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Introduction
Interindividual responses to a nutritional challenge have been important to specifying heterogeneity in 
metabolism relevant to health (1). Many human studies have employed prolonged fasting, caloric restric-
tion (2–5), or shorter- versus longer-term responses to macronutrient feeding (6–10) to start to discern 
potential contributors to this metabolic heterogeneity (human genetics, resting metabolic rate, substrate 
oxidation, thermogenesis; refs. 3, 11–13). This work builds on the long history of  those and many other 
studies that have contributed to the understanding of  the physiologic, endocrine, and metabolic responses 
to these interventions (reviewed in refs. 14, 15). Despite all the previous work in this area, in-depth studies 
of  how an individual’s metabolism responds to dietary challenge remain difficult, challenged by adherence 
to prescribed caloric and macronutrient content during free living, variability in other measures of  metab-
olism during dietary challenge (e.g., activity, weight, sleep), and lack of  accurate and complete measures 
(over 24 hours versus just resting) of  substrate oxidation preference and energy expenditure (EE) traits, 
which are variable across individuals (3, 16, 17). Akin to studies in model systems, whole-room indirect cal-
orimetry in humans has emerged in response to these limitations, allowing precise control over nutrition, 

Human studies linking metabolism with organism-wide physiologic function have been challenged 
by confounding, adherence, and precision. Here, we united physiologic and molecular phenotypes 
of metabolism during controlled dietary intervention to understand integrated metabolic-
physiologic responses to nutrition. In an inpatient study of individuals who underwent serial 
24-hour metabolic chamber experiments (indirect calorimetry) and metabolite profiling, we 
mapped a human metabolome onto substrate oxidation rates and energy expenditure across 
up to 7 dietary conditions (energy balance, fasting, multiple 200% caloric excess overfeeding of 
varying fat, protein, and carbohydrate composition). Diets exhibiting greater fat oxidation (e.g., 
fasting, high-fat) were associated with changes in metabolites within pathways of mitochondrial 
β-oxidation, ketogenesis, adipose tissue fatty acid liberation, and/or multiple anapleurotic 
substrates for tricarboxylic acid cycle flux, with inverse associations for diets with greater 
carbohydrate availability. Changes in each of these metabolite classes were strongly related to 24-
hour respiratory quotient (RQ) and substrate oxidation rates (e.g., acylcarnitines related to lower 
24-hour RQ and higher 24-hour lipid oxidation), underscoring links between substrate availability, 
physiology, and metabolism in humans. Physiologic responses to diet determined by gold-standard 
human metabolic chambers are strongly coordinated with biologically consistent, interconnected 
metabolic pathways encoded in the metabolome.
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confounding (activity, sleep), and weight to assess key physiologic responses to nutrition (13, 18). Never-
theless, human chamber studies are time and cost intensive and have traditionally not measured molecular 
metabolic states in humans across different dietary exposures, critical to understanding the complex inter-
play between diet and human metabolism.

Here, we address this gap in a longitudinal, approximately 40-day inpatient crossover study including 97 
unique participants during which participants were fed highly controlled weight-maintaining diets (WMDs) and 
had 7 monitored, 24-hour diets with different macronutrient composition in a whole-room indirect calorimeter. 
Our effort was aimed at building a set of reference data in a highly controlled setting to study the effect of dietary 
intervention on heterogeneity in metabolism. We addressed this aim by mapping molecular changes in a circu-
lating metabolome onto gold-standard substrate oxidation and EE traits (defined by precise minute-by-minute 
measures over 24-hour). Our modeling approach took advantage of the unique crossover study design to provide 
insight into coordinated metabolic-physiologic responses within an individual, linking excursions in metabolites 
to macronutrient processing via 24-hour EE and oxidation profiles for lipid, carbohydrate, and protein. Our goal 
was to provide human data in the largest-to-date investigation of metabolite profiling, to our knowledge, during 
dietary challenge in human metabolic chambers to link substrate availability, oxidation, EE, and metabolism.

Results
Study design and participant physiologic characterization. Figure 1 shows our experimental design. Nutritional 
interventions (with macronutrient composition in Figure 1 and Supplemental Table 1; supplemental mate-
rial available online with this article; https://doi.org/10.1172/jci.insight.184279DS1) included an “energy 
balance” chamber (to determine an individual’s caloric needs at balanced intake = expenditure), fasting, 
and serial diets with differing macronutrient composition with 200% caloric excess relative to energy bal-
ance. The 200% caloric excess was used as a physiologic probe to elicit phenotypes defined by 24-hour 
EE and 24-hour substrate oxidation rate (13). Dietary intervention chambers after energy balance were 
performed in random order with an intervening 3-day washout period, during which participants remained 
domiciled and consumed a WMD. We used indirect calorimetry during chambers to quantify 24-hour EE 
and substrate oxidation preferences (24-hour respiratory quotient [RQ], lipid, carbohydrate, and protein 
oxidation rate), as described (13). This design allowed efficient, precise control over confounding (e.g., 
activity level, sleep, diurnal effects, weight) to quantify phenotypes that capture interindividual heterogene-
ity in metabolism.

