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Figure S1. Lung histology (Hematoxylin and eosin stain) of uninfected wildtype and
hemopexin-deficient mice. Representative images from 3 independent experiments. Original
magnifications are indicated. Scale bars are 200um and 20um long in the 40x and 400x

micrographs, respectively.
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Figure S2. Lung flow cytometry on day 3 of aspergillosis. (A) Flow cytometry gating
strategy of lung leukocyte subsets. Lung cells were first gated on single cells, then live
cells, followed by the panels shown. (B) Absolute number of lung leukocyte subsets in
wildtype and hemopexin-deficient mice on day 3 of infection. Dots represent individual
animals and horizontal lines represent medians. Data shown are pooled from 2

independent experiments. No significant statistical differences by two-tailed Mann-Whitney.
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Figure S3. The effect of administration of intra-pulmonary hemopexin (HPX), as
compared to PBS vehicle, on lung fungal burden (measured as BAL [-glucan
concentration) on day 3 of infection. Dots represent individual animals and horizontal lines
represent medians. Data shown are pooled from 2 independent experiments. * denotes

p values of <0.05 by one-way ANOVA with Dunn’s multiple comparison test.
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Figure S4. Number of lung neutrophils in the lung of wild type mice, after administration
of neutrophil-depleting antibody (clone 1A8) or isotype control (clone 2A3) on day -1,
followed by intrapulmonary challenge with Aspergillus conidia on day 0. Values represent
mean + SEM of n = 5 animals per group per time point, and time O refers to antibody-
treated but uninfected animals. Data shown are pooled from 2 independent

experiments. **** denotes p values of <0.0001 by two-way ANOVA.
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Figure S5. The effect of heme on lung NET formation in wildtype mice with neutropenic
aspergillosis and the role PAD-4. BAL (A) Lung NET content of uninfected wildtype mice
and Aspergillus infected neutropenic wildtype mice with or without administration of heme.
(B) Lung NET content of neutropenic wildtype and hemopexin-deficient mice with
neutropenic aspergillosis, with or without treatment with intrapulmonary hemopexin. (C-
D) Extent of lung injury, as measured as BAL fluid albumin concentration and level of BAL
NETs in neutropenic wildtype and PAD-4 deficient mice with aspergillosis. Dots represent
individual animals and horizontal lines represent medians. Each panel represents pooled
data from 2 independent experiments. *, **, and **** denote p values of <0.05, <0.01, and

<0.0001 respectively. Statistical tests: A-B, one-way ANOVA, C-D, two-tailed Mann-Whitney.
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Figure S6. Effect of DNAse treatment on lung NET formation and extravascular heme in
wildtype mice with neutropenic aspergillosis. (A, C) DNAse-1 was administered on day 2
and BAL NETs measured on day 3 of infection. (B, D) Dnase1 was administered on day
1 and measurements were taken on day 2 of infection. Dots represent individual animals
and horizontal lines represent medians. Each panel show pooled data from 2 independent
experiments. ** and *** denote p values of <0.01 and <0.001 respectively by two-tailed

Mann-Whitney.



Computational model
Description of the base model

The base model is described in detail in [1]. We provide a general description of
this model in this section for completeness: The model contains five cell types: Aspergillus
(as resting conidia, swollen conidia, or hyphae), neutrophils, macrophages, and types |
and Il pneumocytes. Macrophages and neutrophils are motile cells and move randomly
or biased towards a chemokine gradient, and die with a half-life (Table S1). Contact with
hyphae and swollen conidia activates leukocytes and type Il pneumocytes, leading them
to secrete cytokines (TNF, IL10, CCL4, CXCL2). Leukocytes can phagocytose swollen
conidia and kill hyphae. Type | pneumocytes inhibit hyphae elongation by a contact-
mediated mechanism. Contact with the fungus and TNF each activate macrophages
classically, to an M1 phenotype, whereas IL10, TGF, and apoptotic bodies activate
macrophages to an M2 phenotype incapable of killing. Activated neutrophils also
degranulate, releasing lactoferrin, a molecule that competes with fungal siderophore,
TAFC, for iron.

