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Abstract  48 

  49 

Background: Previously, we demonstrated that changes in circulating tumor DNA (ctDNA) 50 

are promising biomarkers for early response prediction (ERP) to immune checkpoint inhibitors 51 

(ICI) in metastatic urothelial cancer (mUC). In this study, we investigated the value of whole 52 

blood immunotranscriptomics for ERP-ICI and integrated both biomarkers into a multimodal 53 

model to boost accuracy. 54 

 55 

Methods: Blood samples of 93 patients were collected at baseline and after 2-6 weeks of ICI 56 

for ctDNA (N=88) and immunotranscriptome (N=79) analyses. ctDNA changes were 57 

dichotomized into increase or no increase, the latter including patients with undetectable 58 

ctDNA. For RNA model development, the cohort was split into a discovery (N=29), test (N=29) 59 

and validation set (N=21). Finally, RNA- and ctDNA-based predictions were integrated in a 60 

multimodal model. Clinical benefit (CB) was defined as progression-free survival beyond 6 61 

months. 62 

 63 

Results: Sensitivity (SN) and specificity (SP) of ctDNA increase for predicting non-CB (N-CB) 64 

was 59% and 92%, respectively. Immunotranscriptome analysis revealed upregulation of T-65 

cell activation, proliferation and interferon signalling during treatment in the CB group, contrary 66 

to N-CB patients. Based on these differences a 10-gene RNA model was generated, reaching 67 

a SN and SP of 73% and 79% in the test and 67% and 67% in the validation set for predicting 68 

N-CB. Multimodal model integration led to superior performance with a SN and SP of 79% and 69 

100% in the validation cohort. 70 

 71 

Conclusion: The combination of whole blood immunotranscriptome and ctDNA in a 72 

multimodal model showed promise for ERP-ICI in mUC and accurately identified patients with 73 

N-CB.  74 
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Introduction 77 

 78 

In the last decade, immune checkpoint inhibitors (ICI) targeting programmed cell death 1 (PD-79 

1) or its major ligand (PD-L1) have become one of the main treatment modalities for patients 80 

with irresectable or metastatic urothelial cancer (mUC). In 2017, pembrolizumab became the 81 

standard of care treatment for patients with mUC following progression on first-line platinum-82 

based chemotherapy based on results of the KEYNOTE-045 (1). Since then, the use of ICI in 83 

patient with mUC has shifted to the first-line and maintenance setting. In 2021, maintenance 84 

therapy with avelumab became available for patients with a response or stable disease to first-85 

line platinum-based chemotherapy (2). Very recently, the combination of pembrolizumab and 86 

antibody-drug conjugate enfortumab-vedotin (EV) became the new standard of care first-line 87 

treatment based on results of the EV-302. In this phase III clinical trial, pembrolizumab-EV 88 

prolonged median overall survival (mOS) from 16.1 to 31.5 months compared to platinum-89 

based chemotherapy in the first-line setting (3,4). Another new first-line treatment option for 90 

patients who are eligible for cisplatin is the combination of nivolumab with cisplatin and 91 

gemcitabine, which has shown an OS advantage compared to cisplatin-based chemotherapy 92 

alone in the CheckMate 901 trial (5).  93 

Although ICI-containing combination therapies have proven their superiority compared to first-94 

line chemotherapy in unselected fit patients (3–5), it is anticipated that monotherapy ICI will 95 

continue to be an important treatment modality. First, ICI monotherapy will continue to play an 96 

important role in the treatment of frail or elderly patients with mUC because of the high toxicity 97 

associated with combination therapies. In addition, there might be a role for monotherapy ICI 98 

in biomarker-selected patients who are predicted to durably benefit from ICI monotherapy, 99 

regardless of frailty, to avert unnecessary toxicity and costs.  100 

Responses to ICI in mUC are heterogeneous. Specifically, monotherapy ICI induces objective 101 

response in 20-25% of mUC patients receiving first- or second-line ICI and approximately 10% 102 

is still progression-free after 4 years (6,7). These latter patients might not derive extra benefit 103 
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from the addition of EV or chemotherapy. To personalize treatment decisions in mUC, there is 104 

a need for high precision biomarkers that can identify patients who benefit from ICI 105 

monotherapy. Several baseline tumor biomarkers, including tumor mutational burden (TMB), 106 

PD-L1 expression and tumor immune cell infiltration, have been associated with response to 107 

ICI in mUC (8–12). Although PD-L1 expression enriches for responders to first-line ICI in 108 

cisplatin-ineligible patients and is used to select patients for ICI over carboplatin-based 109 

chemotherapy, none of these standalone biomarkers are accurate enough to predict response 110 

to ICI.  111 

In recent years, circulating tumor DNA (ctDNA) measurement has emerged as a method to 112 

monitor treatment response (13–15). The ctDNA level correlates well with tumor burden and 113 

can, therefore, be used as a non-invasive tool to monitor treatment response. We previously 114 

demonstrated that increases in ctDNA after 3-6 weeks are a promising biomarker for the early 115 

identification of disease progression to ICIs in mUC (15). However, ctDNA does not capture 116 

all host-related and tumor microenvironment-related factors that play a role in antitumor 117 

immunity. Multimodal biomarkers capturing both tumor and immune signals might improve 118 

biomarker accuracy.  119 

In this study, we searched for on-treatment biomarkers that accurately identify patients without 120 

clinical benefit (N-CB), so that those with N-CB can be considered for other, more effective 121 

(combinatorial) therapies, while unwanted treatment discontinuation in patients with clinical 122 

benefit (CB) is avoided. We analyzed ctDNA and the peripheral blood immunotranscriptome 123 

in baseline and early on-treatment samples of mUC patients treated with ICI monotherapy. We 124 

show that early changes in the peripheral blood immunotranscriptome are associated with 125 

response to ICI and can be utilized to predict CB. Additionally, we demonstrate the synergy 126 

between ctDNA and whole blood RNA-sequencing data, by combining the two approaches in 127 

a multimodal model for early response prediction.  128 

 129 

130 
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Results 131 

 132 

Clinical characteristics of the ICI-treated mUC patient cohort 133 

 134 

To longitudinally and non-invasively monitor response to ICI and to discover biomarkers 135 

predictive of CB, we collected blood liquid biopsies (LBx) from a total of 93 mUC patients 136 

treated with either pembrolizumab (N=72), nivolumab (N=7) or avelumab (N=14) (Figure 1A, 137 

Figure S1A and Table 1). Specifically, baseline (BL) blood LBx were collected before ICI 138 

therapy initiation, while on-treatment (OT) LBx were collected after cycle 1 or 2 (2-6 weeks). 139 

LBx samples were used for ctDNA and bulk whole blood RNA sequencing (RNA-seq) analysis 140 

(see material and methods section for details). We collected paired BL and OT ctDNA data for 141 

88 patients and RNA-seq data for 79 patients, of whom 74 patients had both ctDNA and RNA 142 

data. Moreover, archival tumor tissue (FFPE) was used to determine PD-L1 CPS (N=62) and 143 

tumor mutational burden (TMB) (N=78) (Table 1). Of note, for RNA-seq analysis and modeling, 144 

patients were distributed in separate discovery, testing and validation cohorts for optimal data 145 

analysis (Figure S1A). Clinical endpoint was clinical benefit at 6 months, defined as radiological 146 

and clinical PFS at or beyond 6 months from treatment initiation. (Figure S1B). Out of the 93 147 

patients included, 42 patients experienced clinical benefit (CB) and 51 did not (N-CB). Clinical 148 

characteristics are described in Table 1.  149 

 150 

CtDNA profiling outperforms conventional tumor biomarkers for prediction of N-CB in 151 

ICI-treated mUC patients 152 

 153 

High TMB and PD-L1 expression in the tumor have previously been associated with CB to ICI 154 