The characteristics of our study group are shown in Table 1. Overall, our population was middle aged 
(median age, 38 years; 20% female), with a mildly elevated BMI (median BMI, 26 kg/m2). Of the 97 participants 
in our study, 49 participants completed all 7 dietary chambers, and 28 completed 6 chambers (Supplemental Fig-
ure 1). High carbohydrate overfeeding induced greatest increase in 24-hour EE. Substrate oxidation rate changes 
were generally consistent with the availability of macronutrients (Figure 2); for example, we observed a shift 
toward fat oxidation (in lieu of carbohydrate) as quantified by lipid oxidation (LIPOX) rates and a fall in 24-hour 
RQ in fasting and high-fat diets (with the converse in diets with greater carbohydrate content).

Shifts in the circulating metabolome reflect molecular pathways of  substrate oxidation during different nutritional 
exposures. We identified substantial shifts in the assayed circulating metabolome across different 24-hour 
chambers, broadly consistent with putative effects of  macronutrient composition in each dietary prescription 
(Figure 3, A and B; full results in Supplemental Figure 2 and Supplemental Table 3). The 24-hour fasting 
condition elicited the most distinct metabolic pattern consistent with known physiology of  early starvation, 
including (a) increases in mitochondrial β-oxidation (increased even medium to long-chain acylcarnitines, 
pantothenic acid), (b) increased ketogenesis (e.g., C4:0-OH carnitine, a ketone body; ref. 9), (c) increased 
fatty acid availability (e.g., derived from phospholipid metabolism [phosphatidylcholine/phosphatidyleth-
anolamines (PC/PEs)] to diacylglycerols and sphingomyelins; refs. 19, 20), and (d) generalized decrease 
in multiple anapleurotic amino acid substrates for TCA cycle flux (e.g., alanine, glycine, threonine, trypto-
phan, proline, tyrosine) (21). Fasting was associated with increased β-oxidation, demonstrated by the largest 
increase in C2:0 carnitine (a product of  acetyl-CoA; ref. 22) and C4:0-OH carnitine (a ketone body present 
during acetyl-CoA excess; ref. 23) of  any prescribed diet. In addition, we observed a global decrease — not 
an increase — in lysophosphatidylcholines (LPCs) and lysophosphatidylethanolamines (LPEs) during the 
24-hour fast (another byproduct of  PC catabolism), consistent with relations of  increased LPCs to decreased 
fatty acid oxidation (24) and broad proinflammatory phenotypes (25). Finally, we observed a decrease in 
many glucogenic amino acids, consistent with increased liver gluconeogenesis (26) or decreased intake, 
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except for branched-chain amino acids (BCAAs; leucine, isoleucine, valine). The increases in circulating 
BCAA are consistent with inhibition of  their breakdown during increased fatty acid oxidation (via NADH 
availability) or potentially decreased availability of  reaction substrates for BCAA catabolism provided 
through glycolytic flux (26). Indeed, the lower C3:0 carnitines during fasting — a molecule that is liberated 
during BCAA catabolism (22, 27) — supports decreased BCAA breakdown in favor of  lipid metabolism.

Across all dietary chambers, we observed a generally diverse pattern of  metabolite changes, most 
prominently in amino acids, glycerophospholipids, and fatty acyls (Figure 3B). Of  note, there was consis-
tency in dietary metabolite responses by 24-hour RQ that reflected substrate preference during a chamber 
(Figure 3C); diets associated with a generally lower 24-hour RQ (consistent with increased fat oxidation) 
exhibited increases in fatty acids (specifically acylcarnitine species) and decreases in glycerophospholip-
ids (predominantly PCs and their precursor PEs or catabolic byproducts LPCs/LPEs; ref. 28). Patterns 
of  metabolite excursions (not necessarily overall fold change magnitude) were similar across diets with 
similar macronutrient composition, energy intake, or substrate oxidation preferences; metabolic patterns 
during fasting were correlated directly to energy balance (a lower caloric intake than other chambers, ρ = 
0.67) and high fat (similar preference for LIPOX, ρ = 0.34). On the other hand, the relation in metabolic 
patterns between fasting and diets with greater carbohydrate availability were inverse (high-carbohydrate, 
ρ = –0.29; balanced overfeeding, ρ = –0.43; Supplemental Figure 3, A and B; full correlation plots in Sup-
plemental Figure 4). High-protein and high-fat diets exhibited concordance, likely owing to a similar fat 
macronutrient composition (20% versus 30%, respectively). Given the random order, crossover design of  
chambers after energy balance across the study, the consistent mapping of  metabolic responses to physio-
logic adaptation phenotypes, and consistent results in mixed modeling results (accounting for carry-over 
design, Supplemental Figure 5 and Supplemental Table 4) increased our confidence in absence of  a bias 
by carry-forward effects of  metabolites across chambers. Of  note, the low protein chamber exhibited the 
least concordance in pattern across chambers (Figure 3C). Metabolic changes within the low protein 
chamber included a generalized decrease in most nonessential amino acids (Supplemental Figure 6), 
except alanine, glutamine, and glycine, some of  which was consistent with free-living studies of  a low-pro-
tein diet (29). In addition to metabolites that denote substrate utilization, we observed dynamicity in sev-
eral metabolites of  more general clinical interest. For example, dimethylguanidinovaleric acid [DMGV] 

