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Fig.S1: Transcriptional response is distinct to M. haemophilum and M. abscessus stimulation in both HC and 

Mh-infected patients. A) Principal component analysis (PCA) expression of transcriptional profiles from Saline treated 

(green ellipse) , M. abscessus (yellow ellipse) and  M. haemophilum (red ellipse) stimulation of whole blood in HC and 

MH-infected individuals; B) overlap of DEGs between M. haemophilum and M. abscessus as compared to respective 

saline treatment in HCs; and C) Mh-infected individuals; D) Top enriched pathways from up and downregulated genes 

from Hallmark (H) and Reactome (R). Negative log10 p-value is reported of p < 0.05, E) Top predicted transcription factors 

(TF) regulating both up and downregulated genes; F) The summed z-pathway score of the top up and downregulated 

pathway is shown. Each dot represents an individual. Two-way ANOVA with Sidak’s multiple correction was used and 

p<0.05 is reported. *p < 0.05. G) Heatmap of 23 genes commonly regulated genes, showing distinct transcriptional 

profiles with M. haemophilum and M. abscessus treatment; H) Enriched Reactome pathways for the 23 genes in (G); J) 

A summary of major findings and themes of the study. 

  

 



 

Fig. S2 Gene identification process outline. A) Identification process for genes significantly upregulated by M. 

haemophilum treatment. Paired DESeq results are overlapped, identifying genes upregulated only by M. haemophilum 

relative to saline in white blood cells from both healthy and M. haemophilum-infected individuals. These genes are then 

intersected to identify (i) 87 genes upregulated only by M. haemophilum, only in healthy individuals, (ii) 23 genes 

upregulated only by M. haemophilum, in both healthy and M. haemophilum-infected individuals, and (iii) 17 genes 

upregulated only by M. haemophilum, only in M. haemophilum-infected individuals; B) Identification process for genes 

significantly downregulated by M. haemophilum treatment. Paired DESeq results are overlapped, identifying genes 

downregulated only by M. haemophilum relative to saline in white blood cells from both healthy and M. haemophilum-

infected individuals. These genes are then intersected to identify (i) 224 genes downregulated only by M. haemophilum, 

only in healthy individuals, (ii) 333 genes downregulated only by M. haemophilum, in both healthy and M. haemophilum-



infected individuals, and (iii) 71 genes downregulated only by M. haemophilum, only in M. haemophilum-infected 

individuals.  

 

 

 



 

Fig.S3. TLR transcript levels in response to M. abscessus and M. haemophilum stimulation in HC and Mh-

infected patients. Fragments Per Kilobase of transcript per Million mapped reads is shown as Transcripts per million. 

One Way ANOVA with Tukey’s multiple comparison test was applied. P < 0.05 was considered significant. *p<0.05; ** 

p<0.01, *** p < 0.001. 

 

Detailed Supplementary methods for Omics: 

Exome Sequencing and data processing: Exome capture was performed using IDT Exome Capture Hybridization kit 

(xGen Lockdown Exome Panel V1).  Exonic DNA was then sequenced for 300 cycles on an Illumina NovaSeq 6000 

sequencer using S4 flowcells across 4 germline samples from four Mh-infected individuals and four HCs to an estimated 

coverage of 50x. Sequence read alignments were performed using bwa (1) against the human reference genome 

(GRCh38/hg38, version GRCh38DH), and variants were called using the Genome Analysis ToolKit (GATK) HaplotypeCaller 

(2). Results were annotated using Ensembl's Variant Effect Predictor (VEP)(3), with synonymous SNPs defined to include 

"synonymous variant", "intron variant", "5 prime UTR variant", "3 prime UTR variant", "downstream gene variant", "upstream 

gene variant", "stop retained variant" and "non coding transcript exon variant", and nonsynonymous SNPs were defined to 

include "missense variant", "frameshift variant", "stop gained", "inframe insertion", "inframe deletion", "stop lost" and "start 

lost". Additional annotations included (i) allele frequencies across the 125,748 exome sequences in the Genome 

Aggregation Database (gnomAD) v2 database (4), (ii) loss-of-function intolerance scoring using LoFtool (5), and (iii) 



ensemble pathogenicity scoring spanning several algorithms and databases, using REVEL(6). The proportion of shared 

SNPs was calculated by dividing the number of shared SNPs between two samples and dividing by the smaller total number 

of high-impact SNPs between the two samples. 

RNA-sequencing of ex situ stimulated donors blood cells: Cells from whole blood stimulation assay were 

cryopreserved. The cryopreserved cells were thawed and subjected to RNA preparation. RNA obtained were subjected to 

for bulk sequencing. 

RNA-seq processing and analysis: Total RNA integrity was determined using Agilent Bioanalyzer or 4200 Tapestation. 

Library preparation was performed with 10ng of total RNA with a Bioanalyzer RIN score greater than 8.0. ds-cDNA was 

prepared using the SMARTer Ultra Low RNA kit for Illumina Sequencing (Takara-Clontech) per manufacturer's protocol. 

cDNA was fragmented using a Covaris E220 sonicator using peak incident power 18, duty factor 20%, cycles per burst 50 

for 120 seconds. cDNA was blunt ended, had an A base added to the 3' ends, and then had Illumina sequencing adapters 

ligated to the ends. Ligated fragments were then amplified for 12-15 cycles using primers incorporating unique dual index 

tags. Fragments were sequenced on an Illumina NovaSeq-6000 using paired end reads extending 150 bases. 

After adapter trimming using Trimmomatic v0.39 (7), sequenced RNA-seq reads were aligned to the human genome 

(GRCm38, Ensembl release 104(8)) using the STAR aligner v2.7.5b (9) (2-pass mode, basic). All raw RNA-Seq fastq files 



are being uploaded with controlled access to European-Genome Phenome Archive. Read fragments (read pairs or single 

reads) were quantified per gene per sample using featureCounts v1.5.1(10).  

Significantly differentially expressed genes between sample sets were identified using DESeq2 v1.4.5)(11) with 

default settings, and a minimum P value significance threshold of 0.05 (after False Discovery Rate [FDR(12)] correction for 

the number of tests). Principal components analysis also was calculated using DESeq2 output (default settings, using the 

top 500 most variable genes). FPKM (fragments per kilobase of gene length per million reads mapped) normalization was 

performed using DESeq2-normalized read counts. Z-scores of log FPKM values visualized in the heatmaps were calculated 

per gene and visualized using Microsoft Excel. All fragment counts, FPKM expression values, and differential expression 

statistics for all genes, samples and comparisons are provided in Table S1. 

Pathway enrichment analysis among differentially expressed gene sets of interest was performed for Reactome (13) 

pathways using the WebGestalt (14) web server (p ≤ 0.01 after FDR correction, minimum 3 genes per term), using a 

background of all protein coding genes. Pathway enrichment was extended using enrichment analysis tool Enrichr (15-17), 

using the default setting, available at: http://amp.pharm.mssm.edu/Enrichr. The transcription factor enrichment was carried 

out using Enrichr (15-17), and three different outputs including ones from “TRANSFAC and JASPAR PWMs”, “Transcription 

PPI”, “TF perturbations followed by Expression” compiled and reported. All considered pathways and TF were significant (p 

< 0.05).  
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