(16,17). We, therefore, assessed whether these two tumor biomarkers could help stratify the 155 

cohort into patients with or without CB (Figure 1, B and C). High PD-L1 expression was defined 156 

as a combined positive score (CPS) ≥10, in line with what is used in the clinic to select cisplatin-157 

ineligible mUC patients for first-line ICI. There was a weak trend, but no significant association, 158 
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between CPS ≥10 and longer PFS (Figure 1B). High TMB, defined as a TMB ≥10 mutations 159 

per megabase, was significantly associated with improved PFS (Figure 1C), but low TMB had 160 

only 80% sensitivity and 43% specificity to predict N-CB. These results indicate that 161 

conventional tumor biomarkers only have partial ability to predict CB to ICI in mUC and that 162 

more accurate biomarkers are needed.  163 

We previously demonstrated that decreases in ctDNA after 3-6 weeks show high specificity 164 

and moderate sensitivity for predicting CB to ICIs in a subset of patients of the presented mUC 165 

cohort (15). We expanded our previous cohort for the current analyses to a total of 88 patients. 166 

Patients were categorized into two groups based on their ctDNA dynamics. Patients with a 167 

ctDNA-increase or stable from BL to OT were predicted to have N-CB (N=32), while patients 168 

with a ctDNA-decrease from BL to OT (N=45) or undetectable ctDNA at both timepoints (N=11) 169 

were predicted to have CB. Patients with predicted CB had significantly longer PFS compared 170 

to those with predicted N-CB (Figure 1D). The ctDNA-based model showed 59% sensitivity 171 

and 92% specificity to detect N-CB patients (true positive cases) (Figure S1C). Additionally, a 172 

larger decrease in ctDNA level correlated with an extended time to progression (Figure S1D). 173 

Interestingly, ctDNA-based predictions partially correlated with PD-L1 CPS and TMB-based 174 

stratification (Figure S1E). Altogether, these data support the potential of ctDNA to predict N-175 

CB, which outperforms the conventional tumor biomarkers PD-L1 and TMB. 176 

 177 

Longitudinal immunotranscriptome analyses reveal biologically relevant changes in 178 

patients with CB to ICI 179 

 180 

While early increases in ctDNA were highly specific for N-CB, only 59% of the patients with N-181 

CB were identified with this approach, possibly related to the fact that ctDNA levels do not 182 

capture immune activity. We reasoned that the addition of a second approach capturing host 183 

immune response using LBx might improve biomarker accuracy compared to the ctDNA-only 184 

approach. We, therefore, decided to investigate if we could use the peripheral blood 185 

immunotranscriptome for early response prediction to ICI. To investigate this, patients were 186 



 9 

distributed into independent discovery, testing and validation cohorts (Figure S1A). 187 

Specifically, the first cohort was used for biomarker discovery and model training, the second 188 

for independent model testing and optimization, and the third for final, blind, model validation. 189 

 190 

For biomarker discovery, we first explored the longitudinal changes in gene expression in the 191 

CB patients in the discovery cohort (N=29). We performed differential gene expression 192 

analysis (DEA) comparing paired BL and OT samples of CB patients (longitudinal CB DEA) 193 

followed by pathway analysis of the differentially expressed genes (DEGs) (Figure S2A). 194 

Interestingly, among the over-representation analysis (ORA) of up-regulated processes at OT, 195 

we found several pathways related to cell cycle regulation and adaptive immune system 196 

signaling (including antigen presentation and interferon-g signaling) (Figure 2A and S2B), while 197 

no significantly enriched pathways could be identified by analyzing the down-regulated DEGs. 198 

These results were confirmed by STRING network analysis of all DEGs which identified three 199 

highly interacting gene clusters related to T-cell activation, interferon-g signaling and cell cycle 200 

regulation (Figure 2B, Figure 2C). The three gene clusters consisted mainly of genes that were 201 

up-regulated during treatment (Figure S2C) and included genes that have previously been 202 

associated with response to ICI, such as PDCD1 (PD-1), Granzymes and MKI67 (18–20). 203 

Moreover, STRING network analysis enabled the identification of biologically relevant genes 204 

down-regulated at OT, which included several myeloid cell-specific genes (PVR, CD33, ENG, 205 

LY86, CD86, TNFRSF8, ASGR1) belonging to STRING network cluster 1. 206 

 207 

To identify the genes that discriminate CB and N-CB patients, we compared the longitudinal 208 

CB DEA DEGs to DEGs that are differentially expressed between BL and OT timepoints in N-209 

CB patients (longitudinal N-CB DEA) and DEGs that were differentially expressed between OT 210 

samples of CB and N-CB patients (OT DEA) (Figure 2D and S2D). Interestingly, the 211 

longitudinal N-CB DEA (BL vs. OT timepoints) only revealed few DEGs (53 genes), of which 212 

only 7 genes were shared with the longitudinal CB DEA DEGs. By contrast, the OT DEA 213 

showed a larger overlap with the longitudinal CB DEA (49 genes), showing that these genes 214 
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not only are differentially regulated after treatment in the CB population, but also discriminate 215 

the CB and N-CB groups at OT timepoint. Functional analysis of the 49-gene intersect revealed 216 

pathways related to T-cell tolerance (Figure S2E). Altogether, the functional analysis of the 217 

longitudinal CB DEA highlighted multiple gene sets with the potential of discriminating the CB 218 

from the N-CB group.  219 

 220 

We subsequently investigated whether the identified 49-gene set (Figure 2D) and the three 221 

STRING network clusters (Figure 2B) were able to separate the CB and N-CB patients. 222 

Specifically, we assessed the mean gene expression at OT in the CB and N-CB groups (Figure 223 

2E and S2F) and patient clustering based on the gene expression at OT (Figure 2F and S2G). 224 

Interestingly, we found that the 49-gene set had a significant higher expression in the CB group 225 

and could separate the two populations by heatmap analysis (Figure 2E and 2F), while 226 

STRING cluster 1 to 3 gene sets could not achieve such separation (Figure S2F and S2G). 227 

These results indicated that immunotranscriptomic data from whole blood can detect 228 

biologically relevant signals of an early peripheral response to ICI. Moreover, the identified 229 

genes have potential to stratify the CB and N-CB populations. 230 

 231 

Immunotranscriptome data and machine-learning (ML) approaches allow to develop 232 

robust models for early response prediction to ICI 233 

 234 

To develop predictive models of CB to ICI, the DEGs identified in the longitudinal CB DEA of 235 

the discovery cohort were used as input to generate multiple models, using several iterations 236 

of biomarker subsets selection (Figure 3A and S1A) (see material and methods for details). 237 

Subsequently, the best performing immunotranscriptome model (RNA model) was selected 238 

based on predictions in the independent test cohort. This final RNA model, comprising 10 239 

genes, was selected based on area under the curve (AUC) ranking of the receiver operating 240 

characteristics curve (ROC) for predicting CB to ICI and by ranking the difference in median 241 

PFS between the predicted CB and N-CB groups (Figure 3B-C and S3A-B). The RNA model 242 
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showed high performance in both independent test cohort (73% sensitivity at 79% specificity, 243 

AUC=0.84, N=29) and discovery cohort (92% sensitivity at 71% specificity, AUC=0.86, N=29). 244 

We then investigated the biological role of the 10 genes selected by ML-based feature 245 

reduction and used in the RNA model by mapping them to an attention map contextualizing 246 

the underlying biology (Figure 3D). We found that 8/10 genes (PTTG1, RAD51, CLC, CD86, 247 