Figure 1. Experimental design. Study scheme, detailing inpatient clinical research protocol and study aims.
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Table 1. Cohort characteristics

Characteristic n Value
Age 97 38 (28, 45)
Male 97 78 (80%)
Race/ethnicity 97  

African/Black 21 (22%)
Caucasian/White 31 (32%)
Hispanic 15 (15%)
Indian/Native American 30 (31%)

Height (cm) 97 173 (168, 178)
Waist circumference (inches) 97 36.0 (33.0, 39.0)
Body weight at the initial DXA (kg) 97 80 (70, 88)
BMI (kg/m2) 97 26.1 (24.3, 28.2)
Percentage body fat (%) 97 28 (23, 35)
Fat mass by DXA (kg) 97 22 (16, 29)
Fat free mass by DXA (kg) 97 57 (52, 63)
Fasting glucose (mg/dL) 97 91.5 (87.0, 95.0)
Fasting insulin concentration (IU/L) 97 7.0 (5.0, 10.0)
HOMA-IR 97 1.56 (1.11, 2.27)
Total cholesterol (mg/dL) 97 171 (144, 198)
High-density lipoprotein (mg/dL) 96 53 (47, 63)
Triglycerides (mg/dL) 97 70 (50, 114)
Creatinine (mg/dL) 97 1.00 (0.80, 1.10)
24-hour energy expenditure (kcal/day)  

Energy balance 94 2,016 (1,816, 2,252)
Balanced overfeeding 78 2,240 (2,012, 2,462)
High-carbohydrate 81 2,301 (2,082, 2,554)
High-fat 78 2,130 (1,926, 2,365)
24-hour fasting 88 1,864 (1,670, 2,019)
High-protein 63 2,269 (2,052, 2,490)
Low-protein 76 2,125 (1,873, 2,291)

24-hour respiratory quotient  
Energy balance 94 0.86 (0.84, 0.88)
Balanced overfeeding 78 0.88 (0.87, 0.91)
High-carbohydrate 81 0.93 (0.90, 0.95)
High-fat 78 0.83 (0.80, 0.85)
24-hour fasting 88 0.781 (0.767, 0.802)
High-protein 63 0.85 (0.83, 0.87)
Low-protein 76 0.91 (0.88, 0.94)

24-hour protein oxidation (kcal/day)  
Energy balance 92 376 (319, 432)
Balanced overfeeding 76 462 (391, 575)
High-carbohydrate 80 462 (392, 542)
High-fat 78 487 (403, 558)
24-hour fasting 88 287 (240, 317)
High-protein 62 595 (472, 726)
Low-protein 75 227 (190, 259)

24-hour lipid oxidation (kcal/day)  
Energy balance 92 651 (469, 870)
Balanced overfeeding 76 478 (255, 699)
High-carbohydrate 80 171 (-26, 371)
High-fat 78 816 (692, 1,102)
24-hour fasting 88 1,117 (933, 1,311)
High-protein 62 648 (490, 887)
Low-protein 75 473 (196, 722)

24-hour carbohydrate oxidation (kcal/day)  
Energy balance 92 893 (804, 1,094)
Balanced overfeeding 76 1,207 (1,040, 1,420)
High-carbohydrate 80 1,660 (1,347, 1,833)
High-fat 78 750 (576, 918)
24-hour fasting 88 404 (293, 552)
High-protein 62 933 (707, 1,085)
Low-protein 75 1,344 (1,095, 1,615)

	DXA, dual x-ray absorptiometry; HOMA-IR, Homeostatic Model Assessment for Insulin Resistance.
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(30–32) — implicated in hepatic steatosis and metabolic phenotypes in humans — was increased during 
high-carbohydrate feeding and decreased on fasting, consistent with observational studies linking DMGV 
levels to sugary beverage consumption (31). Moreover, several specific microbial products (e.g., trimethyl-
amine N-oxide, indole derivatives, hippuric acid; refs. 33–37) potentially implicated in metabolic disease 

