

Supplemental Figure 1. The impairment of LPS-induced PDPN expression persisted in *Adap^{-/-}* **macrophages even when co-cultured with WT macrophages.** WT or *Adap^{-/-}* PMs were labeled with CFSE, and flow cytometry was applied to assess the expression of PDPN in the co-culture of WT and *Adap^{-/-}* macrophages stimulated with or without LPS (100 ng/ml) for 24 h.

Supplemental Figure 2. Levels of PDPN^{hi} PMs are low in saline-treated WT and *Adap*-/- mice. Peritoneal exudate cells were isolated from WT and *Adap*-/- mice 18 h after saline injection, and CD11b+F4/80+PDPN^{hi} macrophages were analyzed by flow cytometry. Left panel: Representative contour plots showing the frequency of PDPN^{hi} macrophages in the peritoneal cavity of WT and *Adap*-/- mice 18 h after saline injection. Right panel: Bar graph showing the percentage of PDPN^{hi} macrophages (n = 4 each, unpaired *t*-test).

Supplemental Figure 3. The generation of PDPN^{hi} **PMs is ADAP-dependent in the CLP-induced septic mouse model.** WT and $Adap^{-/-}$ mice were subjected to CLP for 18 h, and peritoneal exudate cells were isolated to analyze CD11b⁺F4/80⁺PDPN^{hi} macrophages by flow cytometry. Left panel: Representative contour plots showing the frequency of PDPN^{hi} macrophages in the peritoneal cavity of WT and $Adap^{-/-}$ mice 18 h post-CLP. Right panel: Bar graph showing the percentage of PDPN^{hi} macrophages (WT, n = 6; $Adap^{-/-}$, n = 3; unpaired *t*-test).

Supplemental Figure 4. The transcriptome of PDPN^{hi} PMs from WT septic mice exhibits an M2 phenotype. (A and B) Hierarchical clustering of macrophage polarization-related genes in RNA-seq analysis of PDPN^{hi} and PDPN^{lo} PMs sorted from the peritoneal cavity of WT mice 18 h post-injection of *E. coli* (2×10^7 CFU, i.p.). (C) The mRNA levels of M1 macrophage polarization markers in PDPN^{hi} and PDPN^{lo} PMs from WT septic mice were determined using RT-qPCR (n = 4 each, unpaired *t*-test). Relative mRNA levels were normalized to *Hprt*. ns, nonsignificant.

Supplemental Figure 5

Blots

PDPN

Blots

ADAP

PDPN

Blots

ADAP

PDPN

a-tubulin

a-tubulin

α-tubulin

Supplemental Figure 5. Effects of kinase inhibitors on LPS-induced PDPN expression in macrophages.

Western blot analysis of protein expression in PMs after LPS stimulation (100 ng/ml) in the absence or presence of 103 kinase inhibitors (1 µM) for 24 h. Triangle: kinase inhibitors that block LPS-induced PDPN upregulation. Light-font color: kinase inhibitors that were toxic to cells.

Supplemental Figure 6. LPS fails to stimulate the binding of STAT3 to site 1 of the *Pdpn* promoter in **macrophages.** CUT & RUN-qPCR analyses were performed to examine the enrichment of the *Pdpn* promoter (site 1) by the anti-STAT3 antibody in PMs that were either untreated or treated with LPS (100 ng/ml, 1 h) (n = 3 each, two-way ANOVA, Tukey's multiple comparison).

Supplemental Figure 7. ADAP expression remains unchanged between PDPN^{hi} and PDPN^{lo} PMs in WT septic **mice.** (**A**) Hierarchical clustering of *Adap* and *Pdpn* in RNA-seq analysis of PDPN^{hi} and PDPN^{lo} PMs sorted from the peritoneal cavity of WT mice 18 h post-injection of *E. coli* (2×10^7 CFU, i.p.). (**B**) The mRNA levels of *Adap* and *Pdpn* in PDPN^{hi} and PDPN^{lo} PMs from WT septic mice were determined using RT-qPCR (n = 4 each, unpaired t-test). Relative mRNA levels were normalized to *Hprt*. ns, nonsignificant.