TOX, CEBPA, SMPD3, SCARF1) could be contextualized to relevant biological functions of 248 

early response to ICI previously identified by ORA, such as T-cell activation and proliferation, 249 

while 2/10 (PDXK and a non-coding RNA) genes were not associated with previously identified 250 

pathways, but both belonged to the 49-gene set (Figure 2D). Interestingly, when using either 251 

the STRING gene clusters or the 49-gene set to develop predictive models, the performance 252 

in the test cohort was inferior to the 10-gene RNA model (Figure S3C). Also, the 10-gene panel 253 

did not show any overlap with a selection of literature-based tumor-derived signatures which 254 

have been shown to correlate with CB to ICI in other studies (Figure S3D) (21–23), although 255 

part of these genes was among the longitudinal DEA DEGs. Of note, models based on these 256 

literature-based signatures showed low performance in our cohorts (Figure S3E). Lastly, we 257 

validated the model performance in a small blind validation cohort (N=21). The RNA model 258 

achieved an AUC of 0.77 (67% sensitivity at 67% specificity, N=21) (Figure 3E) and there was 259 

a non-significant trend towards longer PFS in the predicted CB group (Figure 3F). To 260 

summarize, ML-based approaches for biomarker selection and modelling identified the most 261 

central RNA biomarkers in whole blood and showed high accuracy in the discovery and testing 262 

cohort for predicting CB.  263 

 264 

Multimodal modelling with ctDNA and RNA-based biomarkers boosts model 265 

performance and leads to accurate prediction of N-CB in the independent validation 266 

cohort 267 

 268 

Emerging evidence suggests that combining biomarkers from dissimilar sources can 269 

exponentially improve model performance (24,25). We, therefore, hypothesized that we could 270 
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improve predictions by integrating RNA- and ctDNA-based readouts in one model. When 271 

comparing the predictions of the standalone ctDNA- and RNA-based models in the test cohort 272 

(Figure 4A and Figure S4A), we found that models showed discordant predictions for a 273 

significant proportion of patients (12/27). We then reasoned that the fixed cutoffs used in the 274 

standalone models might influence wrong readout occurrence. Indeed, false positive and false 275 

negative cases of both the RNA and the ctDNA model had a prediction probability and, 276 

respectively, a ctDNA ratio close to the cutoff values (Figure S4B and C). Therefore, we 277 

developed a multimodal model in the test cohort where the final prediction was based on a 278 

cutoff range of combined ctDNA ratio and RNA-based prediction probability (see material and 279 

methods section for details). The multimodal model was then validated in the independent 280 

validation cohort. The multimodal model showed superior performance compared to the 281 

standalone approaches (Figure 4B), reaching 71% sensitivity at 100% specificity in the test 282 

cohort, and 79% sensitivity at 100% specificity in the independent blinded validation cohort. 283 

Consequently, the multimodal approach allowed for a superior stratification of the predicted 284 

CB and N-CB groups (Figure 4C-E). Thus, this multimodal analysis appears a promising tool 285 

for early response prediction to ICI.  286 
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Discussion 287 

In this study, we performed ctDNA and whole blood immunotranscriptome analyses to identify 288 

biomarkers for early response prediction to first- and second-line and maintenance ICI in 289 

patients with mUC. We confirmed that early changes in ctDNA levels are associated with CB 290 

to ICI, with early increases in ctDNA levels being highly specific for N-CB. We hypothesized 291 

that peripheral blood immunotranscriptome analyses might be a valuable complementary 292 

approach to ctDNA and indeed found it to be a promising tool for early response monitoring in 293 

mUC. In patients with CB to ICI, pathways related to cell cycle regulation, T cell activation, 294 

antigen presentation and interferon-gamma signaling were upregulated already three weeks 295 

after the first anti-PD-(L)1 infusion. These changes were specific for patients with CB, which 296 

enabled the generation of a 10-gene model to predict CB based on whole blood 297 

immunotranscriptome data with high accuracy. A multimodal model incorporating both ctDNA 298 

and immunotranscriptome-predictions showed superior performance compared to both 299 

standalone predictions and conventional biomarkers (PD-L1 and TMB) and demonstrated a 300 

sensitivity of 79% and specificity of 100% for prediction of N-CB in an independent blinded 301 

validation cohort.  302 

 303 

There are currently no clinically applicable biomarkers to identify patients that derive benefit 304 

from ICI. In current practice, ICI are usually continued for at least 12 weeks, at which point the 305 

first radiological response evaluation is performed. Clinically stable patients with suspected 306 

progression after the first scan according to iRECIST may continue treatment to avert 307 

treatment discontinuation in patients with pseudo-progression or a delayed response (26). 308 

Early response biomarkers would facilitate the early identification of patients without CB, 309 

thereby limiting unnecessary costs and toxicities. Additionally, the use of early response 310 

biomarkers may improve clinical outcomes by facilitating an early treatment switch or treatment 311 

intensification in patients that do not benefit from ICI monotherapy. Early on-treatment 312 

biomarkers would, therefore, be of great value in the clinic.  313 
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 314 

In this study, we observed that changes in ctDNA levels during ICI treatment are associated 315 

with clinical outcome. Others have described comparable associations between ctDNA kinetics 316 

and clinical outcome following ICI in multiple cancer types, but the optimal cutoff remains to be 317 

elucidated (27–33). Raja et al. showed a relation between increases in ctDNA fraction and 318 

disease progression in 28 mUC patients treated with ICI, similar to our data (34). Powles et al. 319 

recently presented ctDNA data of the phase III KEYNOTE-361 trial. Changes in ctDNA fraction 320 

during the first 3 weeks of pembrolizumab were smaller than during chemotherapy, but showed 321 

a stronger association with clinical outcomes. Additionally, patients with a large reduction in 322 

ctDNA after 3 weeks, defined as a reduction above median across both treatment groups, 323 

demonstrated higher objective response rates and better OS (28). In our study, we chose to 324 

split the cohort into patients with or without a ctDNA increase in order to detect patients with 325 

N-CB with high certainty. This way clinicians and patients could confidently decide on an early 326 

treatment switch or intensification without risking halting an effective treatment. Nevertheless, 327 

when using another cutoff it might also be possible to use ctDNA to detect long-term 328 

responders with high specificity, as observed in our dataset (Figure S1D). 329 

To improve early response prediction based on ctDNA-data alone, we reasoned that the 330 

addition of a second approach that reflects immunological activity might improve our 331 

predictions. To enable non-invasive monitoring of peripheral immune activity, we investigated 332 

the potential of whole blood immunotranscriptome analyses for the early identification of 333 

response to ICI in mUC and were able to generate a 10-gene model to predict CB based on 334 

peripheral blood immunotranscriptome data with high accuracy. 335 

Although our immunotranscriptome analyses were performed on bulk RNA-sequencing data, 336 

we found several biologically relevant pathways to be upregulated during the first weeks of 337 

therapy in patients with CB to ICI, including pathways involved in cell cycle regulation, T cell 338 

activation and antigen presentation and interferon-gamma signaling, confirming that whole 339 

blood immunotranscriptome data is a reliable source to detect ICI-related changes in 340 
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peripheral blood. Interestingly, we found some immune-related genes that have previously 341 

been associated to response to ICI in other studies using tumor biopsies (21–23), highlighting 342 

the capability of our LBx approach to detect parallel gene dysregulation in the blood. Of note, 343 

while several studies have investigated the relationship between baseline tissue transcriptome 344 

and response to ICIs, studies using peripheral blood transcriptome data are scarce. 345 

Interestingly, a recent study by Richard et al. showed that genes associated with immune cell 346 

activation are overexpressed in baseline samples of mUC patients responding to durvalumab, 347 

whereas patients with progressive disease overexpressed genes of immune cell inhibition (35). 348 

These authors, however, did not study on-treatment changes in whole blood RNA. While data 349 

on early changes in peripheral blood transcriptome in patients treated with ICI are lacking, our 350 

findings are in line with previous flow cytometry and single cell sequencing studies, 351 

demonstrating proliferation of (activated) T cells during the early phase of ICI therapy in 352 

patients that benefit from ICI (18,19,36). 353 

Whereas longitudinal ctDNA dynamics reflect changes in tumor burden and biological activity, 354 

whole-blood immunotranscriptome dynamics reflect early, systemic adaptations in immune-355 

cell activity and proliferation. We, therefore, hypothesized that a multimodal model capturing 356 

both ctDNA and whole blood immunotranscriptome predictions might outperform the 357 

standalone approaches. Our multimodal model indeed showed superior performance 358 

compared to the standalone approaches. While the ctDNA standalone approach had a 359 

sensitivity and specificity of 64% and 100% and the RNA standalone approach 67% and 67% 360 

in the independent validation cohort, the multimodal model reached 79% sensitivity and 100% 361 

specificity. 362 

While our multimodal model will need further validation before it can be implemented in the 363 

clinic, our model shows promise as non-invasive biomarker test for the early detection of N-364 