Figure 2. Heterogeneity in metabolic responses to dietary perturbation. Here, we present changes in 5 metabolic parameters (rows) from all dietary 
chambers, with comparison to the energy balance chamber. Bars represent the mean change across all participants, and points represent individual 
participants. While most participants followed the average trend, some individuals displayed opposing changes (e.g., in the high-fat chamber, the average 
change in respiratory quotient was a decrease; however, in some participants, the respiratory quotient increased). Red indicates that the average effect 
was an increase in the metabolic parameter during the dietary chamber compared with energy balance; blue indicates a decrease.
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Figure 3. Metabolic responses to dietary intervention. (A) Volcano plots of paired t tests comparing post-
chamber metabolite levels with prechamber metabolite levels for select chambers. Results for all chambers are 
presented in Supplemental Figure 2. (B) Results from paired t tests are summarized for each dietary chamber, 
grouped by HMDB metabolite class demonstrating glycerophospholipids as the most common class of metabo-
lite to change. (C) Heatmap of the mean log2 fold change for all metabolites for all dietary chambers, demon-
strating similarities between clusters of diets.
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states were dynamic across diets, highlighting unique interconnections among macronutrient intake, host 
commensal processing, and metabolic response, seen with the metabolome in other studies (1).

Linking metabolic excursions during nutrition to physiologic responses quantified in human metabolic chambers. 
Given these results indicating that metabolomic changes after exposure to 24 hours of  dietary perturbations 
mirror physiologic substrate oxidation preferences (by 24-hour RQ), we explored this directly across diets 
(Supplemental Table 5). Using mixed models across all participants and chambers to maximize power, we 
identified metabolites associated with 24-hour RQ, individual measures of  substrate oxidation rates, and 
24-hour EE (Figure 4A). This analysis was predicated on evidence that — although fuel preference is driven 
primarily by dietary macronutrient content — there remains an intrinsic intraindividual (within an individ-
ual) fuel preference across diets (13, 38) that can only be assessed in these types of  controlled cross-over 
studies. Across the metabolome, prediet chamber substrate availability for lipid mobilization (e.g., acylcar-
nitines and glycerophospholipids) was associated with substrate preference during the chamber; higher pre-
chamber acylcarnitine and PC concentrations were associated with LIPOX rates and 24-hour RQ, consis-
tent with acylcarnitines as indicators of  increased β-oxidation and with a role for PCs as a fatty acid source 
(39). In addition, metabolic excursions during diet were also closely linked to substrate handling. For exam-
ple, an increase in several even-chain acylcarnitines was associated with greater 24-hour LIPOX rate (and 
lower 24-hour carbohydrate oxidation [CARBOX]), consistent with these species as markers of  incomplete 
β-oxidation during mitochondrial fat overload in rodents (22). In addition, both higher prechamber and 
in-chamber change in C2:0 carnitine were associated with a lower 24-hour RQ, consistent with the greater 
lipid turnover during fasting, attendant higher mitochondrial acetyl-CoA levels, and subsequent “buffer-
ing” of  these acetyl-CoAs by conversion to C2:0 carnitine (40, 41). Results were largely robust to regression 
within each diet separately (Supplemental Figures 7 and 8, and Supplemental Tables 5 and 6). In addition, 
the relation between prechamber metabolite level and 24-hour RQ and the metabolite change during a 
chamber with the 24-hour RQ were concordant (ρ = 0.86; Supplemental Figure 9), specifically for metab-
olites reflecting fatty acid oxidation (acylcarnitines, pantothenic acid) and lipid availability (PC, LPC/
LPE). In examining nonesterified free fatty acid (NEFA) levels before and after each chamber as an index 
of  adipose tissue lipid mobilization, we observed a consistent correlation of  increased NEFA levels during 
a chamber with an increase in circulating acylcarnitines, specifically in chambers of  caloric excess (Figure 
4B, Supplemental Figure 10, and Supplemental Tables 7 and 8). While our study did not serially sample 
the metabolome during chambers, these findings do provide support for a balance between increased lipid 
availability (NEFAs) and its utilization (acylcarnitine metabolism) and liberation (PE and PC metabolism). 
Additionally, we observed a positive association between increase in D-α-tocopherylquinone and increased 
NEFA, consistent with its role as a vitamin E catabolite that serves as a carnitine-dependent cofactor for 
mitochondrial fatty acid desaturases (42). The relation of  NEFA to changes in other species (including 
amino acids) was complicated and less uniform across diets, likely owing to macronutrient context-specific 
interactions between intake and metabolism. Unlike 24-hour RQ, 24-hour EE did not map as consistently 
to the changes in the assayed metabolome with diet (Figure 4A). Figure 5 represents a full summary of  our 
results, highlighting these shared relations in physiologic-metabolic phenotype across diets.

