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Abstract

Commotio retinae (CR) resulting from retinal trauma can lead to focal photoreceptor degeneration
and permanent vision loss. Currently no therapies exist for CR-induced retinal degeneration, in
part due to a lacking large animal model that replicates human injury pathology and allows testing
of therapeutics. Severe CR is clinically characterized by subretinal fluid and focal photoreceptor
outer nuclear layer thinning. To develop a porcine CR model, we developed a laser-guided
projectile apparatus and optimized projectile delivery procedure using porcine cadaveric eyes
embedded in a 3D-printed porcine skull. Scleral and corneal impacts, resulted in retinal damage
consistent with patient injury but corneal impacts also led to cornea damage and opacification,
which precluded follow up imaging. In live porcine eyes, scleral impacts of 39.5 m/s induced
transient blood retinal barrier breakdown evidenced by subretinal fluid on optical coherence
tomography (OCT), leakage observed on fluorescein and indocyanine green angiography, and
transient photoreceptor outer segment disruption seen by OCT and multifocal
electroretinography. Impacts above 39.5 m/s induced longer-lasting photoreceptor degeneration,
but only transient blood retinal barrier breakdown. This porcine model, combined with clinically
relevant imaging and diagnostic modalities will be valuable for testing the safety and efficacy of

therapies to restore vision after focal photoreceptor degeneration.
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Introduction

Traumatic retinopathy is a significant cause of vision loss and blindness, with eye injury—
associated vision impairment affecting 4.5 per 1,000 Americans. Among those affected, 5.1 per
1,000 experience unilateral blindness, and 4.5 per 10,000 have bilateral blindness (1-3). Globally,
55 million eye injuries occur annually, resulting in bilateral visual impairment in 2.3 million people
and unilateral blindness or low vision in nearly 19 million individuals (4, 5). Furthermore, traumatic
vision loss is often acute (4), affects relatively younger individuals, is associated with occupational
and psychiatric complications, and contributes significantly to lost productivity and reduced quality

of life (6).

One form of traumatic retinopathy is commotio retinae (CR), a condition affecting the outer retina,
associated with temporary or permanent visual function loss following a closed-globe injury (7-
11). The incidence of CR in civilian population is approximately 0.4%, but it accounts for up to
15% of military ocular trauma cases and leaves a significant number of veterans with lifelong
visual impairment (8, 10, 12). In real-world scenarios, the location of impact leading to CR is
sporadic, unpredictable and often unknown. Depending upon the location, the damage can also
be variable. Of concern are the CR cases where the macula is involved — in such cases visual
acuity can be significantly reduced without any treatment possibility. Macular CR can occur after
anterior segment trauma (contra-coup) or direct scleral impact (13, 14). After macular CR, 15-
20% of patients suffer permanent visual impairment, primarily related to photoreceptor
degeneration (7, 8, 15). Rats, rabbits, cats, pigs, and rhesus and owl monkeys have been used
as animal models for commotio retinae (15-27), however, none fully or consistently replicate the
macular pathology observed in human injury. Some models, such as rabbits and rat, lack a
macula-homologue, while others, such as pigs and non-human primates that have a macula

homolog, were developed predominantly with direct peripheral injuries rather than central (where
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energy of impact transmitted to macular region) as seen in the human CR pathology. Another
unresolved aspect of CR injury is the nature of Berlin’s edema, which has been described as a
hallmark feature of CR pathology (28). But there is ongoing debate about the degree to which the
outer blood-retinal barrier is disrupted following CR injury (16, 18, 20, 23, 29, 30). The heretofore
inability to perform clinically relevant longitudinal live imaging modalities has further limited
translation of previous CR models to test human relevant treatment modalities. Moreover,
because CR injury can affect a relatively large retinal area—including the entire macula (up to 20
mm?) - there is a clear need for a large animal model of CR that accurately replicates human
closed-globe macular injury. Such a model would enable proper characterization of the injury
response and facilitate testing of clinically relevant imaging techniques and allow preclinical
evaluation of regenerative therapies aimed at replacing lost photoreceptors and/or restoring

photoreceptor function through other approaches.

Pigs are an ideal preclinical animal to develop such a model, as the porcine eye lacks a tapetum,
has a human comparable average axial length of 23.9 mm, and a holangiotic retinal blood supply
with a capillary meshwork of similar caliber that supplies identical retinal layers as in human eyes
(31). While pigs don’t have a macula, they have a central visual streak rich in cone photoreceptors
(31, 32). Because of their comparability to human eyes, pig eyes are suitable for surgical
procedures such as vitrectomy and subretinal transplantation of large constructs that can cover a
significant portion of the macula (33, 34). Furthermore, pigs are significantly more cost effective

and easier to handle and obtain as compared to non-human primates (33, 35, 36).

Using a scleral impact approach, we developed a closed-globe macula-injury specific CR pig
model to characterize the acute and chronic injury response. Scleral impact allowed us to test
clinically relevant imaging modalities, not feasible with corneal impact (36, 37), such as optical
coherence tomography (OCT), OCT angiography (OCTA), fluorescein and indocyanine green

angiography (FA/ICG-A), and multifocal electroretinography (mfERG) to evaluate and diagnose
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the cone photoreceptor response to injury. Our data suggest that the porcine CR model closely
mimics the human macular CR injury, mimicking the human closed-globe macular CR injury. Our
model showed retinal whitening, preretinal hemorrhage, transient outer blood retinal barrier
breakdown, and progressive photoreceptor outer segment degeneration — symptoms seen in
patients with a CR injury. This clear longitudinal analysis is useful for the development of
treatments for severe macular CR and may aid in the development of treatments for other forms

of outer retinal degenerations.
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Results

Development of a pressure application device (PAD) for inducing closed-globe CR injury

