

Supplemental Figure 1. Expression profile of NK cell markers is highly variable across subpopulations A Representative FACS plots show CyTOF gating strategy for total NK cells. B U-MAPs show mean signal intensity (MSI) and distribution of primary surface and intracellular markers that define key NK cell subsets.

Supplemental Figure 2. NK cell alloreactivity is highly variable, transcends donor differences and is maintained post-transplant. A Representative FACS plots show gating of Ksp37⁺ and CD107a⁺ cells across NKG2A-KIR⁻, NKG2A-KIR⁺, NKG2A⁺KIR⁻, NKG2A⁺KIR⁺ NK cell subsets in unstimulated PBMC only condition and donor cell-stimulated condition. Allo-stimulation with donor cells induce loss of Ksp37 and increase in CD107a. B Subsets were defined by gating on CD56^{dim} NK cells followed by Boolean gating of educating inhibitory receptors, NKG2A, KIR3DL1, KIR3DL2, KIR2DL1 and KIR2DL3. Paired boxplots show change in percent positive of effector molecule at baseline and after 6-hour stimulation with kidney donor cells. C Subsets were further defined by CD57 expression. Boxplot shows percent positive of effector molecule in recipient NK cell subsets in response to 6-hour stimulation with kidney donor cells for which pre- (n=68) and post-transplant cells were available (n=34). Wilcoxon *p* values were adjusted for multiple testing with Bonferroni correction. ***p* < 0.001, *****p* < 0.0001

Supplemental Figure 3. NKG2A-educated and KIR-educated NK cells have stronger responses to allo-donor cells than noneducated NKG2A- and KIR- NK cells and respond to missing-self. A Schematic of KIR⁺ NK cells educated by Bw4, C1, and C1 presented on class I HLA. KIR3DL2⁺ are not educated due to lack of A3 and A11 KIR ligands. **B** NK cell subsets were defined by gating on CD56d^{im} NK cells followed by Boolean gating on educating inhibitory receptors, NKG2A, KIR3DL1, KIR3DL2, KIR2DL1 and KIR2DL3. Boxplot shows percent CD107a⁺ in pre-transplant NK cell subsets of recipients educated by Bw4, C1 and C2 KIR ligands (n=24) after stimulation with kidney donor cells. **C** Bw4 loss was defined as lower Bw4 copy number in transplant donor compared to recipient. No loss of Bw4 was defined as equal or greater copy number of Bw4 on HLA-A/B alleles in donor compared to recipient or recipient was *KIR3DL1^{-/-}*. Boxplots show change of percent effector molecules in KIR3DL1⁺ NK cells of recipients with loss (n=17) and no loss (n=48) of Bw4. *P* values reflect Wilcoxon test with Bonferroni correction.

Supplemental Figure 4. NK cell alloreactivity was abrogated by blockade of activating receptors. A Activation of NKG2D⁺DNAM-1⁺ NK cells in healthy subjects with and without blockade of NKG2D and DNAM-1. B Expression of DNAM-1 and NKG2D in healthy and CTOT01 NK cells. *P* value reflects Wilcoxon test with Bonferroni correction.