Aspergillus starts as resting conidia. After four hours, it becomes swollen becomes
visible for leukocytes and type Il pneumocytes, and begins secreting siderophores. Both
iron and heme serve as nutrients for fungal growth: with enough iron, Aspergillus conidia
germinate, and hyphae will elongate and branch. Equation 1 computes the number of
iterations for the next 40 um segment of fungi to grow, given the internal concentration of
heme and iron. We use the reciprocal of Michaelean kinetics as a phenomenological
equation to integrate heme and iron as nutrients that contributing to fungal growth.

K- I+Ky-H+I1-H
=T- T -EPLiny
Equation 1: where “t” is the number of iterations until the next 40 um hyphal fragment
grows. “T” is the inverse of the growth rate (r). K; is the iron K,;, and Ky is the heme K,,.
| and H are internal iron and heme concentrations. EPI;yy is the growth inhibition by
alveolar epithelial cells.

Cytokines and TAFC released into the alveolus diffuse according to a partial
differential equation [1], undergo decay (with a half-life), and diffuse into plasma.

Changes from the published base model

Although cells interact with their environment continuously, the experimental data
that the model is based on is not continuous. In order for the model to more closely match
the available experimental data, we revised the model so that each cell interacts with its
environment every 30 minutes instead of every iteration. In every iteration, we select a
subset of cells of a type (such as a subset of the macrophage) to interact with other cells
and molecules, with any given cell is selected only every 15 iterations (30 minutes).
Likewise, the Boolean networks are updated every thirty minutes.

We rewrote the state model from epithelial cells and neutrophils as Boolean
networks. Neutrophils are activated by heme or Aspergillus. Activated neutrophils release
lactoferrin and then change to either apoptotic or NETotic states, whereas non-activated
neutrophils only die by apoptosis. Neutrophil apoptosis or NETosis occur with a half-life
of 6h. NETs and hyphae kill type | pneumocytes, result in release of extracellular heme




into the alveolus. In addition to neutrophils, heme also activates M1 macrophages
(described below). Once a type | epithelial cell dies, it results in the appearance of
extracellular heme in the alveolus, simulating hemorrhage. The heme quantity is finite
and is not replenished and does not diffuse, simulating clotting after hemorrhage. Once
the type | pneumocytes die, their inhibition over hyphae elongation is lifted.

We refined the macrophage state model to a Boolean network model based on
[104]. We ran the network until it reached equilibrium, and then assessed the macrophage
phenotypes. Macrophages with activation of NFKB, STAT1, or STAT5 are classified as
M1; STAT6 as M2A; ERK as M2B; and STAT3 as M2C.

Since the quantity of cytokines secreted by neutrophils was minimal in the previous
model, we eliminated neutrophil cytokine secretion in this version. We also removed the
IL6-hepcidin axis from the model, because this axis had little effect on the model outcome,
and experimental evidence from our group showed that hepcidin did not affect infection
evolution [69].



Table S1: Parameters of the revised mathematical model.