CB to ICIs. The high specificity will allow clinicians and patients to confidently decide on an 365 

early treatment switch without risking halting an effective treatment. While it would be 366 

acceptable to miss some patients with N-CB, we should aim to further optimize the sensitivity 367 
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of our test in subsequent studies. One possibility to optimize test performance is the 368 

incorporation of a second, early, on-treatment sample. Our previous ctDNA study (15)  369 

analyzed 20 patients with both 3-week and 6-week samples. Two patients with N-CB showed 370 

a ctDNA decrease at 3 weeks, but an increase at 6 weeks. On the other hand, one patient with 371 

CB showed a rise in ctDNA at 3 weeks and then a decrease compared to the 3-week timepoint 372 

at 6 weeks. These data suggest that more insight into early dynamics of ctDNA might further 373 

improve performance of our test. Another way to improve our test is by incorporating  additional 374 

mUC-associated genes in the ctDNA panel (e.g. KMT2D and KDM6A) (15). It is possible that 375 

a few patients with undetectable ctDNA in our study had false-negative results and were 376 

incorrectly categorized, negatively influencing the accuracy of our ctDNA prediction. Further 377 

optimization of our ctDNA panel could limit the number of patients with false negative ctDNA 378 

testing.  379 

Our multimodal model based on whole blood immunotranscriptome and ctDNA data shows 380 

promise as a non-invasive blood-based biomarker test for early identification of N-CB to ICIs 381 

in mUC. Interestingly, the model obtained accurate predictions in both patients treated with 382 

first- or second line ICI as well as in patients treated with avelumab maintenance, emphasizing 383 

the robustness of the test. Yet this study also has some limitations. First, the study cohorts 384 

were small, particularly the number of patients with paired ctDNA and RNA data in the 385 

independent validation cohort (N=19). Validation of our multimodal model in larger cohorts is 386 

needed before it can be implemented in the clinic. Another limitation is that the use of ICI 387 

monotherapy may decline in the near future due to changes in the treatment landscape of 388 

mUC. Nevertheless, we anticipate that monotherapy ICI will continue to be an important 389 

treatment modality for frail or elderly patients with mUC because of the high toxicity associated 390 

with combination therapies. Additionally, it would be very interesting to test if our multimodal 391 

biomarker approach can be used in the first line setting to limit the use of intensive combination 392 

therapies to patients that do not durably benefit from monotherapy ICIs. For instance, patients 393 

could receive pembrolizumab monotherapy in the first line mUC setting and could then 394 
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escalate to pembrolizumab-EV if the multimodal test predicts that the patient is not responding. 395 

This strategy may particularly be of interest in patient subgroups that derive increased benefit 396 

of ICI monotherapy, such as those with lower ctDNA fractions or those with lymph node-only 397 

disease (28,37).  398 

While the current study tested the predictive value of early ctDNA and whole blood RNA 399 

kinetics in patients receiving ICI monotherapy, it would also be of interest to test these 400 

biomarkers in patients receiving ICI-containing combination strategies, such as EV or cisplatin-401 

gemcitabine. Not all patients derive benefit from addition of ICI, and response patterns from 402 

longitudinal assessment might distinguish those that derive benefit from combination therapy, 403 

or EV or ICI alone.    404 

In conclusion, whole blood immunotranscriptomics provides a promising tool for early response 405 

prediction to ICI in mUC, particularly when used in a multimodal model together with changes 406 

in ctDNA levels. Results of our multimodal analyses should be validated in clinical trials to 407 

confirm that the test can be used to improve clinical outcomes of mUC patients.  408 
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Material and methods  409 

  410 

Sex as a biological variable 411 

Both female and male patients were included. In this study, sex was not considered as a 412 

biological variable. 413 

 414 

Patients  415 

This Dutch, multicenter study included 93 patients with mUC who were treated with anti-PD-416 

(L)1 between 2017 and 2023. Patients were treated with nivolumab or pembrolizumab in the 417 

first- or second-line mUC setting or with maintenance avelumab following response or stable 418 

disease to platinum-based chemotherapy. Patients with measurable disease were evaluated 419 

according to RECIST1.1 (38). Clinical endpoint was clinical benefit (CB) at 6 months, defined 420 

as radiological and clinical progression-free survival (PFS) at 6 months, which was previously 421 

demonstrated to show a better correlation with overall survival in mUC than objective 422 

response(39). Patient demographic is reported in table 1. 423 

 424 

Blood Collection and Processing  425 

Blood was drawn prior to the first three cycles of anti-PD-(L)1 therapy (i.e., at 0, 2 and 4 weeks 426 

for nivolumab and avelumab and at 0, 3 and 6 weeks for pembrolizumab). At these timepoints, 427 

a complete blood cell count was performed as part of routine clinical care. In addition, blood 428 

was collected in a PAXgene Blood RNA tube for whole blood RNA analyses (BD Biosciences, 429 

San Jose, CA, USA) and in three 10 mL EDTA or cell-free DNA (cfDNA) collection tubes 430 

(Roche) for ctDNA analyses. PAXgene tubes were stored at −80°C until RNA purification. 431 

EDTA and cfDNA tubes were processed as previously described (15). The baseline sample 432 

and the earliest on-treatment sample available were used for analyses.  433 

 434 

TMB and PD-L1 435 
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Tumor tissue for molecular analysis and PD-L1 staining was obtained from diagnostic biopsies 436 

obtained in routine clinical practice. The PD-L1 staining was performed on formalin-fixed 437 

paraffin-embedded (FFPE) tissue sections using antibodies against 22C3 (PharmaDx kit, 438 

DAKO Agilent, #GE006) or E1L3N (Cell Signalling, #13684S). A combined positivity score 439 

(CPS) was calculated by dividing the number of stained cells expressing PD-L1 (tumor cells, 440 

tumor-associated lymphocytes and macrophages) by the total number of viable tumor cells, 441 

multiplied by 100, taking into account at least 200 viable tumor cells, not adjacent to necrotic 442 

areas. A CPS≥10 was considered positive.  443 

Tumor sequencing data were generated utilizing different sequencing platforms: whole 444 

genome sequencing (WGS), whole exome sequencing (WES), TruSight Oncology 500 445 

(TSO500), Foundation Medicine T7 assay (CLIA: 22D2027531), single molecule Molecular 446 

Inversion Probe panel (PATHv3D) and/or the ctDNA_NGSv1 targeted sequencing panel 447 

(15). WGS, WES and TSO500 data were used to determine non-synonymous tumor 448 

mutational burden (nsTMB). A nsTMB≥10 mutations per megabase was considered high. 449 

 450 

ctDNA  451 

ctDNA analyses were performed in 88 patients, of which 53 patients were included in a prior 452 

publication (15). Only patients with paired baseline and on-treatment samples who were 453 

evaluable for the clinical endpoint were included in the current analyses.  454 

ctDNA workup and downstream analysis were performed as previously described (15). In 455 

short, cell-free DNA (cfDNA) was isolated from blood plasma (median 5.6 mL, IQR 5 mL - 8 456 

mL) using the QIAamp Circulating Nucleic Acid kit (Qiagen). White blood cell (WBC) DNA was 457 

isolated using a QIAamp DNA Mini Kit (Qiagen). A maximum of 50 ng cfDNA ng (median 50 458 

ng, IQR 37 ng - 50 ng) and 50-80 ng of mechanically sheared WBC DNA were used for targeted 459 

sequencing using an in-house developed and validated 117 kb targeted sequencing panel 460 

(NEN-EN-ISO 15189+C11:2015) (15). Libraries were generated using the TWIST Library 461 