Discussion
Substantial literature charting metabolic substrate flux over 6 decades has delineated a roadmap for cellular 
metabolism through detailed perturbational studies in mammalian systems (43). Most studies in humans 
that link substrate metabolism to organism-wide physiology, however, are more limited, challenged by the 
method used to measure these physiologic phenotypes with the required high precision and accuracy while 
controlling confounding and nutritional exposure. In this context, the application of  metabolite profiling 
has emerged as a quantitative “snapshot” of  human metabolism that can be related to dietary patterns to 
begin to clarify responses to nutrition (44–47). The primary role for metabolite profiling in this space has 
been within large epidemiologic studies, providing large sample sizes (required to power associations with 
1 × 102 to 1 × 103 metabolites) with less control over nutritional exposure and characterization and no 
gold-standard methodologies to quantify substrate metabolism.

The goal of our study was to provide a set of reference data from precise, high-quality human metabolic cham-
bers to delineate the relation of a circulating metabolome and its changes to targeted nutritional exposures. Our 
primary result establishes functional interconnections between metabolic and physiologic responses in humans. 
We observed broad shifts in the metabolome across diets, largely linked to substrate availability and processing 
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Figure 4. Coordinated metabolomic and physiologic responses to dietary perturbation. Using a linear mixed model for the outcomes of metabolic 
parameters (e.g., 24-hour energy expenditure, 24-hour respiratory quotient, etc.), we estimated the effect of log2 fold changes in individual metabolites 
aggregated across diets. Example mixed model: 24-hour energy expenditure = log2 fold change metabolite + prechamber log2metabolite level + diet + age 
+ sex + race + BMI + random intercept per participant. (A) Volcano plots of the β coefficients from the log2 fold change metabolite variables on respective 
metabolic parameters. (B) Waterfall plot of the β coefficients on metabolite log2 fold change for the outcome of postchamber nonesterified fatty acids 
(NEFA). Model: postchamber NEFA = log2 fold change metabolite + prechamber log2 metabolite level + prechamber NEFA + diet + age + sex + race + BMI + 
random intercept per participant.
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and with a striking consistency across participants. Results from the 24-hour fasting condition extended prior 
metabolomic findings (9), linking mitochondrial β-oxidation and fatty acid availability directly to 24-hour LIPOX 
rates in humans, defined by gas exchange and urinary measures. Our 24-hour diet interventions yielded consistent 
physiologic and metabolic alterations with regard to lipid metabolism. Specifically, diets associated with a lower 
24-hour RQ (greater fat oxidation) were associated with increases in β-oxidation flux (acylcarnitines) and adipose 
tissue fatty acid mobilization (NEFAs) and with decreases in glycerophospholipids (a substrate source), consistent 
with coordinate substrate management during enhanced β-oxidation. Conversely, metabolic shifts during fasting 
or fat overfeeding relative to diets with greater carbohydrate availability were inverse. Collectively, the current 
report provides a resource for metabolite changes during differing macronutrient diets, highlighting the impor-
tance of fat metabolism. These results extend decades of metabolic research linking molecular metabolic changes 
and human substrate oxidation in humans in an exquisitely controlled setting, providing important reference data 
for subsequent metabolic challenge studies.

Metabolomics has been broadly applied to human nutrition to establish biomarkers of  diet (48–50) and 
to assess the effect of  different diets on human metabolism (9, 51–53). In this context, prospective interven-
tional studies are thought to offer more close control over nutritional exposure and confounding, though 
adherence and economic limitations remain, limiting sample sizes. Although a full review of  the extant 
literature on metabolomics and dietary studies is out of  scope here (reviewed in ref. 54), a key limitation 
to all controlled studies of  feeding is heterogeneity introduced by the effect of  individual prescribed foods 
beyond macronutrients (e.g., a similar macronutrient composition across diets of  different foods), the role 
of  exposure duration (e.g., long-term effects of  diet on microbiome; ref. 55), and interindividual variability 
in how foods may be processed (e.g., microbial flora). Despite these limitations, we observed broad consis-
tency in the dynamic metabolome, with changes seen in smaller controlled-feeding studies of  single macro-
nutrient exposure. In a cross-over study of  12 healthy volunteers, high-fructose diets (1 week duration) led 
to a reduction in circulating acylcarnitines and an increase in glycerophospholipid levels (56), similar to our 
result during a 24-hour high-carbohydrate overfeeding. Similarly, high-fat diet exposure and starvation have 
been shown in small studies to led to shifts in acylcarnitine metabolism (23) and broad lipid alterations (9), 
largely consistent with findings here. Nevertheless, outside of  starvation studies (where the diet “exposure” 
is identical), metabolomic shifts are broad (in some studies up to approximately 50% of  the assayed metab-
olome; ref. 51) and dependent on the way a given macronutrient composition is delivered (57), highlighting 
the complexity of  nutrition research and difficulty in discerning clear physiologic interpretations.