To develop a reproducible closed-globe CR porcine model that mimics human macular CR injury,
we developed a pressure application device (PAD) that is used to injure the eye using a fixed
diameter projectile impact. To induce injury, PAD delivers predetermined energy by propelling a
plastic projectile (212mm) towards the pig eye at a measured speed using a laser-guided
mechanism. The PAD was designed as a closed pneumatic system that operates using
compressed nitrogen gas to generate precise pressure (measured in PSI) that can be
reproducibly applied to a propel a plastic ball at a specific speed (measure in m/s). To accurately
target the injury location at the visual streak, the eye fundus was visualized using binocular indirect
ophthalmoscopy and different projectile impact areas (cornea, limbus, and sclera) were tested.
The plastic ball is “loaded” into acceleration tube using the loading port; then, propelled using
pressure from the compressed nitrogen gas and a solenoid-actuated fast opening valve with
remote trigger; tube is aimed at the desired location using the laser beam (Fig. 1A, Supplementary
Video 1, Supplementary Figs. 1A, B). The impact of the plastic ball transfers its kinetic energy to
the eye, modelling blunt force or concussive injury such as after a blast (Fig. 1B). To determine
projectile speed reproducibility, we evaluated linearity between PSI| and projectile speed
(Supplementary Fig. 1B) and confirmed a linear relationship between PSI and the projectile speed
within the range of pressures tested for the projectile release (Fig. 1C). This data confirms our

ability to deliver the projectile consistently at a specific speed.
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Ex vivo Evaluation of PAD Induced CR

To develop an animal model with reproducible macular CR injury, we set out to optimize the injury
location that would lead to ellipsoid zone (inner outer segments of the photoreceptors) and
photoreceptor outer nuclear layer (ONL) damage in pig’s visual streak. With the goal of reducing
the number of animals, we chose to perform initial testing of optimal injury location and projectile
speed ex vivo on cadaveric pig eyes. Since slaughterhouse eyes lack the orbital support (muscle,
fat, ligaments, optic nerve), to reduce artificiality of an ex vivo model and to mimic as closely
possible the in vivo environment, we developed a 3D-printed pig skull in which we mounted the
cadaveric pig eyes. A high-resolution computer tomography (CT) scan of a pig head was
performed and was used to construct a 3D image of the pig skull using the CT scan software (Fig.
2A). This 3D image was used to 3D-print a pig-skull. The skull was printed commercially using
material that has similar mechanical properties to bone (https://www.anatomicalworldwide.com)
(Fig. 2B). A ballistic gel® (see methods) made from synthetic gelatin was used to fill the 3D printed
pig skull, mimicking the elastic properties of the orbital and cranial tissues, thus explicitly helping
assess the impact of projectile kinetic energy transfer to the eye simulating what happens in a live
animal and human injury. Freshly obtained cadaveric pig eyes were placed in the eye sockets of
the 3D-printed pig skull (Figs. 2C; Supplementary Figs. 2A, B). Despite lacking anatomical
structures around the eye (muscles, blood vessels, and the fat deposits), these cadaveric eyes
provided the first best approximation of injury location and impact intensity allowing us to rule out
conditions incompatible with our goal of central retinal injury with minimal corneal damage. PAD
was used to deliver projectiles at different speeds to determine the optimal speed and the optimal
impact location (Fig. 2C). Injury damage was evaluated by gross evaluation in dissected eyes and
by histology (Figs. 2D-H, Supplementary Figs. 2, 3). We first tested the hypothesis that direct
corneal impacts can lead to visual streak damage. With projectile speed of 40.5 m/s, although we

detected damage to the retina and the visual streak, the impact caused retinal folds and
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discernable damage to the cornea with epithelial displacement (Figs. 2D, E; Supplementary Figs.
2C, D; Supplementary Table 1). Since retinal folds were not a desired outcome and corneal
damage would preclude longitudinal live imaging, we didn’t pursue this approach further. Next,
we asked whether projectile impacts at the limbus will damage the retina. Unexpectedly, limbal
impacts with projectile speed of 40.5 m/s only a peripheral damage to the cornea was induced
and a peripheral retinal dialysis (retinal tear at the ora serrata) was also seen (Supplementary
Figs. 2E, F; Supplementary Table 1). This led us to test whether direct scleral impacts could result
in desired retinal damage. With progressively increasing projectile speed from 33-40 m/s damage
to the retina at the impact site increased from displacement of retinal layers at 33 m/s; edema and
fibrosis at 35.7 m/s to almost complete retinal atrophy at 40 m/s (Supplementary Figs. A-E). In
comparison, in the visual streak, projectile speeds at and below 39.5 m/s caused desired damage
to the ellipsoid zone and the ONL, whereas speed of 40 m/s or more caused atrophic changes
and retinal folds, as well random preservation of retinal structures outside the impact area (Figs.
2F-H; Supplementary Figs. 3F-J; and Supplementary Table 1). Based on our analysis of
cadaveric pig eyes, we hypothesized that, living pig eyes will be more sensitive to scleral damage,
so relatively lower velocities will be required to damage the visual streak area and minimize
collateral damage to the anterior segment of the eye that will preclude longitudinal post-injury

evaluations.

Acute Outer Blood Retinal Barrier (0BRB) Damage in PAD-induced CR

Based on our ex vivo analysis, we began testing on living pig eyes with projectile impact speed
of 35.7 m/s. Five pigs were enrolled in this study. In all cases, fundus examination immediately
after injury revealed the presence of preretinal hemorrhage at the area of impact (zone 1) and
retinal whitening adjacent to it (zone 2) (Fig. 3A). There was extensive oBRB breakdown at zone