Preparation Kit (TWIST Biosciences) in combination with xGen dual index unique molecular 462 

identifiers (UMI) adapters (Integrated DNA Technologies) or TWIST UMI adapters (TWIST 463 
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Biosciences). Libraries were paired-end sequenced on a NovaSeq6000 platform (Illumina). 464 

Reads were mapped to hg19 and deduplicated using the read-specific UMI information 465 

(Fgbio). Unique reads that not met fgbio quality parameters and/or based on <2 UMI reads 466 

(singletons) were only kept for variant detection in TERT protomer region and copy number 467 

variant (CNV) detection.   468 

Somatic variants were called using Genomic Analysis Toolkit (GATK) Mutect2 (version 4.1.5.0) 469 

based on previously described filter criteria (15). Variants with at least 5 supporting variant 470 

reads and >0.1% variant allele fraction (VAF) were selected for downstream analysis. 471 

Additionally, patient-specific cfDNA variants and, if available, tumor variants (evaluation of 472 

nonsynonymous tumor variants with a minimal read depth of 10, N=59 pts), were evaluated in 473 

the patient-matched BL and OT cfDNA sequencing data. For this dependent calling, the variant 474 

in the matched BL or OT sample had to be supported by at least 3 variant reads, the VAF 475 

signal had to be at least 20x higher than the average VAF of 22 control cfDNA samples and at 476 

least three times higher than the patient-matched WBC sample for that specific nucleotide 477 

change (if available).  478 

CNV detection was performed as previously described using both the relative coverage and 479 

the median allele fraction (MAF) divergence from heterozygosity. Copy number loss was 480 

defined as relative coverage ≤ −0.3 or relative coverage ≤ −0.1 and MAF ≥ 0.6. Copy number 481 

gain was defined as a relative coverage ≥ 0.3 or ≥ 0.1 and MAF ≥ 0.6.   482 

CtDNA fraction was determined by using the somatic mutation with highest VAF in a non-483 

amplified region corrected for loss of heterozygosity (LOH) or using the MAF deviation from 484 

heterozygosity of germline single nucleotide polymorphisms (SNPs) in genes with a single-485 

copy loss (15,40). CtDNA fractions were converted to ctDNA copies per mL plasma (total 486 

cfDNA concentration multiplied by 303). To incorporate technical uncertainty and biological 487 

variability of ctDNA levels, lower and higher limits were estimated as previously described (15).  488 

On-treatment changes were dichotomized into increase versus no increase, based on changes 489 

in ctDNA copies/mL. Patients with an increase were predicted to not have CB (N-CB), whereas 490 

patients without an increase during treatment were predicted to have CB. Patients with 491 
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undetectable ctDNA in both the baseline and on-treatment sample were categorized as no 492 

increase/predicted-CB since low baseline ctDNA levels are considered a prognostically 493 

favorable sign (28). CtDNA-based specificity and sensitivity was calculated for the full ctDNA 494 

cohort. 495 

  496 

Whole Blood RNA Sequencing  497 

Whole blood RNA sequencing was performed in 79 patients with paired samples. Additionally, 498 

2 patients with on-treatment samples only were used for differential gene expression analysis 499 

(DEA). Total RNA was extracted from whole blood using the PAXgene blood miRNA kit 500 

(Qiagen, Venlo, Netherlands). RNA quantity was determined using Qubit (Thermo Fisher 501 

Scientific, Waltham, MA, USA). RNA quality was assessed on a Tapestation 4,200 (Agilent 502 

Technologies, Santa Clara, CA, USA). Per sample, at least 200 ng of total RNA was used for 503 

library preparation. RNA samples were treated for globin RNA depletion with the QIAseq 504 

FastSelect RNA Removal kit (Qiagen, Venlo, Netherlands). Library preparation was performed 505 

after isolation of poly-A RNA by means of NEBNext poly(A) mRNA magnetic isolation module 506 

and then, setup of directional RNA libraries by means of NEBNext Ultra II directional RNA 507 

library prep kit in combination with NEBNext multiplex oligos for Illumina Set 1, Set 2 and Set 508 

3 was performed (NEB, Ipswich, MA, USA). Library quality control was done by using Dual 509 

AmpureXP cleanup for complete adapter dimer removal, and a verification of adapter dimer 510 

removal with TapeStation 4,200 (Agilent Technologies, Santa Clara, CA, USA).  511 

All Libraries were pooled by equal volume and a test sequencing run was done on iSeq100 512 

(Illumina, San Diego, CA, USA) to determine content of each library and adjust the final pool. 513 

Sequencing was performed on Illumina NovaSeq6000, 3 lanes of S4 flow cell, Paired-End 150 514 

configuration with an expected output of 800Gb per lane or ca. 2,600M PE reads per lane 515 

(Illumina, Sain Diego, CA, USA). A minimum of 30M PE150 reads were required per sample. 516 

The FastQ files with paired-end reads were used as input for gene expression analysis on the 517 

LITOSeek® platform (Novigenix SA, Epalinges, Switzerland). Of note, whole blood RNA 518 

sequencing data of patients in the discovery cohort has been previously published (20). 519 
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Samples have been re-sequenced and re-analyzed for this paper after optimization of the 520 

analyses pipeline. 521 

  522 

Data processing and Quality Check  523 

Sequence data quality was evaluated using FastQC (version 0.11.9) combined with MultiQC 524 

(version 1.11). Cutadapt (3.4) was used to find and remove adapter sequences, primers, poly-525 

A tails and other types of unwanted sequence from high-throughput sequencing. Reads were 526 

aligned to the Human genome assembly (GRCh38) along with its corresponding annotation 527 

from Ensembl database using the release 107. The pseudo-alignment and quantification of 528 

transcript abundance of the RNA-Seq reads was done using Salmon (version 1.5.2) with 529 

default parameters. All samples were used for downstream analysis.  530 

 531 

Data transformation and exploratory analysis  532 

Normalization for gene length, Transcripts Per Million (TPM) values, was conducted as a step 533 

downstream in our analysis. Gene pseudo-counts from Salmon were imported into the R 534 

statistical computing environment (version 4.2.1) and subsequently filtered by excluding genes 535 

with less than 1 count per million (CPM) across all samples and with a coefficient of variance 536 

(cv) of 100, using the filtered.data function within the NOISeq R package (version 2.40.0). 537 

Following the initial gene data treatment, forward normalization was performed employing the 538 

variance-stabilizing transformation using the vst function, which is a feature of the DeSeq2 R 539 

package (version 1.36.0). Primary focus for exploratory data analysis centered on the vst-540 

transformed values and the selected subset of genes from NOISeq. Principal Component 541 

Analysis (PCA) and scatter plots were applied to visualize the similarities and differences 542 

among samples.  543 

  544 

Differential gene expression and multivariate analysis   545 

Comprehensive analysis of differential gene expression was performed using proprietary 546 

algorithms and curation of the differentially expressed genes (DEGs). Three DEAs were 547 
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performed: the first compared the on-treatment (OT) samples of patients with CB with their 548 

paired baseline (BL) samples, the second compared the OT and BL samples of patients with 549 

N-CB and the third compared the OT samples of patients with CB versus patients with N-CB. 550 

Functional and network analyses of the DEGs were realized with STRING (version 12.0) and 551 

Cluster-Profiler (version 4.6.2) to perform over-representation analysis (ORA), which allowed 552 

to identify central biological pathways and biomarkers of response. STRING clusters were 553 

defined by MCL clustering (inflation parameter=3) on the STRING online platform by inputting 554 

the longitudinal DEA CB DEGs. Significantly enriched ORA pathways were defined by an 555 

adjusted p-value≤0.05 (Benjamini-Hochberg method). Additionally, the DEGs attributed to any 556 

enriched terms from the ORA results output were extrapolated, enabling identification of the 557 

functionally relevant genes among all DEGs. Basic plots were performed with RStudio (version 558 

4.2.1) and the correspondent R packages ggplot2 (version 3.5.0), UpSetR (version1.4.0). 559 

