the
715 whitening zone (2), and the adjacent visual streak (3). **(B-E)** Fluorescein angiography (FA) (left
716 panels) images showing fluorescein dye leakage in early phase (1 min) on day 0 **(B)** and late
717 phase (10 min) on day 0 post injury **(C)**, but not on day 8 post injury **(D – early phase or E – late**
718 **phase); (B, C, D, E)** Indocyanine, green angiography (ICGA) images (right panels) show no dye

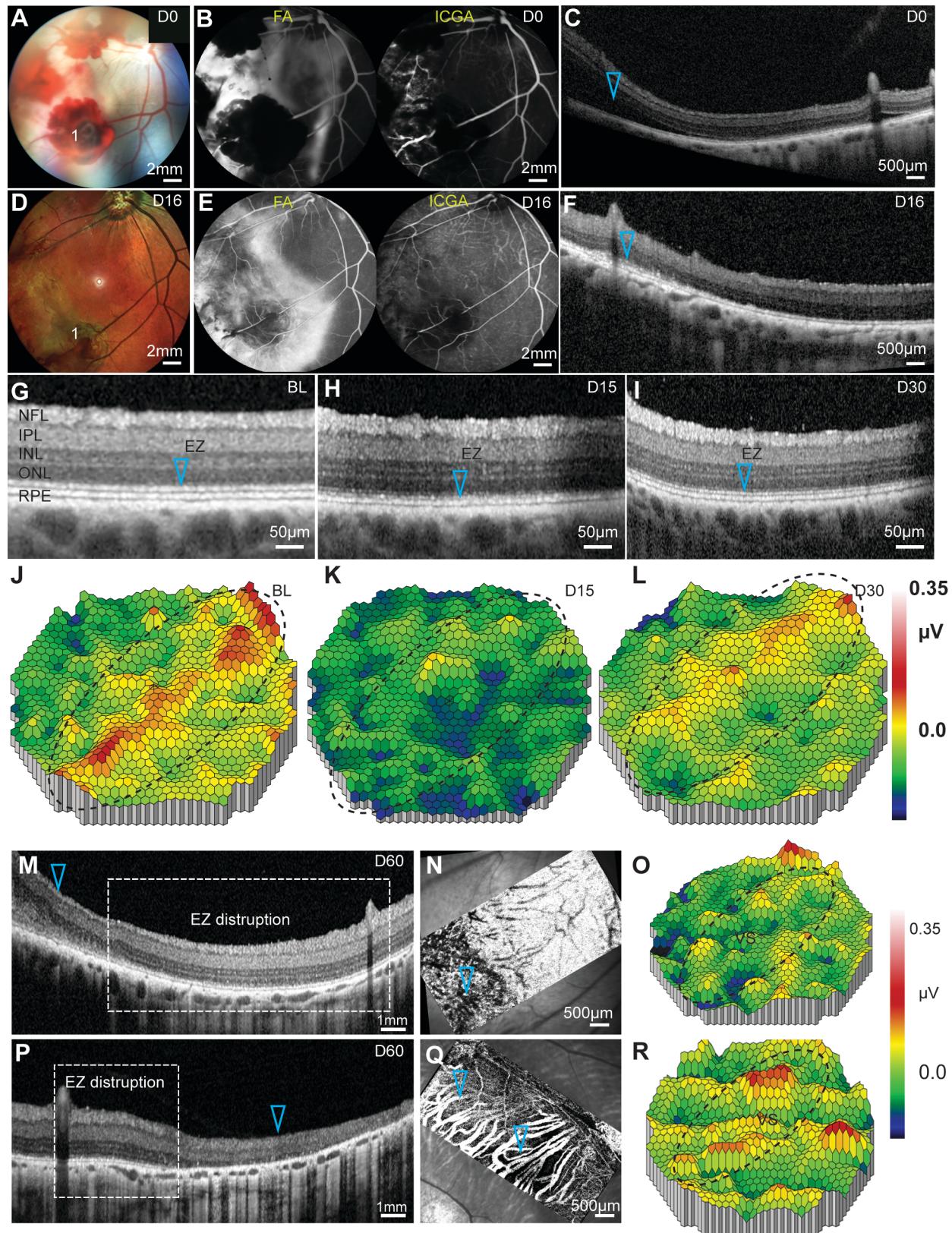
719 leakage on day 0 post injury **(B – early phase or C – late phase)** and day 8 **(D – early phase or**
720 **E – late phase).** **(F)** Schematic depicting the three distinct zones seen on color fundus and OCT
721 images – impact zone showing hematoma (zone 1); whitening zone with extensive oBRB damage
722 and subretinal fluid (SRF) accumulation (zone 2), and zone with ellipsoid zone (EZ) disruption
723 (zone 3). **(G, H)** OCT **(G)** and **(H&E staining (H))** depicting the three zones described in **F.** **(I-L)**
724 Higher magnification OCT images at baseline (bl) showing the ellipsoid zone **(arrow head, I);**
725 subretinal fluid (SRF) accumulation on day 0 after the CR injury **(J);** fluid resorption by day 11 but
726 missing ellipsoid zone (arrowhead) **(K),** which persists on day 14 **(L).** **(M, N)** Hematoxylin & Eosin
727 (H&E) section depicting healthy retina at baseline (Bl) **(M),** and disruptions ONL and
728 photoreceptor outer segments (arrowhead) 11 days after CR injury **(N).** **(O, P)** mfERG signal
729 heatmap at baseline (bl) **(O)** and day 11 (D11) **(P)** post-injury showing the visual streak (vs) and
730 surrounding areas retina light response. Nine eyes were used for short term evaluation of CR
731 injury. NFL- Nerve Fiber Layer, IPL- Inner Plexiform Layer, INL- Inner Nuclear Layer, ONL- Outer
732 Nuclear Layer, RPE- Retinal Pigment Epithelium.

