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Abstract: 

                Mechanisms underpinning signals from genome wide association studies remain 

poorly understood, particularly for non-coding variation and for complex diseases such as type 2 

diabetes mellitus (T2D) where pathogenic mechanisms in multiple different tissues may be 

disease driving. One approach is to study relevant endophenotypes, a strategy we applied to 

the UBE2E2 locus where non-coding SNVs are associated with both T2D and visceral adiposity 

(a pathologic endophenotype). We integrated CRISPR targeting of SNV-containing regions and 

unbiased CRISPRi screening to establish candidate cis-regulatory regions, complemented by 

genetic loss of function in murine diet-induced obesity or ex vivo adipogenesis assays. 

Nomination of a single causal gene was complicated, however, because targeting of multiple 

genes near UBE2E2 attenuated adipogenesis in vitro, CRISPR excision of SNV-containing non-

coding regions and a CRISPRi regulatory screen across the locus suggested concomitant 

regulation of UBE2E2, the more distant UBE2E1, and other neighborhood genes, and 

compound heterozygous loss of function of both Ube2e2 and Ube2e1 better replicated 

pathological adiposity and metabolic phenotypes than homozygous loss of either gene in 

isolation. This study advances a model whereby regulatory effects of non-coding variation not 

only extend beyond the nearest gene but may also drive complex diseases through polygenic 

regulatory effects. 

 

Introduction: 

  Type 2 diabetes mellitus (T2D) is driven in part by genetic risk with estimates of 

heritability based on family and twin studies of up to ~70%(1). Importantly, T2D phenotypes 

arise due to single gene variants in a minority of patients(2). By contrast, T2D GWAS studies 

have collectively identified several hundred putative disease-related genes that contribute to the 

polygenic architecture of T2D heritability(3). The complexity of T2D genetics is compounded by 

diverse pathological mechanisms involving multiple different metabolically active tissues, 



including pancreas, liver, skeletal muscle, and adipose tissue amongst others. As such, GWAS 

of relevant tissue specific endophenotypes further expands the list of candidate metabolic risk 

genes, while focusing mechanistic studies on specific cell- and tissue-types.   

 The link between obesity and T2D provides rationale to understand how adipose tissue 

endophenotypes may contribute to T2D(4, 5). Indeed, various traits related to adipose tissue 

quantity, distribution, or quality predict cardiometabolic disease risk, including body fat 

percentage(6), waist circumference(7, 8), visceral adiposity(9), and adipose tissue 

cellularity(10).  Moreover, GWAS have identified candidate genes for relevant adiposity 

phenotypes that are measurable with imaging modalities such as computed tomography 

(CT)(11). This provided rationale for a prior GWAS meta-analysis of pathogenic adiposity 

phenotypes, which identified amongst other candidate genes, UBE2E2(12). The UBE2E2 locus 

is of particular interest due to its identification by independent GWAS for T2D(13), providing 

rationale for the hypothesis that UBE2E2 is a causal gene for T2D that is operative through its 

role in adipose tissue development or function.  

 T2D and visceral adiposity SNVs at the UBE2E2 locus are in non-coding regions of the 

genome and therefore the initial identification of UBE2E2 as a candidate gene was largely 

driven by the ‘nearest gene’ assumption(12, 13). However, reductionist functional genomics 

studies demonstrate numerous examples where phenotypes are driven by causal genes that 

are regulated by variation in distant non-coding regions(14, 15). Moreover, predictive models 

suggest that a gene distal to the nearest gene is causal for roughly half of GWAS signals(16, 

17), underscoring the importance of in-depth functional assessment of candidate genes, 

particularly those nominated by associations with non-coding variants. 

In our prior work, the dynamic expression of Ube2e2 in murine adipose tissue coupled 

with attenuation of adipocyte development with Ube2e2 loss of function in cultured murine 

adipocyte progenitor cells advanced UBE2E2 as the causal gene for adiposity phenotypes(12). 