Heatmaps were generated with ComplexHeatmap (version 2.14.0), ROCR (version 1.0-11) 560 

was used to plot ROC curves, survminer (version 0.4.9) and survival (version 3.5-8) were used 561 

to generate Kaplan Meier curves for PFS.  562 

  563 

Modeling  564 

To develop predictive models of CB to ICI, the DEGs identified in the longitudinal CB DEA of 565 

the discovery cohort were used as input to generate multiple models, using several iterations 566 

of biomarker subsets selection. Patients were distributed in discovery, test and validation 567 

cohorts, based on the timing of enrollment and sample collection. The discovery cohort was 568 

used for biomarker discovery and model training, the test cohort for independent model testing 569 

and selection and the validation cohort for final blinded validation of the model. To classify 570 

patients into predicted CB and predicted N-CB, we employed the SPLS (Sparse Partial Least 571 

Squares) method, which is particularly effective for small sample sizes and enhances model 572 

interpretability. The modeling process incorporated a resampling method, repeated cross-573 

validation with 10 iterations and a repeated k-fold cross-validation of 3 for the discovery 574 

dataset. Feature reduction was performed during each modeling iteration based on the initial 575 
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feature list (DEGs) to identify the optimal model. This reduction was systematically applied by 576 

specifying feature selection within the ranges of 10, 15, and 20 features.  577 

Each model's performance was assessed by plotting the True Positive Rate (TPR) against the 578 

False Positive Rate (FPR) at sensitivity and specificity thresholds of 90%. To classify samples 579 

as CB or N-CB, a 55% probability cut-off was used. The efficiency of the model was further 580 

verified by plotting Kaplan-Meier survival curves based on the model's predictions, along with 581 

the corresponding hazard ratios and the distance between predictive curves of responders and 582 

non-responders at 50% of the PFS. This process allowed to identify the best performing model 583 

(highest AUC and largest PFS separation) which comprised the 10 gene set. The identification 584 

of the 10 genes was therefore based on model performance upon feature selection from the 585 

DEGs identified in the longitudinal CB DEA. 586 

  587 

Multimodal modeling  588 

The multimodal model was optimized on the test cohort and blindly validated on the validation 589 

cohort. We did not use the discovery cohort (where the RNA model was trained) to avoid 590 

multimodal model overfitting. Specifically, for the development of a multimodal model based 591 

on RNA and ctDNA, RNA model prediction probabilities and ctDNA ratio values (ctDNA 592 

copies/mL at OT / ctDNA copies/mL at BL) were incorporated in the test cohort for thresholds 593 

optimization. Specifically, ctDNA-based predictions were adjusted using the RNA model 594 

prediction if a patient's ctDNA ratio value fell within an uncertainty range around the ctDNA 595 

ratio cutoff=1. In such case, the readout of the multimodal model for that specific patient sample 596 

would have been based on the RNA model. Vice versa, if the RNA model prediction probability 597 

was within an uncertainty range around the cut off = 55%, the multimodal model readout would 598 

have been based on the ctDNA model. If both ctDNA ratio and prediction probability were 599 

falling into the respective uncertainty ranges, the RNA model would have been prioritized in 600 

the multimodal readout. Accordingly, multiple multimodal models were created by enlarging 601 

the uncertainty ranges for both ctDNA ratio and RNA model prediction probability. Each 602 

multimodal model performance was then assessed by calculating specificity and sensitivity, 603 
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which was then compared to the standalone RNA model performance. The best combination 604 

of ctDNA ratio and predictive probability cutoffs defining the uncertainty ranges was selected 605 

in the test cohort, allowing for the highest increase in sensitivity and specificity compared to 606 

the standalone RNA model performance. Cutoffs were then applied to the validation cohort.  607 

 608 

Statistics 609 

Nonparametric data were analyzed by a Wilcoxon test (paired or unpaired depending on the 610 

experimental setup). P < 0.05 was considered as statistically significant. Differences in PFS in 611 

Kaplan-Meier curves were assessed by Mantel-Haenszel test. Each specific statistical test is 612 

reported for each experiment in the figure legends. Boxplots are used to present the data, 613 

showing median and the 25th to 75th percentiles. 614 

 615 

Study approval 616 

The study was conducted in accordance with relevant guidelines and regulations, and 617 

approved by the CMO Radboudumc local medical ethics committee (local registration numbers 618 

2016-3060 and 2020-6778). Written consent was obtained from all patients for the use of 619 

biomaterials. A flow diagram of the study is presented in Figure S1A. 620 

 621 

Data availability   622 

Data displayed in the figures are available in the “Supporting Data Values File”. The processed 623 

ctDNA data are provided in the supplementary material. High-throughput RNA sequencing 624 

data set is deposited under the following DOI: 10.5281/zenodo.14283210 625 

(https://zenodo.org/records/14283210). The accessibility to the next generation sequencing 626 

data generated from patient samples that support the findings of this study is restricted to 627 

protect human subject privacy and rights and preserve the scope of subjects’ consent. Data 628 

access need to be requested to the corresponding authors. All requests for raw and analyzed 629 

data will be promptly reviewed to verify if the request is subject to any intellectual property, 630 
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confidentiality obligations or privacy’s restrictions to patient sensitive data. Any data and 631 

materials that can be shared will be released via a Data Transfer Agreement.   632 
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Figures 818 

 819 

Figure 1 – circulating tumor DNA (ctDNA) dynamics predicts clinical benefit (CB) to 820 

immune-checkpoint inhibitor (ICI) therapy in metastatic urothelial cancer (mUC) 821 

patients: A) Sample collection and analysis schematic: mUC patients were treated with ICI 822 

(either pembrolizumab, nivolumab or avelumab) until disease progression. Blood was collected 823 

at baseline (BL, before cycle 1) and on-treatment (OT, after 2-6 weeks) for both ctDNA and 824 

RNA analysis. The primary endpoint was CB. This was defined as progression-free survival 825 

for at least 6 months. B) Kaplan-Meier (KM) curve comparing the progression-free survival 826 

(PFS) of patients with PD-L1 positive tumor (orange curve, PD-L1 combined positive score 827 
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³10) and patients with PD-L1 negative tumor (green curve, PD-L1 combined positive score 828 

<10). C) KM curve comparing the PFS of patients with a high tumor mutational burden (TMB) 829 

(orange curve, TMB ³10 mutations/Mb) and TMB low patients (green curve, TMB <10). D) KM 830 

curve comparing the PFS of ctDNA-based patient stratification. The predicted CB population 831 

(orange curve) contains patients who had a decrease of ctDNA fraction from BL to OT or 832 

undetected at both timepoints. The predicted non-clinical benefit (N-CB, green curve) 833 

population contains patients where the ctDNA fraction increased from BL to OT or was stable. 834 

Statistics: p = p-value as determined by a Mantel-Haenszel test, HR = hazard ratio, CI = 835 

confidence interval.  836 
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 837 

Figure S1 – clinical characteristics of ICI-treated mUC patients: A) Diagram describing the 838 

different cohorts used in the study. For each cohort, the number of patients with (CB) and 839 

without clinical benefit (N-CB) is annotated. B) KM curve comparing the PFS of the CB and N-840 

CB groups. C) Baseline to on-treatment percentage change in ctDNA levels. Each bar 841 

represents a patient, asterisks represent patients with undetected ctDNA at both timepoints 842 

and dots represent patients with no ctDNA change. Arrows indicate a percentage change 843 
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>100. CB group is annotated (red=CB, blue=N-CB). D) Correlation between the percentage 844 

change of ctDNA fraction and time to progression. Violet dots highlight patients with a 845 

percentage change >100, green dots patients with undetected ctDNA at both timepoints, and 846 

orange dots patients with no ctDNA change. Linear regression analysis was performed to 847 

examine the relationship. The regression line (black), confidence intervals (gray), R² value and 848 

p-value are displayed on the plot. E) Distribution of ctDNA-based patient predictions into PD-849 

L1 CPS (left) and TMB categories (right). Statistics: p = p-value as determined by a Mantel-850 