733

734

735

736


737

738

739

740

741

742 **Figure 4. CR injury recovery in the long-term evaluation.** Color fundus (**A, D**), late phase (10
743 min) fluorescein angiography - FA (**B, E – left panels**), indocyanine green angiography (ICGA)
744 (**B, E – right panels**), and OCT (**C, F**) of post-injury eyes on day 0 (**A-C**) and day 16 (**D-F**) of
745 evaluation of the same eye. One (1) marks the area of impact showing preretinal hemorrhage.
746 Whitened area in color fundus images corresponds to sub retinal fluid accumulation on day 0,
747 which is resolved by day 16 (arrowhead in **C, F**). (**G-L**) OCT (**G-I**) and mfERG (**J-L**) analysis
748 shows recovery of ellipsoid zone (compare arrowheads in **G-I**) and recovery of mfERG signal in
749 the visual streak (dotted oval) (**J-L**) by day 30 in eyes injured with a projective speed of 35.7 m/s.
750 (**M-R**) Comparative analysis at 60 days post injury using OCT (**M, P**), OCT-angiography (**N, Q**),
751 and mfERG (**O, R**) of two eyes injured with a projectile speed of 39.5m/s highlights variability in
752 damage to the outer retina to the ellipsoid zone (EZ) (arrowheads in **M and N**), to the
753 choriocapillaris (arrowheads in **N and Q**), and the variable signal in the visual streak (VS – dotted
754 circle) (**O, R**). Seven eyes were used for this evaluation.