ID Parameter Description Value Reference

1 CCL4_QTTY 1.79 X 1072° mol - cell* - h=1[2,3,4,5,6,7,8,9,
10,11,12,13,14,
15,16,17,18,19,

+h™120,21,22,23,24,

CCL4 secretion rate by
macrophages and type
pneumocytes

CXCL2 secretion rate by

2 CXCL2_QTTY 1.11 X 1071 mol - cell™?

macrophages and type Il 25,26,27,28,29,
pneumocytes 30,31]
3 TNF_QTTY TNF secretion rate by 3.22 x 1072 mol - cell™* - h™?
macrophage and type Il
pneumocytes
4 IL10_QTTY IL10 secretion rate by 6.97 X 10722 mol - cell"* - h1
macrophages
5 TGF_QTTY TGF secretion rate by 1.01 x 1072 mol - cell™* - h™?
macrophages
6 Lac QTTY Amount of lactoferrin 5.36 X 1078 mol - cell™* [32]
7 Kd_CCL4 Kd of the CCL4 receptor 180 pM [33]
8 Kd _CXCL2 Kd of the CXCL2 receptor 91.667 pM [34,35]
9 Kd_IL10 Kd of the IL10 receptor 140 pM [36,37,38,39]
10 Kd_TNF Kd of the TNF receptor 326 pM [40,41,42,43,44
,45,46,47]
11 Kd_TGF Kd of the TGF receptor 26.5 pM [48,49,50]
12 D Diffusion rate 850 um?/min [51,52]
13 A Cytokine half-life 1h [63,54,55,56,57
58,59]
14 TF_CONC Transferrin concentration 32.25 uM [60,61,62]
15 APO_TF_REL_CO Apo-transferrin relative 40% [62, 63]
N concentration
16 TFFE_REL_CON Mono-ferric transferrin relative 16.57%
concentration
17 TFFE2_REL_CON Di-ferric transferrin relative 43.43%
concentration
18 MA IRON_EXP Macrophage iron export rate 1367.30M~1:-h? [64]
19 MA_IRON_IMP Macrophage iron import rate 533x 10712 L-cell™*-h™t [64]
20 MA_INT_IRON Macrophage initial internal iron 1.0086 x 10~** mol [62]
concentration
21 TAFC_QTTY TAFC secretion rate 1.0 X 107> mol - cell=* - h~* [65]
22 TAFCBI_UPTAKE uptake rate of TAFC bound toiron 1.0 X 1072 L-cell™*-h™! [66,67]
23 K, Michaelian constant for the iron 47.43 uM [68]
substrate in Equation 1
24 Ky Michaelian constant for the heme 979.01 nM [69]
substrate in Equation 1
25 Kcat Km_TAFC  Kcat/Km TAFC-Tf iron chelation 397.77M71.s71 [63,65]
reaction
26 Kcat Km_LAC Kcat/Km lactoferrin-Tf iron 399.20 M~ 1571 [32]
chelation reaction
27 r Hyphae elongation rate 80 um/h [70]
28 PR _BR Hyphae branch probability 33.3% [70]
29 PR_SW Conidia swelling probability 0.39% [71,72]
30 T_SWELL Time until conidia start swelling 4h [73]
31 MV_RT Leukocyte movement rate 1.44 pm/min [74, 75]
32 N_H KILL Neutrophil-hyphae killing 22.71% [76,77,78,79]

probability

10



33 MA_H_KILL Macrophage-hyphae killing 9.85% [80,81]
probability

34 N_PHAG Probability of neutrophil to 14.72% [79]
phagocytose swollen conidia

35 MA_PHAG Probability of macrophage to 90.55% [82,83]
phagocytose swollen conidia

36 MA_MAX_CONIDIAMaximum number of 18 [83]
phagocytosed conidia inside a
macrophage

37 N_MAX_CONIDIA Maximum number of 3 [83,84]
phagocytosed conidia inside a
neutrophil

38 E_INT Epithelial cell-Aspergillus (swollen 4.49% [85]
conidia or hyphae) interaction
probability

39 PHAG_KILL Leukocyte probability to kill 1.28% [86]
ingested conidia

40 MA_HALF_LIFE  Macrophage half-life 24h [87]

41 N_HALF_LIFE Neutrophil half-life 6h [88]

42 PR_NET Probability that an activated 30% [89]
neutrophil will undergo NETosis
instead of apoptosis

43 H_VOL Hyphae volume 1.06 x 10712 L, [90,91,92, 93]

44 SEPATE_L Length of hyphal segments 40 um [92,93]
between septa

45 CONIDIA_VOL Swollen conidia volume 484 x 107 L [91]

46 MA_VOL Macrophage volume 485 x 10712 L [94]

47 TURNOVER_RT Molecule exchange rate between 0.1823h71 [95]
lung and whole-body serum

48 MAX N Maximum number of neutrophils 522 [96, 97, 98,

49 MIN_N Minimum number of neutrophils 15 current

50 MAX_MA Maximum number of 627 manuscript]
macrophages

51 MIN_MA Minimum number of macrophages 15

52 REC RT Leukocyte recruitment rate 9.77 x 1014 [97]

53 ATII_NUM Number of type Il pneumocytes 640 [99, 100]

54 AVG_ATI_NUM Average number of type | 320
pneumocytes

55 AF_INIT_IRON A. fumigatus initial iron content 3.83 x 1078 mol [91,68]

56 AF_INIT_HEME  A. fumigatus initial heme 1.03 X 1078 mol [69]

57 HEME_UP Heme uptake rate 7.81x107*L-cell™*-h~1 [69, Current

manuscript]