Haenszel test, HR = hazard ratio, CI = confidence interval. 851 

  852 
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 853 

Figure 2 – blood immunotranscriptome dynamics in CB patients reveal the biological 854 

mode-of-action of early response to ICI: A) Over-representation analysis (ORA) performed 855 

on the up-regulated differentially expressed genes at OT (edgeR fold-change >0) found by 856 
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differential expression analysis (DEA) comparing paired BL to OT samples of CB patients 857 

(longitudinal CB DEA). The top enriched gene ontology biological processes (GO BPs) are 858 

shown (based on an enrichment adjusted p-value ≤0.05), highlighting pathways up-regulated 859 

at OT. B) Largest gene clusters identified by STRING analysis of all DEGs in the longitudinal 860 

CB DEA. Each node represents a gene and each segment an interaction defined by STRING 861 

analysis. C) ORA performed on the genes included in the clusters showed in B). The top GO 862 

BPs are shown (based on an enrichment adjusted p-value ≤0.05, green terms are associated 863 

to cluster 1, orange terms to cluster 2 and violet terms to cluster 3). D) Venn diagram showing 864 

the DEGs intersect between the longitudinal CB DEA (395 DEGs), the DEA comparing paired 865 

BL to OT samples of N-CB patients (longitudinal N-CB DEA, 53 DEGs) and the DEA comparing 866 

CB to N-CB patients at OT timepoint (OT DEA, 551 DEGs). The 49-gene intersect between 867 

the longitudinal CB DEA to the OT DEA is highlighted. E) Boxplot comparing the mean 868 

expression of the 49-gene set highlighted in D) in the N-CB and CB patient group at OT 869 

timepoint. Gene expression is defined for each patient by the mean of the trimmed mean of M 870 

values (TMM) for each gene in the 49-gene set. F) Expression heat map and hierarchical 871 

clustering of the 49-gene set in N-CB and CB patients at OT timepoint. Columns and rows are 872 

hierarchically clustered. Patient group and best overall response (BOR) are annotated per row. 873 

NA = not annotated, CPD = clinical progressive disease, PD = progressive disease, SD = 874 

stable disease, PR = partial response, CR = complete response. Statistics: ** p-value <0.01 875 

by Wilcoxon test.  876 
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 877 

Figure S2 – ICI therapy induces T-cell signaling and cell proliferation in blood: A) 878 

Volcano plot analysis of the RNA sequencing (RNA-seq) data depicting log2 fold change (FC, 879 

based on edgeR, x-axis) versus significance (-log10(p-value), based on edgeR, y-axis) for the 880 
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longitudinal CB DEA. Each dot represents a gene and DEGs are highlighted in red. B) ORA 881 

performed on the up-regulated differentially expressed genes (DEGs) at OT found by the 882 

longitudinal CB DEA. The top enriched pathways are shown (based on an enrichment adjusted 883 

p-value ≤0.05), in this case using the Reactome ontology, highlighting up-regulated pathways 884 

at OT. C) Volcano plot analysis as in figure S2A, where genes belonging to the identified 885 

STRING network clusters are highlighted (green=cluster 1, orange=cluster 2 and violet=cluster 886 

3). D) UpSet plot comparing up- and down-regulated DEGs (based on edgeR FC³0 or <0, 887 

respectively) of the longitudinal CB DEA, the longitudinal N-CB DEA and the OT DEA 888 

(comparing the CB and N-CB group at OT). E) ORA performed on the 49-gene intersect 889 

between the longitudinal CB DEA to the OT DEA. The top enriched GO BPs are shown (based 890 

on an enrichment adjusted p-value ≤0.05). F) Boxplot comparing the mean expression of the 891 

gene STRING clusters 1, 2 and 3 (described in Figure 2B and C) in the N-CB and CB patient 892 

group at OT timepoint. Gene expression is defined for each patient by the mean of the trimmed 893 

mean of M values (TMM) for each gene cluster. G) Expression heat map and hierarchical 894 

clustering of the gene STRING clusters 1, 2 and 3 (described in Figure 2B and C) in the N-CB 895 

and CB patient group at OT timepoint. Columns and rows are hierarchically clustered. Patient 896 

group and best overall response (BOR) are annotated per column. NA = not annotated, CPD 897 

= clinical progressive disease, PD = progressive disease, SD = stable disease, PR = partial 898 

response, CR = complete response. Statistics: ns = not significant by Wilcoxon test. 899 

  900 
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 901 

Figure 3 – Blood-based immunotranscriptome predictive model forecasts CB in an 902 

independent cohort: A) Modelling approach schematic: biomarker discovery was performed 903 

in the discovery cohort (patients with paired BL and OT RNA-seq data, N=29) by DEA. Model 904 
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training was performed in the same cohort by multiple iterations of random features reduction 905 

of the biomarker/gene list, followed by model testing in the independent test cohort (patients 906 

with paired BL and OT RNA-seq data, N=29). The best CB predictive model was selected by 907 

area under the curve (AUC) ranking of each model receiver operating characteristics curve 908 

(ROC) and by ranking the difference in median PFS between the predicted CB and N-CB 909 

groups in the test cohort (N=29). Last, the best performing model was validated in the validation 910 

cohort (patients with paired BL and OT RNA-seq data, N=21). B) Receiver-operating 911 

characteristics (ROC) curve showing model performance of the best performing model in the 912 

independent test cohort (N=29). Specificity is calculated with respect to CB patients (true 913 

negative cases), while sensitivity to N-CB (true positive cases). C) KM curve comparing the 914 

PFS of model-based predicted CB population (red) and predicted N-CB population (blue) in 915 

the independent test cohort (N=29). D) Attention map contextualizing the biology of the 10 916 

genes used to craft the model shown in B) and C) showing in which DEA the genes were 917 

identified. The genes have also been mapped to a selection of significantly enriched pathways 918 

of different ontologies in the longitudinal CB DEA (enrichment adjusted p-value ≤0.05) and to 919 

the STRING network clusters shown in Figure 2B. Genes included in the DEGs of the 920 

longitudinal CB DEA or the OT DEA are highlighted in orange (up-regulated, based on edgeR 921 

FC³0) or in blue (down-regulated, based on edgeR FC<0). Genes associated to enriched 922 

pathways or STRING clusters are highlighted in yellow. E) ROC curve showing model 923 

performance assessment in the independent blinded validation cohort (N=21). Specificity is 924 

calculated with respect to CB patients (true negative cases) and sensitivity to N-CB (true 925 

positive cases). F) KM curve comparing the PFS of RNA model-based predicted CB population 926 

(red) and N-CB population (blue) in the independent blinded validation cohort (N=21). 927 

Statistics: p = p-value as determined by a Mantel-Haenszel test, HR = hazard ratio (predicted 928 

CB population as reference), CI = confidence interval.  929 
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 930 

Figure S3 – The unique 10-gene panel model outperforms other gene signatures: A) 931 

ROC curve showing model performance in the discovery cohort (N=29). Specificity is 932 

calculated with respect to CB patients (true negative cases), while sensitivity to N-CB (true 933 

positive cases). B) KM curve comparing the PFS of model-based predicted CB population (red) 934 

and predicted N-CB population (blue) in the discovery cohort (N=29). C) ROCs showing the 935 
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performance in the independent test cohort of CB predictive models crafted with the 49-gene 936 

intersect and STRING network gene lists. D) Upset plot comparing the DEGs of the longitudinal 937 

CB DEA and the 10-gene panel to relevant literature-based tumor-derived gene signatures 938 

that have been described to be associated with CB to ICI in other studies (21–23). E) ROCs 939 

showing the performance in the independent test cohort of CB predictive models crafted with 940 

literature-based gene lists. Statistics: p = p-value as determined by a Mantel-Haenszel test, 941 

HR = hazard ratio (predicted CB population as reference), CI = confidence interval. 942 