755

756

757

758

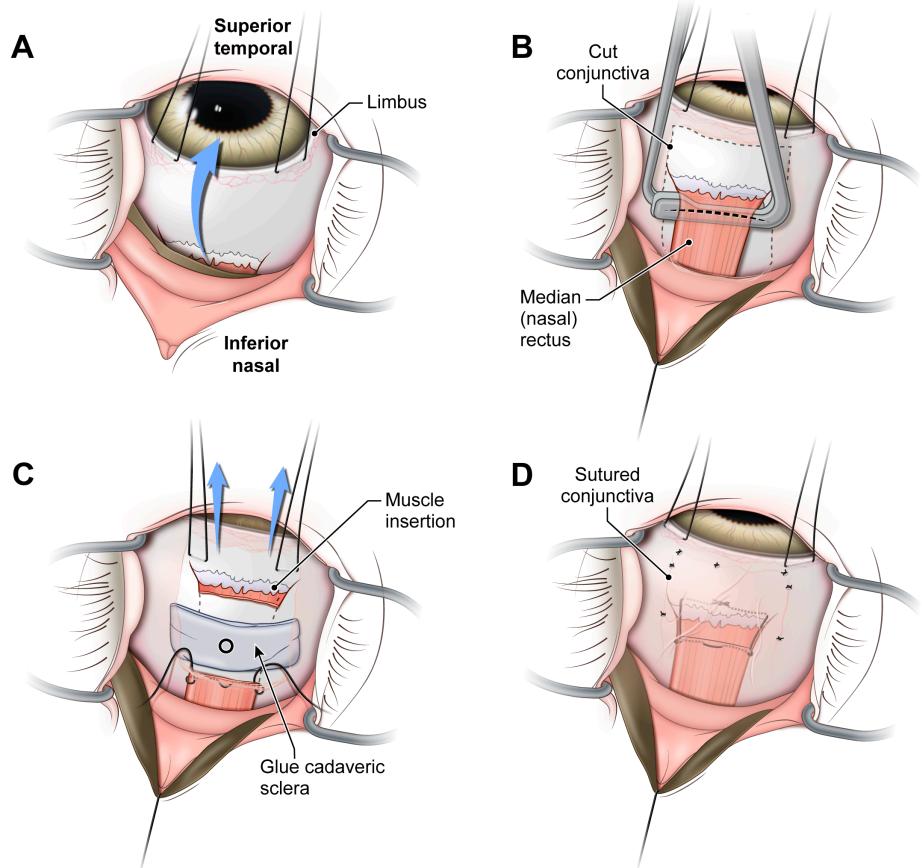
759

760

761

762

763


764

765

766

767

768

769 **Figure 5. Surgical technique for cadaveric scleral patch placement. (A)** Nasal sclera is
770 exposed using limbal traction sutures. **(B)** Nasal conjunctiva is cut to expose and isolate the
771 median rectus muscle using hooks. Mark the area where muscle would be cut (dotted line). **(C)**
772 Scleral traction sutures are used to increase exposure of nasal sclera. A piece of cadaveric sclera
773 is temporally glued to the sclera, and the area of impact is marked (black circle). **(D)** After impact,
774 the cadaveric sclera is removed, median rectus muscle is sutured back to its insertion and
775 conjunctiva is replaced and sutured (also see supplementary Fig. 6).