1 extending into zone 2, as evidenced by fluorescein leakage within a min after dye injection
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continuing until the 10-minute evaluation time point (Figs. 3B, C; left panels). ICGA changes were
minimal, suggesting no disruptions in retinal or deeper choroidal vessels (Figs. 3B, C; right
panels). Fluorescein Leakage subsided within 8-11 days post-injury, suggesting a transient
disruption of the oBRB with no additional changes in ICGA (Figs. 3D-E). OCT examination
immediately after the injury revealed retinal detachment and subretinal fluid accumulation at the
site of impact extending into zone 2 (Figs. 3F, G). OCT analysis also revealed extensive ellipsoid
zone disruption extending from zone 2 into the visual streak (zone 3) (Figs. 3F, G). Quantification
of OCT data revealed a range of sizes for different zones illustrated in Fig. 3F (zone 1: 2.0-4.0
mm; zone 2: 3.0-8.0 mm; zone 3: 2.0-8.0 mm). These findings were confirmed by histological
analysis of the cadaveric pig eyes four days after the CR injury, revealing preretinal hemorrhage
and extensive retinal damage with retinal atrophy in zone 1, thinning of outer retina and layer
disorganization in zone 2, and photoreceptor disruption extending away from this area (Fig. 3H).
Follow-up by OCT confirmed FA/ICGA findings revealing subretinal fluid accumulation seen at
day 0 (Figs. 31, J) that was resolved in the first 2 weeks (Fig. 3K). Interestingly, disruptions of the
ellipsoid zone seen on day 0 persisted beyond day 14 (Figs. 3J-L). These findings were further
confirmed by histological analysis of the retina (Figs. 3M, N), where photoreceptor outer segments
shortening and ONL thinning and disruptions was evident. mfERG analysis showed reduced
signal in the visual streak, confirming functional defects in cone photoreceptors (Supplementary
Fig. 4; Figs. 30,P). Overall, our data suggest that with impact speed up to 35.7 m/s, there was an

acute oBRB breakdown that recovered by day 11, while the ellipsoid zone disruptions persisted.

Long-term Photoreceptor Damage in PAD-induced CR

Short-term evaluation of the CR injury provided findings that were consistent with the patient data
in terms of specificity of damage to photoreceptors(7, 38-43). Short-term evaluation also revealed

acute oBRB damage not previously described for CR patients. With the goal of developing a
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suitable large animal model for testing potential therapies, next we set out to determine if PAD-
induced CR injury at a projectile speed of 35.7 m/s persists longer term. Five pigs were enrolled
in this part of the study and evaluated for up to 60 days after injury. As seen in the short-term
studies, in all cases there was preretinal hemorrhage (zone 1) and retinal whitening - likely
associated with an acute oBRB breakdown, which progressively healed by 16 days, as confirmed
by fluorescein angiographs (Figs. 4A, B, D, E). ICGA changes continue to be unremarkable by
day 16 of evaluation, suggesting no damage to retinal or choroidal vessels (Figs. 4B, E). OCT
analysis confirmed sub retinal edema on day 0 in zone 2, which reabsorbed by day 16 (Figs. 4C,
F). Surprisingly, the ellipsoid zone disruption evident in higher magnifications at day 15, recovered
by day 30 (compare Figs. 4G with H and |). This transient structural defect and its recovery was
corroborated by initial loss and subsequent recovery of the mfERG signal, measured over the
visual streak area (Figs. 4J-L). Because of this finding, we decided to increase the projectile
impact speed to 39.5 m/s. Expectedly, higher speed caused deeper impact that was evident even
at the 60 days follow up and there was no recovery of the ellipsoid zone on OCT (Figs. 4M, P).
However, this high impact led to higher variability in structural damage to the retina with larger
areas of retinal atrophy and relatively smaller EZ disruption areas as assessed by OCT (compare
Figs. 4M, P); variable non-perfusion of the choriocapillaris as seen by OCTA (compare Figs. 4N,
Q), and variable functional changes in the visual streak as seen by mfERG (compare Figs. 40,
R). This variability, combined with the evidence of collateral damage to the posterior lens capsule
and anterior segment (Supplementary Fig. 5), prompted us to seek an alternative impact method
to generate more reproducible, long-term, and specific injury to the photoreceptors without

extensive anterior segment collateral damage.
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Scleral Patch Improves Reproducibility of the CR injury

During post hoc analysis of evaluated eyes and based on literature evidence of variable scleral
thickness in pigs, we asked if we could control variability in injury extent by temporarily adding a
scleral patch to the injury location (44). We used a commercially available cadaveric human
scleral patch and glued it to the posterior sclera by disinsertion of the median rectus and release
of the limbal traction (see Methods for surgery details). After the impact, cadaveric scleral patch
was removed, and median rectus was re-sutured back to sclera (Figs. 5A-D, Supplementary Fig.

6).

Four pigs were subjected to a projectile impact at a speed of 39.5 m/s and monitored for up to 60
days post-injury. As seen with injury without the scleral patch, preretinal hemorrhage (zone 1) and
retinal whitening (zone 2) seen immediately after the impact was also seen with the scleral patch,
by color fundus photography (Fig. 6A). Fluorescein angiography confirmed retinal whitening was
caused by oBRB disruption (Fig. 6B — left panel). Similar to the CR injury without the scleral patch,
ICGA didn’t show any signal suggesting no damage to the choroidal vessels (Fig. 6B, right panel).
Edema seen on day 0 by OCT analysis resolved by day 30, suggesting oBRB heals by this time.
(Figs. 6D and E). In contrast, the ellipsoid zone disruption continued beyond day 30 until day 60
evaluation timepoint (Figs. 6D-F). OCT angiography revealed a non-statistically significant
decrease in CC density in the first 15 days after injury, with partial recovery by 60 days (Figs. 6G-

J).

To confirm reproducibility of this approach, we compared OCT data across four eyes. As
expected, by day 60 edema seen after projectile impact was reabsorbed (Supplementary Fig. 7).
The area of the impact showed noticeable retinal degeneration, and the adjacent area showed
progressively improving retinal thickness with consistently missing ellipsoid zone (Supplementary
Fig. 7). To quantify changes seen in OCT, we performed segmentation of retinal layers using our

recently published Al-based algorithm for OCT segmentation (34). Segmentation analysis
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confirmed that use of the scleral patch results in a milder (~20%) reduction in ONL thicknesses
as compared to injury without the patch (~50% reduction in ONL thickness) (Fig. 6K). Multifocal
ERG heatmap analysis showed a corresponding decrease in signal, persisting up to 60 days (Fig.
6L-N), consistent with longer term photoreceptor damage. Our results indicate that the addition
of a scleral patch to the impact area generated reproducible visual streak lesions and yielded a
model that allows better understanding of human CR injuries and will help develop effective

therapies for photoreceptor degeneration.