  943 
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 944 

Figure 4 – integration of ctDNA- and RNA-based biomarkers boosts the performance of 945 

a multimodal model in an independent blinded validation cohort: A) Prediction 946 

comparison: patients of the independent test cohort (N=27, where both RNAseq and ctDNA 947 

data were available) were categorized based on the RNA and ctDNA model predictions, 948 

highlighting convergent or divergent readouts by the two approaches. Columns’ color-coding 949 

reflects the actual CB group defined by clinical assessment (red=CB, blue=N-CB). B) Model 950 

performance comparison of the different model approaches (ctDNA model in orange, RNA 951 

model in green, multimodal model in violet) in the independent test cohort (circles, N=27, where 952 

both RNAseq and ctDNA data were available) and blinded validation cohort (triangles, N=19, 953 
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where both RNAseq and ctDNA data were available). C) Hazard Ratio (HR) for PFS of the 954 

three modelling approaches used for patient stratification (ctDNA model in orange, RNA model 955 

in green, multimodal model in violet) in the independent test (circles, N=27, where both 956 

RNAseq and ctDNA data were available) and blinded validation cohorts (triangles, N=19, 957 

where both RNAseq and ctDNA data were available). The bars represent the confidence of 958 

interval for each HR. The dashed line represents a HR=1. D) KM curve comparing the PFS of 959 

the multimodal model-based predicted CB population (red) and N-CB population (blue) in the 960 

independent test cohort (N=27, where both RNAseq and ctDNA data were available) and E) 961 

in an additional blinded and independent validation cohort (N=19, where both RNAseq and 962 

ctDNA data were available). Statistics: p = p-value as determined by a Mantel-Haenszel test, 963 

HR = hazard ratio (predicted CB population as reference), CI = confidence interval. 964 

  965 
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 966 

Figure S4 – optimization of RNA and ctDNA prediction cutoffs: A) Swimmer plot showing 967 

the individual time to progression of patients in the independent test cohort (N=27, where both 968 

RNAseq and ctDNA data were available). Each bar represents a patient. The dashed line 969 

indicates a PFS of 6 months, which has been used as clinical endpoint to define CB and N-970 

CB. Red bars represent patients with predicted CB based on the immunotranscriptome 971 

predictive model (RNA model), while blue bars represent patients with predicted N-CB by the 972 

RNA model. Circles represent the ctDNA-based prediction for each patient, respectively CB 973 

(red circle) or N-CB (blue circle). B) Prediction probability of true negative (TN), false negative 974 

(FN), false positive (FP) and true positive (TP) predictions of the RNA model. The dashed line 975 

represents the prediction probability cutoff used for prediction calling. C) CtDNA ratio of true 976 

negative (TN), false negative (FN), false positive (FP) and true positive (TP) predictions of the 977 

ctDNA model. The dashed line represents the ctDNA ratio cutoff used for prediction calling. 978 

Statistics: ns = not significant, * p-value <0.05, *** p-value <0.001, **** p-value <0.0001 by 979 

Wilcoxon test.  980 
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Tables 981 

Table 1. Baseline patient characteristics 982 

 

Total cohort 

(N=93) 

ctDNA cohort 

(N=88) 

RNAseq cohort (N=79) MMM 

validation 

(N=19) 

discovery 

(N=29) 

test  

(N=29) 

validation 

(N=21) 

Age at baseline (yr), median 

(range) 69 (34-85) 69 (34-89) 67 (39-79) 69 (34-85) 64 (35-81) 66 (25-81) 

Sex, n (%) 

Female 19 (20.4) 19 (21.6) 6 (20.7) 6 (20.7) 5 (23.8) 5 (26.3) 

Male 74 (79.6) 69 (78.4) 23 (79.3) 23 (79.3) 16 (76.2) 14 (73.7) 

Upper tract, N (%) 
      

Yes 14 (15.1) 14 (15.9) 3 (10.3) 5 (17.2) 4 (19.0) 4 (21.1) 

No 74 (79.6) 70 (79.5) 23 (79.3) 22 (75.9) 17 (81.0) 15 (78.9) 

Unknown 5 (5.4) 4 (4.5) 3 (10.3) 2 (6.9) 0 (0) 0 (0) 

Metastatic at diagnosis, N 

(%) 27 (29.0) 25 (28.4) 4 (13.8) 13 (44.8) 7 (33.3) 7 (36.8) 

Immunotherapy, N (%) 
      

Pembrolizumab 72 (77.4) 67 (76.1) 22 (75.9) 23 (79.3) 16 (76.2) 14 (73.7) 

Nivolumab 7 (7.5) 7 (8.0) 7 (24.1) 0 (0) 0 (0) 0 (0) 

Avelumab 14 (15.1) 14 (15.9) 0 (0) 6 (20.7) 5 (23.8) 5 (26.3) 

Systemic treatment before immunotherapy, N (%) 

Gemcitabin/ 

carboplatin 33 (35.5) 31 (35.2) 15 (51.7) 10 (34.5) 8 (38.1) 8 (42.1) 

Gemcitabin/ 

cisplatin 37 (39.8) 35 (39.8) 9 (31.0) 12 (41.4) 6 (28.6) 5 (26.3) 

MVAC, dose dense 3 (3.2) 3 (3.4) 2 (6.9) 1 (3.4) 0 (0) 0 (0) 

Pembrolizumab 2 (2.2) 2 (2.3) 0 (0) 1 (3.4) 1 (4.8) 1 (5.3) 
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None 21 (22.6) 20 (22.7) 4 (13.8) 7 (24.1) 6 (28.6) 6 (31.6) 

Other 5 (5.4) 5 (5.7) 2 (6.9) 1 (3.4) 2 (9.5) 2 (10.5) 

ECOG performance status, N (%) 

0 12 (12.9) 12 (13.6) 3 (10.3) 7 (24.1) 0 (0) 1 (5.3) 

1 58 (62.4) 54 (61.4) 19 (65.5) 16 (55.2) 13 (61.9) 12 (63.2) 

2 16 (17.2) 16 (18.2) 7 (24.1) 5 (17.2) 2 (9.5) 2 (10.5) 

Unknown 7 (7.5) 6 (6.8) 0 (0) 1 (3.4) 5 (23.8) 4 (21.1) 

Presence of visceral 

metastasis at baseline, N (%) 42 (45.2) 38 (43.2) 13 (44.8) 9 (31.0) 13 (61.9) 11 (57.9) 

Presence of liver metastasis 

at baseline, N (%) 19 (20.4) 17 (19.3) 7 (24.1) 5 (17.2) 5 (23.8) 4 (21.1) 

Timing on-treatment blood sample, N (%)A 

2-4 weeks  74 (84.1) 23 (79.3) 20 (69.0) 17 (81.0) 16 (84.2) 

6 weeksB  14 (15.9) 6 (20.7) 9 (31.0) 4 (19.0) 3 (15.8) 

Tumor mutational burden (nonsynonymous mutations/Mb), N (%) 

<10 54 (58.1) 50 (56.8) 17 (58.6) 21 (72.4) 10 (47.6) 8 (42.1) 

≥10 24 (25.8) 24 (27.3) 10 (34.5) 5 (17.2) 6 (28.6) 6 (31.6) 

Unknown 15 (16.1) 14 (15.9) 2 (6.9) 3 (10.3) 5 (23.8) 5 (26.3) 

PD-L1 combined positivity score, N (%) 
     

<10 37 (39.8) 36 (40.9) 14 (48.3) 12 (41.4) 5 (23.8) 5 (26.3) 

≥10 25 (26.9) 22 (25.0) 6 (20.7) 9 (31.0) 9 (42.9) 7 (36.8) 

Unknown 31 (33.3) 30 (34.1) 9 (31.0) 8 (27.6) 7 (33.3) 7 (36.8) 

A For 7/74 patients with matched ctDNA and whole blood RNA, blood samples were obtained at different 

timepoints.  

B In one patient the on-treatment RNA blood sample was collected after 8 weeks. This was before the third 

immunotherapy cycle, which was postponed. This patient is included in the 6 week group. 
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