776

777

778

779

780

781

782

783

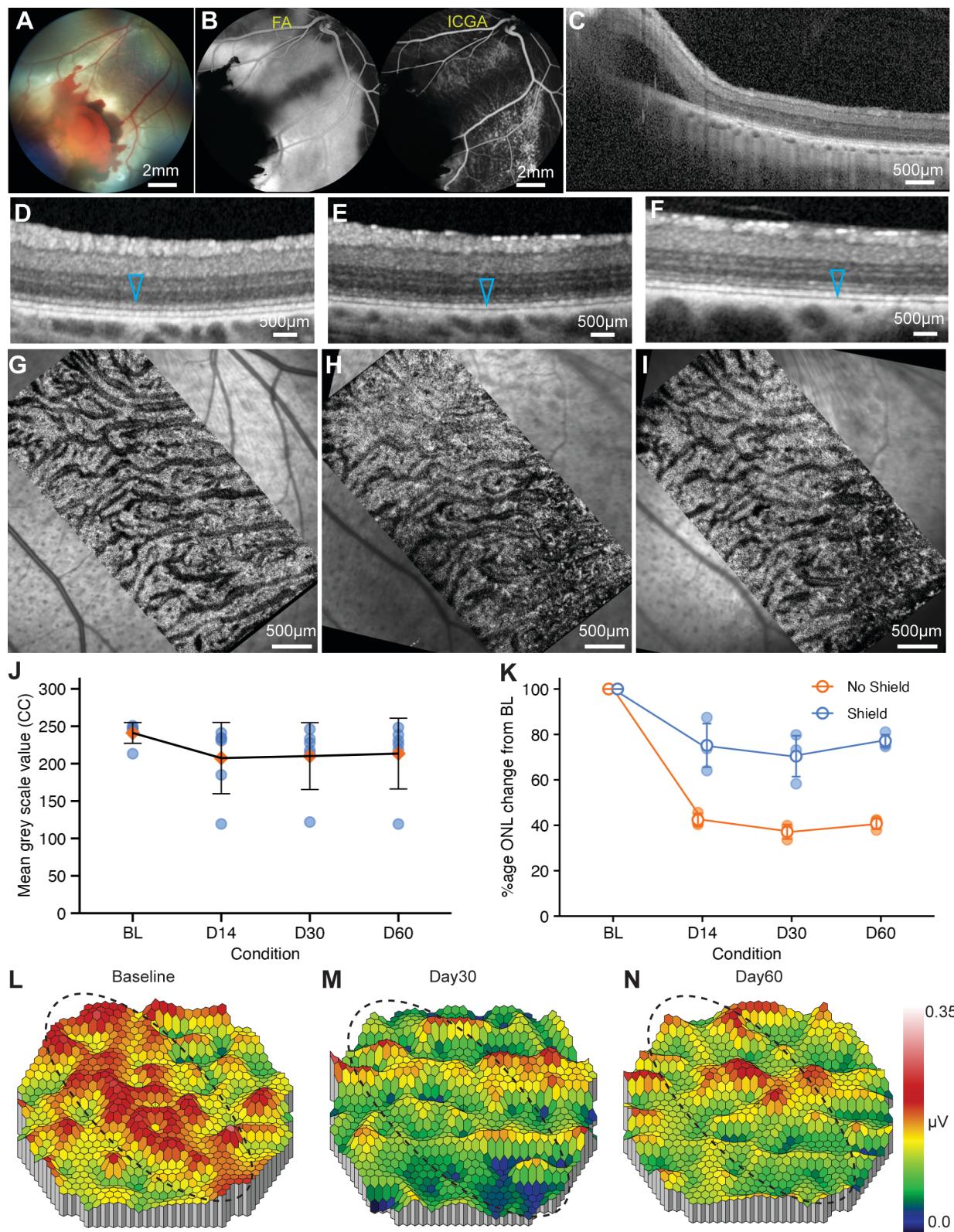
784

785

786

787

788


789

790

791

792

793

794 **Figure 6. Long term evaluation of CR injury caused using a cadaveric scleral patch. (A-C)**
795 Color fundus image **(A)** showing the area of impact with preretinal hemorrhage and the
796 surrounding area of retinal whitening. **(B)** Late phase (10 min) FA and ICGA show blocked
797 fluorescence signal due to hemorrhage. **(C)** OCT showing subretinal fluid (SRF) corresponding
798 to the whitening area in (A). **(D-I)** OCT images **(D-F)** and corresponding OCT-A images **(G-I)**
799 depicting the presence of ellipsoid zone and choriocapillaris respectively at baseline **(D,**
800 arrowhead) and clear ellipsoid zone absence at 30 days **(E, arrowhead)** and 60 days **(F,**
801 arrowhead) post-injury. Minimal changes are seen in choriocapillaris (compare G-I, arrowheads).
802 **(J)** Median grayscale values intensity graph of OCT-A signal intensity up to 60 days after CR
803 injury. Results were analyzed using one-way ANOVA. **(K)** Graph showing ONL thickness at
804 baseline, 15, 30, and 60 days after projectile impact at 39.5 m/s on eyes with no scleral patch vs
805 with scleral pact impacts. Data is presented as a percentage of average thickness of the same
806 location at baseline. ANOVA (Friedman Test compared to baseline) was used for statistical
807 analysis. * p<0.05, ** p<0.01. **(L-N)** mfERG heatmaps at baseline **(L)**, 30 days **(M)**, and 60 days
808 **(N)** after CR injury depicting changes in mfERG sensitivity throughout the evaluation time. Visual
809 streak is highlighted by dotted oval circles. Four eyes were used for this evaluation.