Histologic evaluation of PAD-induced CR injury to the retina

To further evaluate the impact of CR injury on porcine retina, we performed histological analysis
of eyes at the end of 60 days of longitudinal live imaging. Consistent with the OCT data (Fig. 7A),
histological (Figs. 7B-F) and immunostaining analysis provide qualitative analysis of three distinct
areas of injury (Figs. 7G-J). The impact zone: H&E staining showed complete atrophy of both
inner and outer retinal layers (compare Figs. 7B, C and F); immunostaining further confirmed
missing signals for cone photoreceptors (PNA) and RPE (RPE65) (compare Figs. 7G-J). A
transition zone: H&E and immunostaining showed partial preservation of the inner retina and
rosette-like structures with disruptions in outer retinal layers including the RPE, OS, and ONL;
barely visible RPE layer with faint RPE65 immunostaining and no PNA signal suggesting missing
cone photoreceptor outer segments (compare Figs. 7B, D and F and 7H and J). The EZ disruption
zone with a thinned ONL, lacking PNA signal but relatively intact RPE and INL (compare Figs.
7B, E and F and 71, J). Overall, this histological analysis (H&E and immunostaining) corroborated
our in vivo structural and functional evaluations, confirming the loss of photoreceptors for the

evaluation period of up to 60 days in PAD-induced closed-globe CR injury.
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Discussion

We report a reproducible large animal model of post traumatic photoreceptor degeneration that
mimics macular injury seen in patients with closed-globe CR injuries. Injury in this porcine model
recapitulates several features of the human macular CR injury, including: 1) involvement of the
macula-equivalent visual streak in pigs; 2) a transient oBRB breakdown; 3) a transient subretinal
fluid accumulation that resolves by 7-14 days; 4) with lower energy projectile impacts (at or below
38 m/s projectile speed), damage is limited to photoreceptor outer segments and recovered by
30 days post injury; 5) damage caused by projectile impact speed of 39.5 m/s leads to persistent
absence of the ellipsoid zone and ONL thinning for the entire evaluation period of 60 days,

suggesting permanent damage.

Commotio retinae was originally named Berlin’s oedema and was described as retinal whitening
involving loss or disruption of photoreceptor outer segments (28, 45). Previous reports of oBRB
breakdown in closed-globe injuries have been contradictory. In a series of 21 patients evaluated
with FA and ICGA, findings varied (46). More specifically, fluorescein dye leakage occurred in
nine out of 21 eyes, and a “salt and pepper” appearance was observed in one, which the authors
feltindicated a more severe injury (though visual acuity was not reported in these cases). In some
cases, the early increase in choriocapillaris permeability developed into choriocapillaris vascular
occlusion by day four. In cases where evaluated, abnormal FA and ICGA showed delayed filling
of CC (20, 22-24, 29, 45, 46). This finding led the authors to speculate that in severe CR,
occlusion of the choriocapillaris causes outer retinal ischemia, impairing recovery. More recent
studies report subretinal fluid (SRF) only in the most severe injuries (29). In comparison to these
previous reports, in our model, oBRB breakdown and SRF was seen in all cases, including those
that do not recover defects in outer retina structure and function. It is likely that previous reports,

in which patients were assessed at variable times after injury, transient and localized (outside the
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posterior pole) oBRB breakdown may have been missed. Another possible reason for this
discrepancy may have to do with location of injury, which is variable in human blunt force injuries.
Our ability to generate a reproducible injury, combined with our subsequent systematic and
comprehensive analysis, leads us to speculate that oBRB breakdown may be a common, if not a
universal, feature of CR injuries, and that the loss of the choriocapillaris does not directly correlate
with outer retina damage or its recovery. While retinal detachment in the context of severe ocular
trauma is a concern, acute SRF accumulation after blunt trauma at the site of commotio or
sclopetaria retinae may be serous, as indicated by previous studies (46, 47). But the oBRB
breakdown seems to resolve with time for most cases. This finding is consistent with published

clinical reports (20), supporting the transient nature of the oBRB breakdown.

The impact sites and speed reported in previous animal models of commotio retinae (47) are
variable, but in general, higher speed impacts of low weight projectiles were shown to cause
persistent and reproducible CR injury as compared to lower speed impacts from heavy projectiles
that caused more damage at the impact site and the neighboring retina (16, 19, 21, 27). Higher
projectile speed produces desired damage in our model; however, the site of injury was critical in
obtaining a reproducible and retina specific damage. We used a scleral injury site because
corneal impacts with energies sufficient to induce commotio retinae also damaged the anterior
segment - inducing corneal edema, cataract, iridodialysis and hyphema. These anterior segment
disruptions preclude proper evaluation of the retinal damage using clinically relevant imaging
modalities such as OCT, OCT-A, mfERG, FA/ICGA. Scleral impacts not only avoid anterior
segment disruption but also produce the same ultrastructural features of CR injury seen in
patients. Putting together these findings, scleral impact induced closed-globe CR injury provides
a more clinically relevant and reproducible animal model for better understanding CR etiology and

for testing injury-specific therapeutic approaches.



382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

At optimized projectile speeds, photoreceptor outer segment damage was visible after one week
of injury and continued for the two-month evaluation period. Our OCT findings are consistent with
previous reports (38-42, 48); namely, with projectile speed of 37.5 m/s or less, there was an initial
increase in reflectivity of the inner/outer segment ellipsoid zone with disappearance of the thin
hyporeflective optical space. In these cases, OCT changes recovered over time. With projectile
speed of 39.5 m/s, OCT revealed disruption of the inner and outer segment layers with partial
atrophy of the outer nuclear layer, and no recovery of the ellipsoid zone and the ONL during the
evaluation period of 60 days. These results are consistent with Chen et al., who found that foveal
thickness and grade of outer retinal atrophy were predictors of final visual outcome(8, 41). The
ellipsoid zone and ONL thinning in the macular area may therefore also help predict which patients

could benefit from what kind of therapies.