	1 year		2 year		5 Year	
		D	A diverte d D vel	D	Adjusted P	D
	Adjusted P val	ĸ	Adjusted P val	ĸ	val	ĸ
CD56dim	0.2546874	-0.2858489	1.0000000	-0.2165124	1	-0.0662254
CD56bright	1.0000000	0.2049105	1.0000000	0.1108497	1	0.0737740
KIR2DL1	1.0000000	-0.0509638	1.0000000	0.0589167	1	-0.0620869
KIR2DL3	1.0000000	-0.0069684	1.0000000	-0.0678343	1	-0.2609511
KIR3DL1	1.0000000	-0.1346598	1.0000000	-0.1760193	1	-0.0279603
KIR3DL1/L2	1.0000000	-0.0674032	1.0000000	-0.0147584	1	0.0081007
KIR2DL2/L3	1.0000000	-0.0457575	1.0000000	-0.0612891	1	-0.1859810
KIR2DL1/S1	1.0000000	-0.1679366	1.0000000	-0.0306480	1	0.1546353
IFNg	1.0000000	0.0550752	1.0000000	0.0934975	1	0.1240174
CD107a	0.2060103	0.2929950	0.5167011	0.2751565	1	0.1530107
Perforin	1.0000000	-0.1323662	1.0000000	0.0142795	1	0.1055885
Granzyme B	1.0000000	-0.1740611	1.0000000	-0.0613664	1	-0.0945328
Ksp37	1.0000000	0.1195967	1.0000000	0.0665379	1	-0.0450896
CD137	0.8279496	0.2424593	0.6026528	0.2690590	1	0.2042181
XCL1	0.4640281	0.2646128	1.0000000	0.1949798	1	0.1552410
CD25	1.0000000	0.0827615	1.0000000	0.1038435	1	0.1499942
LILRB1	1.0000000	-0.1356012	1.0000000	-0.1346216	1	-0.0017556
CD57	0.8072443	-0.2434668	1.0000000	-0.0450445	1	0.0556810
NKG2D	0.4291310	0.2674726	0.1431576	0.3215987	1	0.0996035
DNAM-1	1.0000000	0.1088204	1.0000000	0.1860821	1	-0.0032933
PLZF	0.5127462	0.2609178	0.5481981	0.2728271	1	0.1881770
TCF1-7	1.0000000	-0.0367976	1.0000000	-0.0443707	1	0.0816820
TIM-3	1.0000000	0.0408448	1.0000000	0.1656032	1	0.0960319
TIGIT	1.0000000	-0.1416303	1.0000000	-0.0471749	1	0.0322175
NKp46	1.0000000	-0.1169255	1.0000000	-0.0362309	1	0.0624468
NKG2A	1.0000000	0.1219388	1.0000000	0.0559600	1	0.1267347
Ki-67	0.4064993	0.2694374	0.5940981	0.2696311	1	0.0667811
CD27	1.0000000	0.2245498	1.0000000	0.2445340	1	0.2369151
CXCR3	0.3808516	0.2717828	1.0000000	0.2247517	1	-0.0254742
NKG2C	1.0000000	-0.0191608	1.0000000	0.0460293	1	0.1284774
FceR1g	1.0000000	0.1058017	1.0000000	0.0574559	1	0.0628619
Granzyme K	1.0000000	-0.0038365	1.0000000	0.0829012	1	0.0657245
CD122	1.0000000	0.0367720	1.0000000	0.1684389	1	-0.0336520
тох	1.0000000	-0.1260139	1.0000000	-0.0570490	1	0.0643918
CD16	1.0000000	-0.1590597	1.0000000	-0.1042505	1	-0.0051008

Supplemental Figure 5. NK cell markers do not correlate with eGFR. Percent size of NK cell subset expressing surface and intracellular markers was determined by manual gating. Bubble plot and table show correlations between percent of marker in total NK cells and eGFR at 1-year (n=52), 2-years (n=47), and 5-years (n=40) in CTOT01. *P* values reflect Pearson correlation with Bonferroni correction for multiple comparisons.

Supplemental Figure 6. NK subset abundance does not correlate with eGFR. A Heatmap shows median expression of CyTOF antibodies defining NK cell subsets defined by hierarchical clustering. Adjacent bubble plot shows correlations between NK cell subset size and eGFR at 1-year (n=52), 2-years (n=47), and 5-years (n=40) in CTOT01. Nominal *p* values reflect Pearson correlation. No correlations were significant after corrections for multiple comparisons. **B** Kaplan Meier plot shows time to graft failure in subset of non-rejecting recipients from GSE21374 with either high (n=7) or low (n=199) expression of *IFNG*. **C** Kaplan Meier plot shows time to graft failure in subset of non-rejecting recipients from GSE21374 with either high (n=164) or low (n=42) expression of *LAMP1*. High and low expression of *IFNG* and *LAMP1* were determined by StepMiner, as previously reported.(43) **D** Forest plot of cox regression model for the effect of *FGFBP2* and *IFNG* on time to graft failure in non-rejecting recipients from GSE21374 (n=206). **E** Forest plot of cox regression model for the effect of *FGFBP2* and *LAMP1* on time to graft failure in non-rejecting recipients from GSE21374 (n=206). *P* values in **B-C** were computed by Log-rank test.