810

811

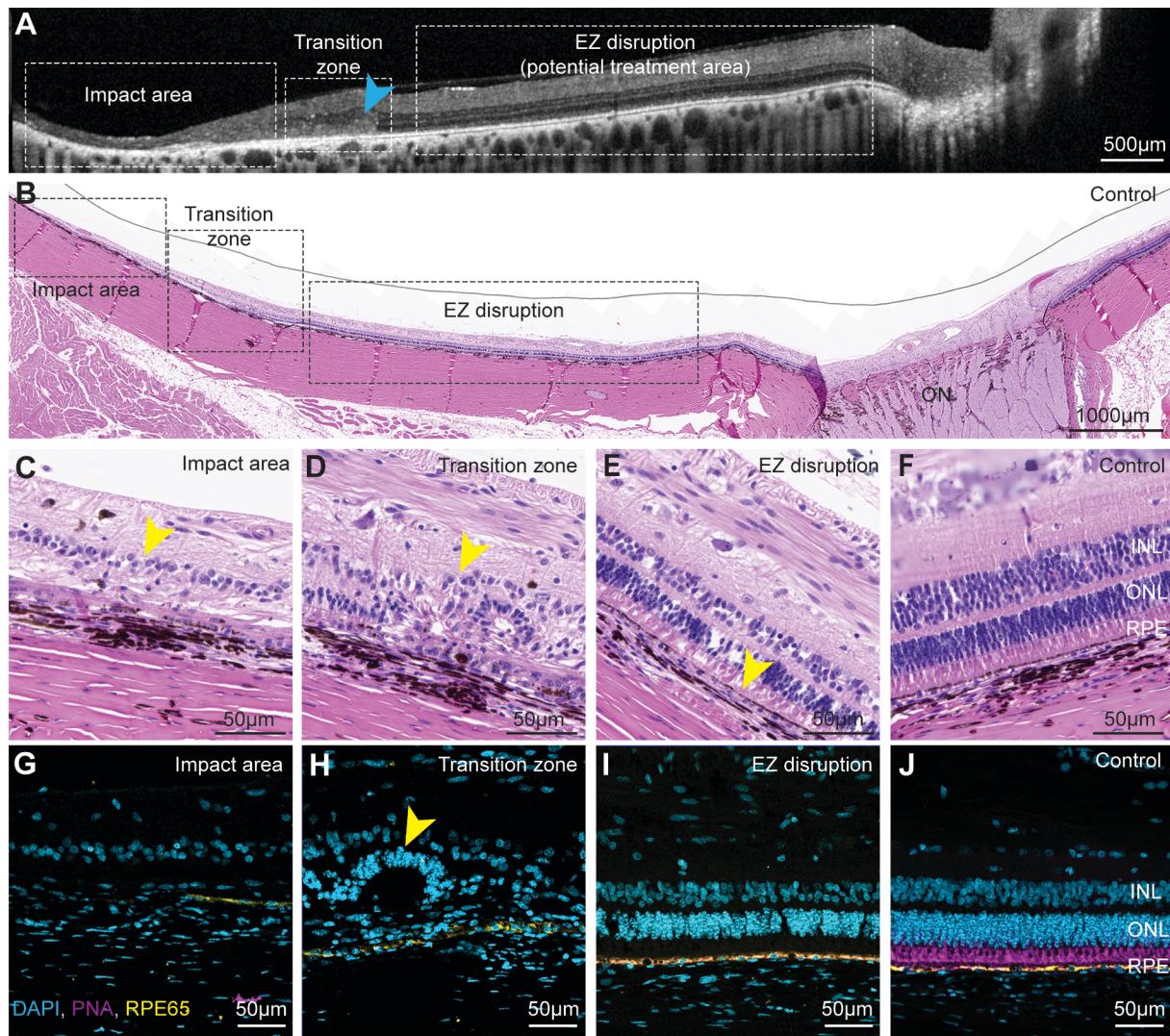
812

813

814

815

816


817

818

819

820

821

822 **Figure 7. Histological analysis of CR model porcine eyes. (A, B)** Terminal point OCT (A,
823 **arrow marks the transition zone**) and corresponding H&E-stained section (B) showing the
824 impact area with complete retinal atrophy, the transition zone with significant outer retina damage,
825 and an area with ellipsoid zone disruption. (C-K) Higher magnification views of the impact area
826 (C, G) showing complete retinal atrophy (arrow head), the transition zone (D, H) showing outer
827 and inner retina layer degeneration (arrow heads), (E, I) showing degenerated photoreceptor
828 outer segments and missing EX band (arrow heads) with relatively preserved photoreceptor outer
829 nuclear layer, and control retina (F, K) stained with H&E (panels C-F) or stained for cone
830 photoreceptors (PNA – magenta), RPE (RPE65-yellow) and nuclei (DAPI-cyan) (panels G-K).