Our mfERG findings are also in agreement with previous reports of transient decrease in mfERG
amplitude with lower projectile speed (43, 49). With projectile speed of 37.5 m/s, the mfERG
amplitude reduced significantly after the injury but recovered over a 30-day period while with
projectile speed of 39.5 m/s, the mfERG amplitude remained low for the entire evaluation period
of 60 days. Similar to Mansour et al (50), we report the presence of pre-retinal, retinal, and
subretinal hemorrhage around the area of impact as seen by fundus imaging and histology. The
preretinal hemorrhage being sub-hyaloid could explain its rapid reabsorption in our cases (11).
Furthermore, we provide the first immunofluorescence findings in a CR injury, confirming that
photoreceptor degeneration occurs while RPE cells remain viable 60 days after injury. Overall,
our model confirms what has been reported in previous rodent models of CR injury but also

furthers the field with findings that are consistent with the human injury.
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Our model has several advantages over previous CR models: 1) the pig eye is similar in size and
retinal structure to the human eye (32); 2) the pig visual streak is cone rich, like the human macula;
3) using a posterior scleral injury approach, we were able to preserve the health and transparency
of the cornea and the lens, allowing us to perform longitudinal structural and functional
assessment of the retina using clinically relevant imaging modalities; 4) retinal analysis led us to
discover three discrete areas, the impact zone, the transition zone - an area adjacent to the direct
impact site where the damage to the ONL and ellipsoid zone was extensive, and the EZ disruption
zone with photoreceptor specific damage to the ellipsoid zone and the ONL. One limitation of our
model is that it may not fully capture the disease-associated pathophysiology of photoreceptor-
specific retinal degeneration. Therefore, it will be important to also evaluate photoreceptor
transplants in disease models, such as the P23H rhodopsin mutation model of retinitis pigmentosa
(51). Nonetheless, our model represents a valuable platform for advancing the development of
vitreoretinal surgical techniques, instrumentation, and potential therapies for photoreceptor

degeneration.
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Methods

Study design

All animals received a baseline examination prior to the CRR injury, including OCT, OCTA
FA/ICG-A and mfERG. The same examinations were repeated immediately after the CR injury
and at around 7-11, 15, 30 and 60 days after. Because of logistics of animal handling, different
animals could not be followed on the same day. Hence, they were followed within a window of a
few days. Animals were euthanized at different time points up to 60 days, and the eyes were

collected for histology (H&E, Masson and immunofluorescence evaluation).

Sex as a biological variable Sex was not considered as a biological variable. CR injury is not
anticipated to be different between males (castrated or non-castrated) and females. Castrated
males were used for this study because only they (not non-castrated males or females) are

amenable to social housing, allowing an enriched social environment for the animals (52).

Animal care and procedures

Yorkshire and Yucatan minipigs from Premier BioSource/S&S Farms and Sinclair Research were
enrolled in the study. Since pig eyes are fully developed by 6 months, the only limitation for long-
term evaluations between both breads was the rate of growth which was slower in the Yucatan
breed. Animals (castrated males, 35-45 Kg) were housed in climate control rooms illuminated at
25-37 lux with a 12 hours on-cycle and wood shavings on the floor. Food was provided twice a
day, and water was offered ab libitum. For imaging and CR injury, pigs were anesthetized,
intubated, and maintained on a pressure-controlled ventilator, as previously described (52). Pigs
were positioned in custom cradles and water, and air-warming blankets were used to maintain
the body temperature. Blood pressure, heart rate, blood oxygenation, CO2, and temperature were
monitored continuously. Sodium chloride (0.9% sodium chloride injection USP, Hospira) or

lactated Ringer’s (Lactated Ringer’s injection USP, ICU Medical) solutions were administered
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throughout the procedure at an average flow rate of 10 mL/Kg/hour. Pupils were dilated with
tropicamide 1% (Tropicamide Ophthalmic solution 1% USP, Akron or Sandoz) and phenylephrine
10% (Phenylephrine hydrochloride ophthalmic drops 10%USP, Paragon Biotech). During image
acquisition and CR injury, rocuronium (2-3 mg/kg, IV, rocuronium bromide injection 10 mg/mL
USP, XGen) was administered and repeated as needed for relaxation of the extraocular muscles.
After CR injury, subconjunctival cefazolin (330 mg/mL) 0.4 mL was administered. Upon
completion of procedures, an ophthalmic ointment (neomycin and polymyxin B sulfates
ophthalmic ointment USP, Bausch and Lomb) was applied on the corneal surface. Ketoprofen (3
mg/kg, IM, Ketofen 100 mg/mL, Zoetis) was administered to reduce pain related to the procedures
performed. Fluorescein and indocyanine green were administered intravenously. In preparation
for enucleation, pigs were anesthetized using the protocol outlined above. Animals were
euthanized by administering B-euthanasia IV 1 mL per 10 Ibs of body weight (Euthanasia solution,
VetOne) and eyes enucleated. The animal's heart rate, blood pressure, and respiration were

monitored to confirm euthanasia.

Computed Tomography (CT scan) and 3D Skull Reconstruction

CT scans of the pig head were performed in the Section on Cognitive Neurophysiology and
Imaging Laboratory of Neuropsychology (National Institute of Mental Health). An Epica Vimago™
HU Veterinary CT Scanner was used (ARO systems, Australia) to image anesthetized male
Yucatan mini pigs. Anatomical Worldwide (Evanston, IL, USA;
https://www.anatomicalworldwide.com/) company was contracted to use DICOM set images from
the CT scan to design and 3D print the porcine skull. Ballistic gel was purchased from
EnvironMolds ART MOLDS (Summit, NJ, USA). It consisted of a 10% non-gelatin clear synthetic
gel, which is clear as glass, odorless, reusable, temperature stable (up to 240 F), and mimics

human tissue elasticity. The ballistic gel covered the skull and was introduced into the orbit of the
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3D printed porcine model to mimic as much as possible the consistency and resistance of the

orbital tissue at the time of projectile impact.