58 HEME_QTTY Amount of heme that enters the 2.07 X 10~ mol Current
alveoli upon hemorrhage manuscript

59 PR_NET_KILL Probability that NET will kill a type 1.3% [101, Current
| epithelial cell manuscript]

60 PR_HYPHAE_KILL Probability that hyphae will kill a 2.51% [102]
type | epithelial cell

61 EPI_INHIB Type | epithelial cells rate of 50% [71]
inhibition of hyphae elongation

62 NET HALF LIFE NET half-life 3h [103]

Notes: Parameters 1-5 were obtained as described [1]. Probabilities of phagocytosis,
killing, and interaction refer to the likelihood of an event succeeding in one iteration if the
appropriate conditions apply. The maximum number of cells and the average number of

11



epithelial cells is computed over the simulated space. Kcat, Enzymatic turnover number;
Kd, dissociation constant; Km, Michaelis constant; TAFC, triacetylfusarinine C
(Aspergillus siderophore); Tf, Transferrin.
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Table S2: Interaction rules in the mathematical model.

ID Interaction Description Type Outcome Reference
1 Macrophage Macrophage Probabilistic: Constant  Phosphatidyl serine  [9]
-Neutrophil phagocytose Probability receptor activated
apoptotic neutrophil
2 Macrophage Macrophage Probabilistic: Constant  Dectin-2 receptor [4,105,106]
-Aspergillus phagocytose swollen Probability activated; conidia are
conidia internalized and
subsequently killed
3 Macrophage Macrophage kills Probabilistic: Constant  Dectin-2 receptor [4,80,81]
-Aspergillus hyphae Probability activated; hyphae are
killed
4 Macrophage Macrophage with Deterministic: fixed The local [6,10,14,21,104,
-IL10 phenotype M1, M2A, amount concentration of IL10 107]
M2B, and M2C increases
secrete IL10
5 Macrophage Macrophage with Deterministic: fixed The local [6,10,14,21,107]
-TGF phenotype M2C amount concentration of TGF
secrete TGF increases
6 Macrophage Macrophage with Deterministic: fixed The local [2,3,5,6,10,
-TNF phenotype M1 and amount concentration of TNF 14,21,104,107,1
M2B secrete TNF increases 08]
7 Macrophage Macrophage with Deterministic: fixed The local [2,104,107]
-CCL4 phenotype M1 amount concentration of
secretes CCL4 CCL4 increases
8 Macrophage Macrophage with Deterministic: fixed The local [5,104,108]
-CXCL2 phenotype M1 amount concentration of
secretes CXCL2 CXCL2 increases
9 Macrophage Macrophage primed Probabilistic: constant  IL10 Receptor [104,109]
-IL10 by IL10 probability activated
10 Macrophage Macrophage primed Probabilistic: constant ~ TGF Receptor [8,9,104]
-TGF by TGF probability activated
11 Macrophage Macrophage primed Probabilistic: constant  TNF Receptor [27,104]
-TNF by TNF probability activated
12 Macrophage Macrophage Deterministic: import and Internal and external [64,110,111,112]
-Transferrin import/export iron export rate are levels of iron and
from/to transferrin proportional to the transferrin-bound iron
external levels of change.
transferrin bound to iron
and internal iron levels
13 Neutrophil- Active Neutrophils  Deterministic: fixed The local [77,113]
Lactoferrin  release lactoferrin ~ amount concentration of
lactoferrin increases
14 Neutrophil- Neutrophils Probabilistic: constant  Neutrophils become [77]
Aspergillus phagocytose swollen probability active; swollen
conidia conidia are
internalized and
subsequently killed
15 Neutrophil- Neutrophils kill Probabilistic: constant  Neutrophils become [77,105]
Aspergillus hyphae probability active; hyphae are
killed
16 Type Il Type Il Pneumocyte Probabilistic: initial Type Il Pneumocyte [114,115]