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845 **References**

1. Swain T, and McGwin G, Jr. The Prevalence of Eye Injury in the United States, Estimates from a Meta-Analysis. *Ophthalmic Epidemiol.* 2020;27(3):186-93.
2. Kuhn F, Morris R, Witherspoon CD, and Mann L. Epidemiology of blinding trauma in the United States Eye Injury Registry. *Ophthalmic Epidemiol.* 2006;13(3):209-16.
3. Mir TA, Canner JK, Zafar S, Srikanth D, Friedman DS, and Woreta FA. Characteristics of open globe injuries in the United States from 2006 to 2014. *JAMA ophthalmology.* 2020;138(3):268-75.
4. Bourne RR, Stevens GA, White RA, Smith JL, Flaxman SR, Price H, et al. Causes of vision loss worldwide, 1990–2010: a systematic analysis. *The lancet global health.* 2013;1(6):e339-e49.
5. Négrel A-D, and Thylefors B. The global impact of eye injuries. *Ophthalmic epidemiology.* 1998;5(3):143-69.
6. Alexander DA, Kemp RV, Klein S, and Forrester JV. Psychiatric sequelae and psychosocial adjustment following ocular trauma: a retrospective pilot study. *Br J Ophthalmol.* 2001;85(5):560-2.
7. Flatter JA, Cooper RF, Dubow MJ, Pinhas A, Singh RS, Kapur R, et al. Outer retinal structure after closed-globe blunt ocular trauma. *Retina.* 2014;34(10):2133-46.
8. Blanch RJ, Good PA, Shah P, Bishop JR, Logan A, and Scott RA. Visual outcomes after blunt ocular trauma. *Ophthalmology.* 2013;120(8):1588-91.
9. Eagling EM. Ocular damage after blunt trauma to the eye. Its relationship to the nature of the injury. *The British journal of ophthalmology.* 1974;58(2):126.
10. Weichel ED, Colyer MH, Ludlow SE, Bower KS, and Eiseman AS. Combat ocular trauma visual outcomes during operations iraqi and enduring freedom. *Ophthalmology.* 2008;115(12):2235-45.
11. Spraul CW, and Grossniklaus HE. Vitreous hemorrhage. *Survey of ophthalmology.* 1997;42(1):3-39.
12. Jones N, Hayward J, Khaw P, Claoué C, and Elkington A. Function of an ophthalmic" accident and emergency" department: results of a six month survey. *Br Med J (Clin Res Ed).* 1986;292(6514):188-90.
13. Blanch RJ, Ahmed Z, Thompson AR, Akpan N, Snead DR, Berry M, et al. Caspase-9 mediates photoreceptor death after blunt ocular trauma. *Invest Ophthalmol Vis Sci.* 2014;55(10):6350-7.
14. Wolter JR. Coup-contrecoup mechanism of ocular injuries. *American journal of ophthalmology.* 1963;56(5):785-96.
15. Blanch RJ, Ahmed Z, Sik A, Snead DR, Good PA, O'Neill J, et al. Neuroretinal cell death in a murine model of closed globe injury: pathological and functional characterization. *Invest Ophthalmol Vis Sci.* 2012;53(11):7220-6.
16. Blanch RJ, Ahmed Z, Berry M, Scott RA, and Logan A. Animal models of retinal injury. *Invest Ophthalmol Vis Sci.* 2012;53(6):2913-20.
17. Blight R, and Hart J. Structural changes in the outer retinal layers following blunt mechanical non-perforating trauma to the globe: an experimental study. *British Journal of Ophthalmology.* 1977;61(9):573-87.
18. Bunt-Milam AH, Black RA, and Bensinger RE. Breakdown of the outer blood-retinal barrier in experimental commotio retinae. *Experimental eye research.* 1986;43(3):397-412.
19. Cox MS. Retinal breaks caused by blunt nonperforating trauma at the point of impact. *Transactions of the American Ophthalmological Society.* 1980;78:414.
20. Gregor Z, and Ryan SJ. Blood-retinal barrier after blunt trauma to the eye. *Graefe's Archive for Clinical and Experimental Ophthalmology.* 1982;219:205-8.