Pressure Application Device (PAD)

To deliver a small spherical plastic polyoxymethylene (POM) projectile (ball) 212mm/0.75gr (VXB,
Anaheim CA), the PAD consisted of a simple closed pneumatic system, using a compressed gas
cylinder to generate precisely measured pressure, triggered by a solenoid-actuated valve (SMC
VQ31A1-5YH-C12 4/5 port solénoide valve, from Automatic Distribution. Hartfield, PA) with a
bead loading port and an aiming laser beam for precise delivery to the specific area
(Supplementary Fig. 1A and Fig. 1A). The device was connected to a nitrogen tank and a pressure
manometer allowing precise control of the exerted pressure (measured in pounds per square

inch; PSI). A remote control triggered the projectile (Fig. 1A).

The exit speed of the projectile was measured using a laser photogate and the time-transit
method. Collimated laser light (Adafruit 1054, New York, NY) crosses the path of the launch tube’s
diameter where it illuminates a photodiode (FDS100, Thorlabs, Newton, NJ) masked with a 1.0
mm wide aperture. A transimpedance amplifier (MCP6022, Microchip, Chandler, AZ) converts the
photocurrent to a voltage for readout (Supplementary Fig. 1A). A microcontroller and oscilloscope
were used to measure the transit-time (t) that the projectile blocked the laser during transit. The

diameter (d) of the projectile divided by time (t) yielded the projectile’s exit speed (v=dt in m/s).

Commotio Retinae (CR) Injury

Closed-globe CR injury was created under general anesthesia, as described above. The nasal

sclera was exposed using 2 limbal traction sutures (6-0 Silk, black braided, Mani, Japan). A
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perilimbal nasal peritomy with 2 radial incisions were made in the conjunctiva to expose the medial
rectus. Using a muscle hook, the muscle was isolated, its insertion highlighted with tissue marker
(Viscot medical, LLC Hanover, NJ) and a double armed suture (6-0 PGA, violet braided, Mani,
Japan) passed through the muscle close to the insertion before its disinsertion. Using binocular
indirect ophthalmoscopy, the center of the visual streak was identified, and the area of intended
impact overlying the visual streak was highlighted using a tissue marker. In latter experiments, to
allow for a more posterior impact (to minimize anterior segment damage) and to obtain a more
localized and reproducible damage, scleral traction sutures and a commercially available
cadaveric human scleral patch thickness ranging from 150-250 micron (Tutoplast processed
sclera, Katena Randolph, NJ) glued to the nasal sclera (Fig. 5, Supplementary Fig. 6 ) were used
(Vetbond tissue adhesive, 3M St. Paul, MN). After retracting conjunctiva, limbal traction sutures
are used to expose nasal sclera. The median rectus is identified; sutured, sectioned and retracted.
Scleral sutures are used to further expose nasal sclera. Cadaveric human scleral patch is
temporally glued to sclera below median rectus insertion and impact area is highlighted. Once
exposed, the PAD laser was aligned with the highlight, with the exit tube 2 inches from the sclera
and POM balls at different velocities were tested. After impact, cadaveric sclera is removed,

median rectus sutured in its insertion and conjunctiva re-sutured in limbus.

Optical Coherence Tomography (OCT)

OCT images were obtained using the Spectralis Spectral-Domain (SD)-OCT (HRAS3, Heidelberg
Engineering, Germany) instrument and recorded as previously described (52). During each
imaging session, three OCT volumes were recorded for each eye: one radial scan (centered in
the visual streak) and two raster scans. Raster scans were recorded parallel and perpendicular
to the visual streak. To improve signal-to-noise ratio, speckle noise, and contrast, each scan was

averaged over 19+2 images with the Automatic Real-time Tracking (ART) function. Radial and
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raster scan volumes consisted of up to 48 images and 217 images, respectively. To quantify the
effect of the CR injury and the progression of damage, cross-sectional areas of retinal layers were
recorded in equally sized OCT-B scans and compared over time on co-registered follow up
images. All OCT B-scans were exported in TIFF format using the Heidelberg Eye Explorer 2

(HEYEX 2) software.

OCT Segmentation

For segmentation analysis, five cross-sectional areas, evenly divided throughout the OCT volume
were analyzed based on our recently developed algorithm (34). The outer border of the visual
streak was defined as the borders of the retinal arteries and veins that surround the visual streak.
The three equal inner longitudinal lines were used for the analysis (Supplementary Fig 4). To
ensure segmented areas were similar at all the time points, the eye tracking device was used in
parallel raster scans. All OCT B-scans were manually segmented by an unbiased observer with
no prior involvement in the study and the scan export process. Specifically, the inner and outer
boundaries of the outer nuclear layer (ONL) were segmented. Annotations were constrained

within the visual streak of the pig and outside of scarred regions.

Segmentation data analysis

All segmentation files were saved in JSON format. Subsequently, our recently developed
MATLAB scripts were used to calculate the axial thickness (34). Axial layer thickness was
averaged for each B-scan and was normalized to the corresponding B-scan at baseline. A
nonparametric repeated measures ANOVA (Friedman Test) was performed using GraphPad

Prism version 9.5.0 for Windows (GraphPad Software, San Diego, California, USA).
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Optical Coherence Tomography Angiography (OCT-A)

Optical coherence tomography angiography (OCT-A) images were obtained using the Spectralis
Spectral-Domain (SD) OCT (Heidelberg Engineering, Germany) instrument. Each OCTA B-scan
contains between 384 and 768 A-scans and each OCT-A volume contains between 256 and 512

B-scans. OCTA volumes were centered on specific regions of interest (ROIs).

OCT-A Analysis: En face OCT-A scans were exported from the HEYEX Heidelberg software in
TIFF format. Choriocapillaris (CC) vasculature in each CR region was directly compared to CC
vasculature in baseline analysis of the same area. An experienced observer obtained the gray
value from each en face scan, of the average binary pixel intensity, for as big of an area as
possible in both CR and baseline regions. All gray value calculations were completed using
ImageJ (NIH, Bethesda, MD). For each image, the gray value ratio CR was compared with

baseline and was reported as a percent change.