The current study addresses these limitations by (a) directly measuring the effect of  a variable macro-
nutrient composition on substrate metabolism and EE under (b) exquisitely controlled conditions while 
participants resided in a domiciled unit (e.g., weight, sleep, activity, temperature) across (c) multiple dietary 
interventions in a cross-over framework to optimize power with (d) gold-standard indirect calorimetry. 
The sample size here is large for a human chamber-based study, given its participant time intensive nature 
(nearly 40-day inpatient stay) and cost. While we prioritized standardization of  macronutrients (not specif-
ic foods), the precision of  24-hour chamber measures of  substrate oxidation alongside metabolites along 
canonical pathways of  substrate metabolism allowed us to link substrate availability/processing to physi-
ology. We observed opposite metabolic and physiologic changes (24-hour RQ, 24-hour substrate oxidation 
profiles) during high-carbohydrate relative to high-fat/fasting diets that directly map to metabolism. As an 
example, we found a rise in even-chain acylcarnitine species during high-fat overfeeding and fasting, and 
concentrations of  several even-chain acylcarnitines were associated with chamber-measured LIPOX rates 
and postchamber NEFA levels, consistent with incomplete β-oxidation during mitochondrial fat overload 
as noted in rodents (22). Interestingly, a higher prechamber and chamber-related change in C2:0 carnitine 
was associated with lower 24-hour RQ, and higher levels of  C2:0 carnitine were observed in the fasting 
chamber (intense LIPOX), in support of  its role as a “buffer” for mitochondrial acetyl-CoA. Indeed, cir-
culating concentrations of  C2:0 carnitine (the “parent” acylcarnitine synthesized from L-carnitine) mirror 
its intracellular profile, thought to serve as a pool for “storing” increased mitochondrial acetyl-CoA during 
conditions of  high-lipid metabolism (e.g., fasting) (40, 41). Conversely, C2:0 carnitine decreased during the 
high-carbohydrate chamber, consistent with decreased mitochondrial acetyl-CoA (less ingested fat substrate) 
and requirement for removal of  acetyl-CoA–mediated inhibition of  pyruvate dehydrogenase, thereby allow-
ing substrate “flexibility” from fat to glycolytic metabolism (41). Moreover, changes in BCAA metabolism 
and downstream acylcarnitines were in concert with changes in markers of  lipid metabolism, suggesting an 
orchestrated response to substrate availability within and across individuals. While several of  these results 
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are supported by a wealth of  model system and human studies, the current prolonged, inpatient human 
metabolic chamber approach provides an exquisitely controlled setting to underscore links between substrate 
metabolism (at the mitochondrial level) and alterations in representative circulating metabolites.

The results of this study ought to be viewed in the context of its design. First, our protocol prespecified mac-
ronutrient content, allowing for some titratable food prescription to optimize participant tolerance, an approach 
that is not uncommon in studies of macronutrient responses but does limit inference on food-related metabolites. 
Despite exquisite control over confounding and allowance of washout periods between diets, randomization of  
chambers in a crossover design may still exhibit carry-forward effects (wherein one chamber’s results affect a 
subsequent one), though our results were consistent even when accounting for chamber order in mixed models. 
Finally, while our metabolite profiling platform was broad, it excluded some metabolites that may have been of  
physiologic interest (e.g., TCA cycle intermediates, fatty acids). Nevertheless, the consistency of signals with fat 
oxidation and 24-hour RQ across diets and evidence of replication in other studies are encouraging (9, 23, 56). 
These limitations highlight the inherent complexities in studying human nutrition at precision scale, where large 
studies of prolonged, controlled feeding are logistically, ethically, and financially impractical.

An important unanswered question from these studies revolves around understanding whether interin-
dividual variability in metabolic responses can be tied to future weight gain. The unique power of  this study 
— precision of  repeated physiologic and metabolic measures during controlled dietary conditions — fun-
damentally limits sample size (and the feasibility of  larger-scale studies). While the crossover study design 
and repeated measures allowed an increased power to detect average effects across participants and diets, 
assessment of  diet-specific responses (and how factors like obesity, age, sex, and other social-demographic 
indices affect these responses) remains underpowered. Similar constraints exist in applying chamber data to 
understand metabolomic responses’ effect on weight gain, a concept that has required much larger sample 
sizes (58), or studying extremes of  physiologic responses to diet. In this regard, upcoming results of  large, 

Figure 5. Summary visualization of dietary chamber–related changes in metabolites and relations with changes in global measures of metabolism. For 
visualization, we present metabolites that with an absolute (mean log2 fold change) > 0.5 in any diet with an FDR < 5%. EE, 24-hour energy expenditure 
(kcal/day); RQ, 24-hour respiratory quotient; FC, fold change; CARBOX, 24-hour carbohydrate oxidation (kcal/day); LIPOX, 24-hour lipid oxidation (kcal/
day); PROTOX, 24-hour protein oxidation (kcal/day).
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targeted metabolomic validation efforts of  nutrition at population scale (e.g., Nutrition for Precision Health 
initiative) will be sufficiently powered with social-demographic diversity required to provide rigorous popu-
lation-level estimates of  dietary effects that inform individual responses to diet and implication on metabol-
ic risk. The results presented here from human metabolic chambers provide important relief  and context for 
these ongoing results and detailed, controlled extension of  prior results over decades of  studies as a starting 
point for integrated, hypothesis-driven studies of  human metabolism.