894 21. Gregor Z, and Ryan SJ. Combined posterior contusion and penetrating injury in the pig
895 eye. I. A natural history study. *The British Journal of Ophthalmology*. 1982;66(12):793.
896 22. Hart JC, and Blight R. Early changes in peripheral retina following concussive ocular
897 injuries: an experimental study. *J R Soc Med*. 1979;72(3):180-4.
898 23. Hui YN, Wu YQ, Xiao QS, Kirchhof B, and Heimann K. Repair of outer blood-retinal barrier
899 after severe ocular blunt trauma in rabbits. *Graefes Arch Clin Exp Ophthalmol*.
900 1993;231(6):365-9.
901 24. Kohno T, Ishibashi T, Inomata H, Ikui H, and Taniguchi Y. Experimental macular edema
902 of commotio retinae: preliminary report. *Jpn J Ophthalmol*. 1983;27(1):149-56.
903 25. LATANZA L, ALFARO DV, BOCKMAN R, IWAMOTO T, HEINEMANN M-H, and CHANG
904 S. Leukotrienes levels in the aqueous humor following experimental ocular trauma. *Retina*.
905 1988;8(3):199-204.
906 26. Liu Y, Yang T, Yu J, Li M, Li J, and Yan H. Creation of a new explosive injury equipment
907 to induce a rabbit animal model of closed globe blast injury via gas shock. *Frontiers in
908 Medicine*. 2021;8:749351.
909 27. Sipperley JO, Quigley HA, and Gass JDM. Traumatic retinopathy in primates: the
910 explanation of commotio retinae. *Archives of Ophthalmology*. 1978;96(12):2267-73.
911 28. Berlin R. Zur sogenannten Commotio retinaw. *Klin Mbl Augenheilk*. 1873;11:42-78.
912 29. PULIDO JS, and BLAIR NP. The blood-retinal barrier in Berlin's edema. *Retina*.
913 1987;7(4):233-6.
914 30. Hart J, and Frank H. Retinal opacification after blunt non-perforating concussional injuries
915 to the globe. A clinical and retinal fluorescein angiographic study. *Transactions of the
916 ophthalmological societies of the United Kingdom*. 1975;95(1):94-100.
917 31. De Schaeppdrijver L, Simoens P, Lauwers H, and De Geest JP. Retinal vascular patterns
918 in domestic animals. *Res Vet Sci*. 1989;47(1):34-42.
919 32. Sanchez I, Martin R, Ussa F, and Fernandez-Bueno I. The parameters of the porcine
920 eyeball. *Graefes Arch Clin Exp Ophthalmol*. 2011;249(4):475-82.
921 33. Sharma R, Khristov V, Rising A, Jha BS, Dejene R, Hotaling N, et al. Clinical-grade stem
922 cell-derived retinal pigment epithelium patch rescues retinal degeneration in rodents and
923 pigs. *Sci Transl Med*. 2019;11(475).
924 34. Gupta R, Bunea I, Alvisio B, Barone F, Gupta R, Baker D, et al. iPSC-RPE patch restores
925 photoreceptors and regenerates choriocapillaris in a pig retinal degeneration model. *JCI
926 Insight*. 2025;10(10).
927 35. Ross JW, Fernandez de Castro JP, Zhao J, Samuel M, Walters E, Rios C, et al.
928 Generation of an inbred miniature pig model of retinitis pigmentosa. *Invest Ophthalmol Vis
929 Sci*. 2012;53(1):501-7.
930 36. Winkler PA, Occelli LM, and Petersen-Jones SM. Large animal models of inherited retinal
931 degenerations: a review. *Cells*. 2020;9(4):882.
932 37. Blight R, and Hart J. Histological changes in the internal retinal layers produced by
933 concussive injuries to the globe. An experimental study. *Transactions of the
934 Ophthalmological Societies of the United Kingdom*. 1978;98(2):270-7.
935 38. Oh J, Jung J-H, Moon SW, Song SJ, Yu HG, and Cho HY. Commotio retinae with spectral-
936 domain optical coherence tomography. *Retina*. 2011;31(10):2044-9.
937 39. Ahn SJ, Woo SJ, Kim KE, Jo DH, Ahn J, and Park KH. Optical coherence tomography
938 morphologic grading of macular commotio retinae and its association with anatomic and
939 visual outcomes. *American journal of ophthalmology*. 2013;156(5):994-1001. e1.
940 40. Mendes S, Campos A, Campos J, Neves A, Beselga D, Fernandes C, and Sousa JPC.
941 Cutting edge of traumatic maculopathy with spectral-domain optical coherence
942 tomography—A review. *Medical Hypothesis, Discovery and Innovation in Ophthalmology*.
943 2015;4(2):56.