Fluorescein and Indocyanine Green Angiography (FA, ICGA)

FA and ICGA were obtained using the SD OCT system after intravenous injection of 1 mL
Fluorescein 10% solution (AK Fluor 10% USP, Akorn) and 5 mg Indocyanine Green (Indocyanine
Green 25 mg USP, Diagnostic Green). A first-minute movie and 1-, 5-, and 10-minutes frames

were obtained after the injection.
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Multifocal Electroretinography (mfERG)

The Reti-map-animal mfERG system (Roland Consult, Germany) was used with a 2-channel bio
signal amplifier (stimulus frequency selection 10-100Hz) to collect an array of 241 black-and-white
hexagons at 10 microvolts over 30 to 40 degrees of the central visual field thus allowing accurate
evaluation of the pig visual streak (Supplementary Figure 5). An active contact lens electrode was
placed on the cornea using a coupling gel (Genteal® Alcon pharmaceutical, USA). The electrode
was connected to an amplifier, and a second electrode was connected to the “ground input" of
the amplifier. The pupils were maximally dilated and centered within the ring of the corneal
electrode. Recordings were performed under photopic conditions, thus excluding rod
contributions to the signal, and ensuring a primarily cone-driven response (52). Considering the
variability of the photopic response even within the same day, the Reti-map was set to average

three scans for each selected area of the retina.

Eye Fixation and Sectioning

Cadaveric eyes were fixed in 4% paraformaldehyde for x min immediately after injury and
transferred to 1% PBS until histologic processing. Some eyes were open immediately after injury
for gross examination before fixation. After fixation, eyes were opened to identify area of interest

and send them for histology processing.

Animals were euthanized, and the eyes were collected and processed for histological evaluations.
Eyes were fixed for 8 days in paraformaldehyde 2% and glutaraldehyde 2% to maintain tissue

morphology, then, placed in 70% Alcohol overnight and washed in running tap water for 24 hours.

During histological processing, retinal retraction on intact sclera was minimized with 15% Alcohol.

Absolute ethyl alcohol and water (1:15) mixture was used to pretreat the sections 15 minutes
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before transferred to tissue flotation bath and onto glass slides. The solution was freshly prepared

(53).

Paraffin-embedded tissues were sectioned at 4-um-thickness using a Leica microtome (Leica

Biosystems- Nussloch, Germany).

Cross sections contained all retinal layers from the ora serrata to the posterior pole. Sections
were deparaffinized and stained with Harris Hematoxylin and Eosin (H&E), Y Phloxine B to

counterstain H&E, and Mason trichromic (Stat lab-USA).

Immunostaining of paraffin sections

Deparaffinization was performed as previously described(54) followed by Antigen retrieval (water
bath 2x/Citrate Buffer 1X pH 6.0) pre heated in steamer (Life Technology #005000, Thermo Fisher
Scientific-US) for 15 minutes followed by: Primary antibody incubation was performed overnight
at room temperature. The following primary antibodies were used RPE65 mouse Ab 1:500
(Abcam Cat# ab175936, Abcam Inc., UK), peanut agglutinin (PNA) 5mg 1:500 (FL-1075-5)
conjugated with a 488 fluorophore. Secondary antibody Alexa fluor 568 1:300 (Invitrogen, Thermo
Fisher Scientific, USA) was incubated for 30 min at room temperature. Sections were also stained

with Hoechst 33342 1:1000 (Cat# 62249 Invitrogen, Thermo Fisher Scientific-USA).

Statistical Analysis

For average velocities analysis, GraphPad Prism version 9.5.0 was also used, and results were

analyzed using one-way ANOVA.
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Figure 1. Development of a pressure application device (PAD) for inducing closed globe
commotio retinae (CR) in porcine eyes. (A) The PAD contains a plastic tube, a projectile
loading port, and an aiming laser beam. PAD connects to a nitrogen tank, and a pressure
manometer, allowing control of pressure (measured in PSI) used to propel the projectile
(212mm/0.75g). A remote trigger releases the pressure to propel the projectile. (B) Porcine
fundus infrared photograph showing the visual streak (white dotted circle); (1) the site of projectile
impact on peripheral retina; (2) semicircles show the projected path of the shockwave generated
by the impact, leading to an indirect visual streak damage. (C) Graph shows the average of
projectile speed (m/s) measurements as a function of nitrogen gas pressures (psi) ranging from
10.0 to 25.0 psi (gauge pressure). Results were analyzed using one-way ANOVA. The standard

deviation of the mean was used to estimate uncertainty in projectile speed for each tank pressure.
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Figure 2. Ex vivo evaluation of commotio retinae (CR) injury using 3D-printed porcine skull.
(A) Computed tomography scan assisted 3D rendering of a pig skull. (B) 3D-printed model of a
pig skull from 3D rendering generated in (A). (C) 3D-printed pig skull with a fitted cadaveric pig
eye in the orbit along with non-gelatin based 10% ballistic gel®. Pressure application device
(PAD) aimed at the cadaveric pig eye (arrowhead). (D) Gross specimen view after the CR injury
showing the impact area in the sclera (*) and a surrounding whitened area (#). (E) Hematoxylin &
Eosin (H&E) stained sections from retinal region corresponding to the corneal impact (#) showing
retinal folds in the visual streak. Arrowhead shows the impact direction in the cornea. (F) H&E-
stained eye section showing the scleral impact zone (black arrowhead), impacted retina (*) in
lower (F) and higher (G) magnifications, and retinal region with folds (#) surrounding the impact