Methods
Sex as a biological variable. Our study enrolled males and females. We adjusted for sex in models to account 
for sex as a biological variable. Of  note, our study design necessitated a longitudinal modeling approach, 
wherein each patient is their own control (allowing for intraindividual control).

Study cohort. This study involved a NIH-approved protocol to study short-term metabolic adaptation under 
macronutrient stress (NIH protocol no. 07-DK-N215) (13, 18, 59, 60). Of note, 94 participants had valid data 
for energy balance respiratory chamber data used to calibrate the 200% caloric excess chambers. Subsequent 
24-hour intervention diets were randomized. Due to technical issues or participant withdrawal, the number of  
participants in each dietary chamber varies (Table 1). Participants were required to have a stable weight for 6 
months and be otherwise healthy based on medical history and physical examination upon admission to the 
inpatient NIH Clinical Research Center (Supplemental Figure 11). Upon admission, volunteers were placed 
on a WMD, which was followed prior to and in between the 24-hour intervention diets (13). Participants were 
weighed daily, and calories were adjusted to maintain weight (coefficient of  variation of  weight over study 
0.9% ± 0.6%). After 3 days of  the WMD, participants underwent a 75-gram oral glucose-tolerance test to 
exclude individuals with type 2 diabetes (T2D) or impaired glucose regulation (fasting glucose ≥ 100 mg/dL 
or 2-hour glucose ≥ 140 mg/dL; T2D, fasting glucose ≥ 126 mg/dL or 2-hour glucose ≥ 200 mg/dL). The 
participants then underwent a series of  24-hour whole-room indirect calorimetry experiments (chambers) to 
quantify 24-hour EE and 24-hour RQ. A 24-hour urine collection was performed to assess protein oxidation 
rates, and lipid and CARBOX were calculated as described (61). Chambers were performed under several dif-
ferent conditions, including energy balance (calories ingested = calories expended), fasting, and 200% caloric 
overfeeding diets in random order and with intervening periods of  at least 3 days on WMD: (a) standard 
overfeeding (SOF); (b) a low-protein overfeeding (LPF); (c) high-fat/normal-protein overfeeding (FNP); (d) 
high-fat/high-protein overfeeding (HPF); and (e) high-carbohydrate/normal-protein overfeeding diet (CNP). 
Caloric excess (200% of individual-specific energy needs) was used to perturb energy balance and to best elicit 
interindividual heterogeneity in phenotypes. The total inpatient stay lasted approximately 37 days.

Dietary exposures. Macronutrient composition for each diet is shown in Supplemental Table 1. Car-
bohydrates were a mixture of  simple (e.g., soda, candy) and complex (legumes, vegetables, and fruit). 
Protein source was predominantly of  animal origin. Dietary exposures included 24-hour fasting and 
different overfeeding conditions (200% of  calories expended during EB), and fasting diet macronutrient 
composition was quantified by “The Food Processor” software (ESHA Research). Residual uneaten food 
was returned to the metabolic kitchen to calculate actual macronutrient intake during each session. These 
dietary compositions were chosen specifically to stress the metabolic system not only by providing mod-
ern obesogenic diets (e.g., high-carbohydrate or high-fat) but also based on previous data indicating that 
low-protein (3%) diets amplify interindividual differences in thermogenesis (62).

Metabolic chamber measures. The description of  our indirect calorimetry apparatus (63) and methods (13, 
18) have been published. The first 2 chamber sessions were used to precisely establish the individual level 
of  energy balance (EB), a condition where isocaloric intake matches EE. Measured 24-hour EE during the 
first eucaloric chamber was used as the energy intake calories for the second chamber to precisely achieve 
energy balance. This second chamber was used as the EB chamber in this analysis. The order of  subsequent 
chambers was randomized (to limit confounding effects of  the order of  dietary exposure on metabolism) 
and spaced by 3-day intervals of  WMD and limited physical activity (walking, playing pool, watching TV) 
to limit “carry-forward” effects from prior a chamber’s diet. Chambers sessions in which participants did 
not consume > 95% of  the food provided by the metabolic kitchen were withdrawn from the analysis.