944 41. Chen H, Lu Y, Huang H, Zheng J, Hou P, and Chen W. Prediction of visual prognosis with
945 spectral-domain optical coherence tomography in outer retinal atrophy secondary to
946 closed globe trauma. *Retina*. 2013;33(6):1258-62.

947 42. Souza-Santos F, Lavinsky D, Moraes NS, Castro AR, Cardillo JA, and Farah ME. Spectral-domain optical coherence tomography in patients with commotio retinae. *Retina*.
948 2012;32(4):711-8.

949 43. Noia Lda C, Berezovsky A, Freitas D, Sacai PY, and Salomão SR. [Clinical and
950 electroretinographic profile of commotio retinae]. *Arq Bras Oftalmol*. 2006;69(6):895-906.

951 44. Olsen TW, Sanderson S, Feng X, and Hubbard WC. Porcine sclera: thickness and surface
952 area. *Invest Ophthalmol Vis Sci*. 2002;43(8):2529-32.

953 45. Hart JC, and Blight R. Commotio retinae. *Arch Ophthalmol*. 1979;97(9):1738.

954 46. Kohno T, Miki T, and Hayashi K. Choroidopathy after blunt trauma to the eye: a fluorescein
955 and indocyanine green angiographic study. *American journal of ophthalmology*.
956 1998;126(2):248-60.

957 47. Ludwig CA, Shields RA, Do DV, Moshfeghi DM, and Mahajan VB. Traumatic chorioretinitis
958 sclopetaria: Risk factors, management, and prognosis. *American Journal of
959 Ophthalmology Case Reports*. 2019;14:39-46.

960 48. Itakura H, and Kishi S. Restored photoreceptor outer segment in commotio retinae. *Ophthalmic Surgery, Lasers, and Imaging*. 2011;42(6):e29-e31.

961 49. Knighton RW, and Blankenship GW. Electrophysiological evaluation of eyes with opaque
962 media. *Int Ophthalmol Clin*. 1980;20(1):1-19.

963 50. Mansour AM, Green WR, and Hogge C. Histopathology of commotio retinae. *Retina*.
964 1992;12(1):24-8.

965 51. Fernandez de Castro JP, Scott PA, Fransen JW, Demas J, DeMarco PJ, Kaplan HJ, and
966 McCall MA. Cone photoreceptors develop normally in the absence of functional rod
967 photoreceptors in a transgenic swine model of retinitis pigmentosa. *Invest Ophthalmol Vis
968 Sci*. 2014;55(4):2460-8.

969 52. Barone F, Amaral J, Bunea I, Farnoodian M, Gupta R, Gupta R, et al. A versatile laser-
970 induced porcine model of outer retinal and choroidal degeneration for preclinical testing.
971 *JCI Insight*. 2023;8(11).

972 53. Kumar N, Nayak B, Somayaji S, Nayak S, KUMAR N, NAYAK B, et al. Role of dilute
973 alcohol in the removal of fine wrinkles from paraffin sections, a Histo-technical study. *Int J
974 Morphol*. 2012;30:45-8.

975 54. Prophet EB. *Laboratory methods in histotechnology*. American registry of pathology; 1992.
976

977

978