area, in lower (F) and higher (H) magnifications. N = 3 eyes per condition.
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Figure 3. Short term evaluation of pig eyes with CR injury. (A) High magnification of color
fundus photograph of CR injured eye showing: preretinal hemorrhage at the impact site (1), the
whitening zone (2), and the adjacent visual streak (3). (B-E) Fluorescein angiography (FA) (left
panels) images showing fluorescein dye leakage in early phase (1 min) on day 0 (B) and late
phase (10 min) on day O post injury (C), but not on day 8 post injury (D — early phase or E - late
phase); (B, C, D, E) Indocyanine, green angiography (ICGA) images (right panels) show no dye
leakage on day 0 post injury (B — early phase or C — late phase) and day 8 (D — early phase or
E- late phase). (F) Schematic depicting the three distinct zones seen on color fundus and OCT
images — impact zone showing hematoma (zone 1); whitening zone with extensive oBRB damage
and subretinal fluid (SRF) accumulation (zone 2), and zone with ellipsoid zone (EZ) disruption
(zone 3). (G, H) OCT (G) and (H&E staining (H) depicting the three zones described in F. (I-L)
Higher magnification OCT images at baseline (bl) showing the ellipsoid zone (arrow head, l);
subretinal fluid (SRF) accumulation on day 0 after the CR injury (J); fluid resorption by day 11 but
missing ellipsoid zone (arrowhead) (K), which persists on day 14 (L). (M, N) Hematoxylin & Eosin
(H&E) section depicting healthy retina at baseline (BI) (M), and disruptions ONL and
photoreceptor outer segments (arrowhead) 11 days after CR injury (N). (O, P) mfERG signal
heatmap at baseline (bl) (O) and day 11 (D11) (P) post-injury showing the visual streak (vs) and
surrounding areas retina light response. Nine eyes were used for short term evaluation of CR
injury. NFL- Nerve Fiber Layer, IPL- Inner Plexiform Layer, INL- Inner Nuclear Layer, ONL- Outer
Nuclear Layer, RPE- Retinal Pigment Epithelium.
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Figure 4. CR injury recovery in the long-term evaluation. Color fundus (A, D), late phase (10
min) fluorescein angiography - FA (B, E — left panels), indocyanine green angiography (ICGA)
(B, E - right panels), and OCT (C, F) of post-injury eyes on day 0 (A-C) and day 16 (D-F) of
evaluation of the same eye. One (1) marks the area of impact showing preretinal hemorrhage.
Whitened area in color fundus images corresponds to sub retinal fluid accumulation on day O,
which is resolved by day 16 (arrowhead in C, F). (G-L) OCT (G-lI) and mfERG (J-L) analysis
shows recovery of ellipsoid zone (compare arrowheads in G-1) and recovery of mfERG signal in
the visual streak (dotted oval) (J-L) by day 30 in eyes injured with a projective speed of 35.7 m/s.
(M-R) Comparative analysis at 60 days post injury using OCT (M, P), OCT-angiography (N, Q),
and mfERG (O, R) of two eyes injured with a projectile speed of 39.5m/s highlights variability in
damage to the outer retina to the ellipsoid zone (EZ) (arrowheads in M and N), to the
choriocapillaris (arrowheads in N and Q), and the variable signal in the visual streak (VS — dotted

circle) (O, R). Seven eyes were used for this evaluation.
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Figure 5. Surgical technique for cadaveric scleral patch placement. (A) Nasal sclera is
exposed using limbal traction sutures. (B) Nasal conjunctiva is cut to expose and isolate the
median rectus muscle using hooks. Mark the area where muscle would be cut (dotted line). (C)
Scleral traction sutures are used to increase exposure of nasal sclera. A piece of cadaveric sclera
is temporally glued to the sclera, and the area of impact is marked (black circle). (D) After impact,
the cadaveric sclera is removed, median rectus muscle is sutured back to its insertion and

conjunctiva is replaced and sutured (also see supplementary Fig. 6).
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Figure 6. Long term evaluation of CR injury caused using a cadaveric scleral patch. (A-C)
Color fundus image (A) showing the area of impact with preretinal hemorrhage and the
surrounding area of retinal whitening. (B) Late phase (10 min) FA and ICGA show blocked
fluorescence signal due to hemorrhage. (C) OCT showing subretinal fluid (SRF) corresponding
to the whitening area in (A). (D-I) OCT images (D-F) and corresponding OCT-A images (G-l)
depicting the presence of ellipsoid zone and choriocapillaris respectively at baseline (D,
arrowhead) and clear ellipsoid zone absence at 30 days (E, arrowhead) and 60 days (F,
arrowhead) post-injury. Minimal changes are seen in choriocapillaris (compare G-I, arrowheads).
(J) Median grayscale values intensity graph of OCT-A signal intensity up to 60 days after CR
injury. Results were analyzed using one-way ANOVA. (K) Graph showing ONL thickness at
baseline, 15, 30, and 60 days after projectile impact at 39.5 m/s on eyes with no scleral patch vs
with scleral pact impacts. Data is presented as a percentage of average thickness of the same
location at baseline. ANOVA (Friedman Test compared to baseline) was used for statistical
analysis. * p<0.05, ** p<0.01. (L-N) mfERG heatmaps at baseline (L), 30 days (M), and 60 days
(N) after CR injury depicting changes in mfERG sensitivity throughout the evaluation time. Visual

streak is highlighted by dotted oval circles. Four eyes were used for this evaluation.
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Figure 7. Histological analysis of CR model porcine eyes. (A, B) Terminal point OCT (A,
arrow marks the transition zone) and corresponding H&E-stained section (B) showing the
impact area with complete retinal atrophy, the transition zone with significant outer retina damage,
and an area with ellipsoid zone disruption. (C-K) Higher magnification views of the impact area
(C, G) showing complete retinal atrophy (arrow head), the transition zone (D, H) showing outer
and inner retina layer degeneration (arrow heads), (E, I) showing degenerated photoreceptor
outer segments and missing EX band (arrow heads) with relatively preserved photoreceptor outer
nuclear layer, and control retina (F, K) stained with H&E (panels C-F) or stained for cone
photoreceptors (PNA — magenta), RPE (RPE65-yellow) and nuclei (DAPI-cyan) (panels G-K).
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