Supplemental Figure 6

Variable	Estimate	P Value				
CTOT01						
eGFR at 1 year (regression model 1)						
Intercept	75.974	3.25E-07				
%Ksp37+	-3.831	0.0516				
Recipient Age	-0.362	0.0246				
Donor Age	-0.352	0.1060				
Donor Sex [Male]	11.779	0.0189				
Living Transplant	22.581	0.0001				
eGFR at 1 year (regression	model 2)					
Intercept	73.716	4.91E-11				
%Ksp37+	-4.551	0.0614				
Thymoglobulin	-5.387	0.3851				
HLA-A/B/DR mismatch	-1.070	0.5624				
Rejection	-3.583	0.6616				
Recipient Sex [Male]	2.783	0.6564				
eGFR at 2 years (regression	n model 1)					
Intercept	58.601	2.12E-07				
%Ksp37+	-6.239	0.0028				
Recipient Age	-0.349	0.0511				
Donor Sex [Male]	17.233	0.0036				
Living Transplant	25.746	2.77E-05				
eGFR at 2 years (regressio	n model 2)					
Intercept	94.471	3.20E-09				
%Ksp37+	-5.994	0.0190				
Thymoglobulin	-0.831	0.9036				
HLA-A/B/DR mismatch	-2.119	0.3404				
Rejection	-0.757	0.9257				
Donor Age	-0.441	0.1699				
eGFR at 5 years (regression model 1)						
Intercept	73.130	4.14E-05				
%Ksp37+	-6.900	0.0409				
Thymoglobulin	-13.954	0.1210				
HLA-A/B/DR mismatch	-2.063	0.4740				
Rejection	1.856	0.8622				
Living Transplant	1.709	0.8696				
eGFR at 5 years (regression model 2)						
Intercept	74.469	0.0047				
%Ksp37+	-8.227	0.0254				
Recipient Age	0.078	0.8005				
Donor Age	-0.466	0.3087				
Recipient Sex [Male]	-4.934	0.5828				
Donor Sex [Male]	8.096	0.3760				

Supplemental Table 1. Multivariate regression models of eGFR for CTOT01

Supplemental Table 2. Multivariate regression models of eGFR for CTOT19

Variable	Estimate	P Value					
CTOT19	201111010						
eGER at 6 months (regressi	on model 1)						
	1 014	9.17 - 10					
	-1.314	0.8951					
%Ksp37+ -1.930 0.0261							
eGFR at 6 months (regression model 2)							
Intercept	64.750	3.01E-08					
HLA-A/B/C mismatch	-2.969	0.1214					
%Ksp37+	-1.682	0.0423					
eGFR at 6 months (regressi	on model 3)						
Intercept	57.435	4.40E-09					
Rejection	-7.841	0.6460					
%Ksp37+	-2.338	0.0205					
eGFR at 6 months (regressi	on model 4)						
Intercept	64 530	0.0020					
Recipient Age	-0 194	0.6159					
%Kep37+	1 760	0.0100					
ARSP37 +	-1.700	0.0349					
eGFR at 6 months (regressi		4 405 00					
Intercept	02.191	1.40E-00					
Donor Age	-0.215	0.4226					
%Ksp37+	-1.760	0.0990					
eGFR at 6 months (regressi	on model 6)						
Intercept	53.059	1.47E-06					
Recipient Sex [Male]	3.516	0.7116					
%Ksp37+	-1.959	0.0245					
eGFR at 6 months (regressi	on model 7)						
Intercept	53.658	8.70E-07					
Donor Sex [Male]	2.871	0.7719					
%Ksp37+	-1 785	0 0710					
eGFR at 2 years (regression	model 1)						
	65 577	1 28E-09					
Delayed Graft Eurotion	4 548	0 7032					
	-4.540	0.7032					
	-2.073	0.0437					
eGFR at 2 years (regression		0.045.07					
Intercept	72.581	2.04E-07					
HLA-A/B/C mismatch	-2.351	0.3147					
%Ksp37+	-1.869	0.0663					
eGFR at 2 years (regression	n model 3)						
Intercept	65.271	1.34E-08					
Rejection	-8.866	0.6115					
%Ksp37+	-2.277	0.0574					
eGFR at 2 years (regression	n model 4)						
Intercept	75.704	0.0025					
Recipient Age	-0 239	0.6063					
%Kep37+	1 959	0.0000					
CED at 2 years (regression	-1.000	0.0004					
eGFR at 2 years (regression		4 555 07					
Intercept	10.230	4.000-0/					
Donor Age	-0.442	0.1632					
%Ksp37+	-1.325	0.2245					
eGFR at 2 years (regressior	n model 6)						
Intercept	56.236	6.33E-06					
Recipient Sex [Male]	11.900	0.2918					
%Ksp37+	-2.172	0.0325					
eGFR at 2 years (regression	n model 7)						
Intercept	67.329	4.31E-07					
Donor Sex [Male]	-4.511	0.7042					
%Ksn37+	-2 285	0.0550					
////	2.200	0.0000					