Participants entered the chamber immediately following breakfast at 7:00 a.m. (if  not a fasting chamber 
day). Venous blood was drawn before entry into chamber and upon exit into EDTA tubes, with DPP-IV inhib-
itor and aprotinin, centrifuged for 10 minutes at 4°C at 1,436g–1,512g for plasma generation and stored at 
−70°C. Meals in the chamber were provided via a 2-way airlock at 11:00 a.m., 4:00 p.m., and 7:00 p.m. Patients 
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were instructed not to be physically active in the calorimeter to limit the contribution of activity to adaptive 
thermogenesis. Radar was used to monitor physical activity (denoting percentage of time with motion). The 
temperature of the chamber was controlled at 24°C, and monthly validation tests (involving propane combus-
tion inside the chamber) verified O2 and CO2 recovery within 2% based on change in propane weight. Air out-
put from the chamber was sampled every minute and compared with inflow (fresh) air to calculate a patient’s 
CO2 production (VCO2) and O2 consumption (VO2) per minute. These measures were utilized to quantify a 
per-minute RQ (VCO2/VO2) and the rate of EE (Lusk equation: VO2 × 4.686 + [calculated RQ – 0.707] × 
0.361/0.293), as described (63, 64). The per-minute values for EE and RQ were extrapolated to 24-hour (mul-
tiplied by 1,440). Twenty-four–hour urinary nitrogen excretion rate was measured while in the chamber to 
estimate 24-hour protein oxidation rate and was used to derive the nonprotein RQ, which was used to calculate 
24-hour CARBOX and LIPOX rates (61) as a secondary measure of substrate oxidation preference. We have 
demonstrated excellent reproducibility of metabolic measures previously (60).

Metabolite profiling. Measurement of  321 metabolites, including amino acids, acylcarnitines, and other 
cationic polar metabolites (Supplemental Table 2), were made using liquid chromatography–tandem mass 
spectroscopy (LC-MS) as described previously (65). We observed an excellent coefficient of  variation in 
pooled QC samples across metabolites using raw, not log-transformed, data (median 4.7%, 25th–75th per-
centile, 3.4%–7.6%). We reviewed distributions of  the prechamber metabolite levels for each dietary cham-
ber and excluded measurements that were > 5 SDs within a diet. We excluded metabolites with any degree 
of  missingness from our analysis (including those missing due to outlier removal), leaving 263 metabolites 
for analysis. We log2 transformed metabolite levels prior to use in models for model interpretation to be 
centered around log2 fold changes in metabolite levels.

Statistics. While our sample size is large for studies of  this degree of  precision phenotyping in 24-hour 
metabolic chambers, we were sensitive to dimensionality and overfitting concerns, given the number of  
metabolites and chambers. In this regard, we performed 2 approaches to test the effect of  each dietary cham-
ber on changes in metabolite levels: a serial pre- versus postchamber metabolite comparison (2-tailed t test) 
and a more complex mixed-model approach including interaction terms to model random chamber order and 
account for cross-over effects. For t tests, a FDR of 5% (Benjamini-Hochberg) was imposed across all tested 
metabolites within a dietary chamber. To estimate the effect of  each dietary chamber on the log2 fold change 
in metabolite (in relation to the energy balance chamber), we constructed linear mixed models of  the form: 
postchamber metabolite log2 level = prechamber log2 metabolite level + diet + chamber order + random effect 
per participant. Chamber order refers to the order the participant entered the dietary chamber (e.g., energy 
balance is 1 for all participants, as this was the first chamber entered; the remaining chambers are in random 
orders across participants). The diet variable was structured with energy balance diet as the referent.

To test the relations of  changes in metabolites with physiologic measures including 24-hour EE, 
24-hour RQ, and oxidation subtypes, we used linear mixed models. This approach combines data from all 
dietary chambers into 1 model with repeated measures. As an example, the model for 24-hour EE was of  
the following form: 24-hour EE = log2 fold change metabolite + prechamber metabolite log2 level + diet + 
age + sex + race + BMI + random effect per participant. We compared these models to linear models, strat-
ified by diet of  the following form: 24-hour EE = log2 fold change metabolite + prechamber log2 metabolite 
level + age + sex + race + BMI, where each model was restricted to data from a single dietary chamber. To 
test the relations of  changes in metabolites with changes in NEFA, we created analogous sets of  mixed and 
linear models, for the outcome of  postchamber NEFA with adjustment for prechamber NEFA, prechamber 
log2 metabolite level, age, sex, race, and BMI (the mixed model again had a random effect per participant).

Study approval. This study was approved by the IRB of the NIH (Bethesda, MD; NIH protocol no. 07-DK-
N215) and Vanderbilt University Medical Center. All participants provided written informed consent.

Data availability. The metabolic and phenotypic data from this study are available via controlled access at 
NIH due to participant confidentiality and inclusion of  protected groups. Requests for data should be made 
to the corresponding author directly, with subsequent approval by NIH. Code utilized in these analyses are 
available at https://github.com/asperry125/MetFlex (commitID, 31b37139a406c86abcfaa935952d8d2aa-
f17a9a9). Values for data points in figures are reported in the Supplemental Data Values file.
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