Pneumocyte interacts with swollen interaction has a fixed

-Aspergillus

conidia or hyphae

probability. Once the

13
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secreting
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18

19

20

21

22

23

24

25

26

27

28

interaction is established
it is stable

Type Il cytokine secreting  Deterministic: fixed The local [31]

Pneumocyte Type Il Pneumocyte amount concentration of TNF

-TNF secrete TNF increases

Type Il Chemokine secreting Deterministic: fixed The local [116]

Pneumocyte Type Il Pneumocyte amount concentration of

-CCL4 secrete CCL4 CCL4 increases

Type Il Chemokine secreting Deterministic: fixed The local [116]

Pneumocyte Type Il Pneumocyte amount concentration of

-CXCL2 secrete CXCL2 CXCL2 increases

Type Il Type Il Pneumocyte Probabilistic: constant ~ Type |l Pneumocyte [31]

Pneumocyte is primed by TNF probability becomes

-TNF cytokine/chemokine
secreting

Aspergillus- Aspergillus (hyphae Deterministic: fixed The local [68,117,118]

TAFC and swollen conidia) amount concentration of
with TAFC node “ON” TAFC increases
secretes TAFC
Aspergillus- Aspergillus with Deterministic: The local [66,117]
TAFC nodes MirB and EstB proportional to the concentration of
“ON” import TAFC  concentration of TAFC  TAFC-bound iron
bound to iron * bound to iron decreases. Internal
iron pool increases
TAFC- TAFC sequester iron Deterministic: Michaelian The local [65,118]
transferrin  from transferrin kinetics concentration of
bound to iron TAFC and Tf-iron
decreases Local
levels of TAFC-iron
and free-transferrin
increases.
Lactoferrin- Lactoferrin sequester Deterministic: Michaelian The local [32,119]
transferrin  iron from transferrin  kinetics concentration of
bound to iron lactoferrin and Tf-iron
decreases. Local
levels of lactoferrin
bound to iron and
free-transferrin
increases.
Macrophage Necrotic macrophage Deterministic: the whole The local NA**
-iron releases its iron iron content of the cell is concentration of iron
content released increases
Iron- Dead hyphae release Deterministic: the whole The local NA**
Aspergillus its iron content iron content of the cell is concentration of iron
released increases
Iron-Iron- Lactoferrin, Deterministic: the The local iron NA
transport-  Transferrin, or TAFC molecules race to concentration
molecule chelates the whole  chelate the iron in the decreases to zero.
iron in content of the voxel. The first to be Iron bound to carriers
voxel selected chelates the (TAFC-iron,
whole iron content or the Lactoferrin-iron, or Tf-
maximum of its capacity iron) increase.
Type | Hyphae kill type | Probabilistic: constant  Type | cell dies oris [102]

Pneumocyte pneumocytes.
s-Aspergillus Pneumocytes that

probability to kill

14

injured



are not killed are

injured.
29 Type | Live Type | Deterministic: decrease Elongation rate [71]
Pneumocyte pneumocyte the elongation rate by a decreases
S- decrease hyphae fix percentage
Aspergillus elongation rate
30 Typel Dead type | Deterministic Heme become This work
pneumocyte pneumocytes available to interact
-Heme releases extracellular with neutrophils and
heme in the alveolus Aspergillus.
31 Type I- NET kill type | Probabilistic: constant  Type | cell become  [101]
Neutrophil pneumocyte probability (default dead
scenario).
Deterministic: NET Kkill
injured cells (alternative
scenario)
32 Heme- Aspergillus uptake  Deterministic: The local heme [69]
Aspergillus Heme proportional to the Heme concentration
concentration decrease. Internal
Iron and Heme
concentration
increases
33 Heme- Neutrophils are Probabilistic: constant  Neutrophils become [120]
Neutrophil primed by Heme probability active

*

MirB and EstB respectively mediate the uptake and hydrolysis of TAFC-iron complex
by Aspergillus.

** For simplicity, we assume that upon death, host and fungal cells release their iron in
free form.

NET, neutrophil extracellular trap; TAFC, triacetylfusarinine C (Aspergillus siderophore);
Tf, Transferrin
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