Supplemental Table 3. CyTOF and flow cytometry antibodies

Metal	Antigen	Vendor	Catalog #
	00.45	CyTOF Panel	0000000
89Y		Standard Biol ools	3089003B
11100		BioLegend	333702
11200	CD8	BioLegend	301002
11300	CD38	Militenyi	130-122-307
114Cd	CD3	BioLegend	300402
115In	CD14	BioLegend	301802 & 301843
115In	CD19	BioLegend	302202
115In	CD33	BioLegend	303402
116Cd	CD57	BioLegend	359602
141Pr	TCRvd2	BioLegend	331402
142Nd	CCL4	Miltenyi	130-095-212
143Nd	XCL1	R&D Sys	AF695
144Nd	Ksp37	BioLegend	custom
145Nd	NKG2D	Miltenyi	130-122-332
146Nd	DNAM-1	Miltenyi	130-092-479 & 130-126-485
147Sm	PLZF	R&D Sys	MAB2944
148Nd	KIR3DL1/L2	Miltenyi	130-126-489
149Sm	CD25	Standard BioTools	3149010B
150Nd	TCF-1/7	BioLegend	655202
151Eu	CCL5	R&D Švs	MAB278-100
152Sm	KIR3DL1	Miltenvi	130-092-555
153Eu	TIM-3	Standard BioTools	3153008B
154Sm	TIGIT	Standard BioTools	3154016B
155Gd	NKn46	Miltenvi	130-124-522
156Gd		Miltenvi	130-122-346
15000		Miltonvi	120 122 270
15000		Miltopyi	130-122-219
10004		Milterryi	130-100-010
			130-122-329
161Dy	KI-67	Standard Bio Loois	3161007B
162Dy	CD27	Standard Bio Lools	3162009B
163Dy	CXCR3	Standard BioTools	3163004B
164Dy	NKG2C	Miltenyi	130-122-278
165Ho	KIR2DL3	Miltenyi	130-122-280
166Er	KIR2DL1/S1	Miltenyi	130-122-345
167Er	FceR1g	EMD millipore	06-727
168Er	IFNg	Standard BioTools	3168005B
169Tm	Granzyme K	BioLegend	370502
170Er	CD122	Standard BioTools	3170004B
171Yb	Granzyme B	Standard BioTools	3171002B
172Yb	CD107a	Miltenyi	130-124-536
173Yb	CD137	Standard BioTools	3173015B
174Yb	тох	Miltenyi	custom
175Lu	Perforin	Standard BioTools	3175004B
176Yb	CD4	Standard BioTools	3176010B
198Pt	HLA-DR	Miltenvi	130-122-299
209Bi	CD16	Standard BioTools	3209002B
	Flow cytometry	panel for profiling stimulator	cell ligands
	HI A-A/B/C	Biol egend	311418
	MICA/B	BioLegend	320912
Panel 1	CD86	Biolegend	374214
	HI A-F	Biol egend	373208
	CD112	Miltenvi	130-122-770
	CD80	Biol egend	305225
	HIA-G	Biol egend	335912
Panel 2		R&D Systems	FAB1380A
	CD54	Biol egend	353117
		BD Biosciences	747594
	CD155	Biol pagend	337634
		Biol egend	342604
Danel 3		Biol econd	320736
i and s		DIOLEGENU DED Sustama	
		Rad Systems	FAD 12900 330019
Viability		Biol ogond	423105
viability			423103
		Danei for NK Cell Softing and K	
	CD56	Biol econd	362550
	0000	DioLegend DioLegend	30233U
		BIOLEGENO	31/340
	NKGZA	Miltery	130-128-163
	NKG2C	Miltery	130-117-398
	KIR3DL1/L2	Miltenyi	130-116-180
	KIR2D	Miltenyi	130-117-483
	CD107a	Miltenyi	130-111-624
	Ksp37	BioLegend	346603
	Zombie NIR	BioLegend	423106
	Propidium iodide	Life Technologies	P3566