Supplemental Table 1: Kinase Inhibitors that block LPS-induced PDPN upregulation

Number	Name	Target	Pathway
1	Linifanib (ABT-869)	CSF-1R,PDGFR,VEGFR	Protein Tyrosine Kinase
4	Dovitinib (TKI-258, CHIR-258)	C-Kit,FGFR, FLT3,PDGFR,VEGFR	Angiogenesis
5	Nilotinib (AMN-107)	Bcr-Abl	Angiogenesis
7	Axitinib	c-Kit,PDGFR,VEGFR	Protein Tyrosine Kinase
14	LY294002	Autophagy,PI3K	PI3K/Akt/mTOR
19	Everolimus (RAD001)	mTOR	PI3K/Akt/mTOR
21	Gefitinib (ZD1839)	EGFR	Protein Tyrosine Kinase
22	Rapamycin (Sirolimus)	mTOR	PI3K/Akt/mTOR
26	Regorafenib (BAY 73-4506)	c-RET,VEGFR	Protein Tyrosine Kinase
28	Pictilisib (GDC-0941)	РІЗК	PI3K/Akt/mTOR
34	SU11274	c-Met	Protein Tyrosine Kinase
36	ENMD-2076	Aurora Kinase,FLT3, VEGFR	Angiogenesis
41	BIX 02189	MEK	МАРК
42	AZD1480	JAK	JAK/STAT
47	R406 (free base)	Syk	Angiogenesis
51	BX-795	IĸB/IKK,PDK	PI3K/Akt/mTOR
52	AZD8055	mTOR	PI3K/Akt/mTOR
58	AZD4547	FGFR	Angiogenesis
61	Trametinib (GSK1120212)	МЕК	МАРК
65	Buparlisib (BKM120, NVP-BKM120)	РІЗК	PI3K/Akt/mTOR
66	Ibrutinib (PCI-32765)	втк	Angiogenesis
69	PF-3758309	РАК	Cytoskeletal Signaling
71	Fingolimod (FTY720) HCl	S1P Receptor	GPCR & G Protein
72	Duvelisib (IPI-145, INK1197)	РІЗК	Angiogenesis
78	Spebrutinib (CC-292, AVL-292)	втк	Angiogenesis
79	BI-D1870	S6 Kinase	PI3K/Akt/mTOR
81	SKI II	S1P Receptor	GPCR & G Protein
86	Sorafenib	Raf	МАРК
90	LDN-214117	TGF-beta/Smad	TGF-beta/Smad
91	SU6656	Src	Angiogenesis
92	CEP-32496	CSF-1R,Raf	МАРК
94	URMC-099	LRRK2, mixed lineage kinase (MLK) inhibitor	Autophagy

Supplemental Table 2: Sequences of RT-qPCR primers involved in the study

Name	Forward 5'-3'	Reverse 5'-3'
hADAP	CCAACCACCATTGCCAGCATCT	CATCAGAGTGCGTGACACCATC
hYWHAZ	ACCGTTACTTGGCTGAGGTTGC	CCCAGTCTGATAGGATGTGTTGG
mIL-1β	TCCAGGATGAGGACATGAGCAC	GAACGTCACACACCAGCAGGTTA
mIL-6	AGTTGCCTTCTTGGGACTGA	TCCACGATTTCCCAGAGAAC
mTNF-α	CGGTGCCTATGTCTCAGCCT	GAGGGTCTGGGCCATAGAAC
mGAPDH	GGGTCCCAGCTTAGGTTCATC	ACTGTGCCGTTGAATTTGCC
mADAP	AAAAGTGGGGAGCGAGAGAT	CCAGGTAACTCCGAAGGACA
mPDPN	ACAACCACAGGTGCTACTGGAG	GTTGCTGAGGTGGACAGTTCCT
mHPRT	GGTGAAAAGGACCTCTCGAA	AGTCAAGGGCATATCCAACA
mNOS2	GAGACAGGGAAGTCTGAAGCAC	CCAGCAGTAGTTGCTCCTCTTC
mCD80	CCTCAAGTTTCCATGTCCAAGGC	GAGGAGAGTTGTAACGGCAAGG
mCD86	ACGTATTGGAAGGAGATTACAGCT	TCTGTCAGCGTTACTATCCCGC
mIL12a	ACGAGAGTTGCCTGGCTACTAG	CCTCATAGATGCTACCAAGGCAC
mMRC1	GTTCACCTGGAGTGATGGTTCTC	AGGACATGCCAGGGTCACCTTT
mARG1	CATTGGCTTGCGAGACGTAGAC	GCTGAAGGTCTCTTCCATCACC
mMSR1	CGCACGTTCAATGACAGCATCC	GCAAACACAAGGAGGTAGAGAGC
mPPAR-γ	GTACTGTCGGTTTCAGAAGTGCC	ATCTCCGCCAACAGCTTCTCCT
mTGF-β	TGATACGCCTGAGTGGCTGTCT	CACAAGAGCAGTGAGCGCTGAA
mIL10	CGGGAAGACAATAACTGCACCC	CGGTTAGCAGTATGTTGTCCAGC
mCCL24	ATTCCAGAAAACCGAGTGGTTAGC	GCATCCAGTTTTTGTATGTGCCTC
mCCL22	GTGGAAGACAGTATCTGCTGCC	AGGCTTGCGGCAGGATTTTGAG
mCXCL13	CATAGATCGGATTCAAGTTACGCC	GTAACCATTTGGCACGAGGATTC
mCD36	GGACATTGAGATTCTTTTCCTCTG	GCAAAGGCATTGGCTGGAAGAAC
mMARCO	ATGGCACCAAGGGAGACAAAGG	GCCTGGTTTTCCAGCATCACCT