In this study, we sought to further interrogate the nearest gene assumption to explain 



phenotypic associations for non-coding SNVs at the UBE2E2 locus. We integrated functional 

genomics approaches in adipocyte precursor cells with in vivo murine genetic loss of function 

studies, establishing support for UBE2E2 as a causal contributor to adiposity phenotypes; 

however, our functional genomics assays also provided evidence of one or more additional 

causal genes in the UBE2E2 neighborhood, including the gene coding the related E2 

conjugating enzyme E1 (UBE2E1). Collectively, these data establish the importance of the 

UBE2E2 locus to metabolic homeostasis. Through identification of more than one contributing 

‘causal gene’ to adiposity and T2D phenotypes for variants near the UBE2E2 locus, this work 

provides experimental evidence for extension of the polygenic disease paradigm to include 

consideration of disease associated variants and their gene neighborhoods.  

 

Results: 

UBE2E2 loss of function in mice partially phenocopies human GWAS prediction 

We previously identified UBE2E2 as a regulator of adipocyte differentiation using 

shRNA-mediated loss of function in an ex vivo adipogenesis assay with primary murine 

adipocyte progenitor cells(12). When coupled with human GWAS demonstrating associations 

between SNVs at the UBE2E2 locus T2D and with visceral—as opposed to subcutaneous—

adiposity, we formulated the hypothesis that UBE2E2 loss of function drives negative metabolic 

sequelae by impairing adipogenesis and healthy adipose tissue development in metabolically 

protective subcutaneous depots—i.e. that UBE2E2 loss of function would lead to a phenotype 

on the lipodystrophic spectrum.  

To investigate the functional importance of UBE2E2, in vivo, we generated Ube2e2-/- 

mice using a clustered regularly interspaced short palindromic repeats (CRISPR) approach 

(Figure 1A, S1). We first tested Ube2e2 loss of function in mice with an ex vivo adipogenesis 

assay. In this manuscript we utilized different cellular adipogenesis models, guided by specific 

experimental goals and practical considerations: (1) isolation of small populations of primary 



adipocyte progenitor cells for characterization of genetic mouse models such as Ube2e2-/- mice; 

(2) a human mesenchymal stem cell line for experiments in which a human genome was critical; 

and (3) murine 3T3L1 preadipocytes for parallel functional loss of function analyses of panels of 

genes, given their high adipogenic efficiency and amenability to viral transgenesis.  Indeed, ex 

vivo analysis of primary adipocyte progenitors from  Ube2e2-/- mice provided a first indication of 

functional consequences to UBE2E2 loss of function, as progenitors isolated from the knockout 

strain demonstrated attenuated adipogenesis relative to cells isolated from wildtype mice 

(Figure S1), consistent with previously observed attenuation of adipogenesis in primary AP 

cells when Ube2e2 was targeted short hairpin (sh)-RNA(12). 

We next examined whether the Ube2e2-/- mice would recapitulate adiposity phenotypes, 

using the diet-induced obesity model. We did not observe a gross difference in body weight in 

adult mice after 12 weeks of high fat feeding (Figures 1B, S1). However, Ube2e2-/- mice 

exhibited increased inguinal fat mass and a trend towards increased gonadal fat mass, without 

a difference in classical brown adipose tissue. Consistent with the increase in adiposity, we also 

detected increased adipocyte size (Figure 1C). Given T2D SNV near UBE2E2, we tested for 

impaired metrics of glucose homeostasis in diet-induced obese Ube2e2-/- mice. We measured 

glucose after 4 and 16 hours of fasting, detecting no difference between wild-type and Ube2e2-/- 

mice (Figure 1D). Similarly, we found no significant difference in glucose or insulin tolerance 

testing between wild-type and Ube2e2-/- mice (Figures 1D, S1). Collectively, these data suggest 

that UBE2E2 loss of function in mice results in modestly increased adiposity without overt 

obesity and without an obvious disruption of glucose homeostasis. Unlike the human GWAS, 

which suggested increased visceral relative to subcutaneous fat, in Ube2e2-/- mice we observed 

a directionally consistent effect in the two white adipose depots with only the subcutaneous 

inguinal depot reaching statistical significance. While these data are consistent with an adiposity 

phenotype, they do not suggest a lipodystrophic phenotype as we had hypothesized. 

 



Identification of multiple candidate causal genes in the topological neighborhood of 

UBE2E2  

Our initial identification of UBE2E2 as a candidate gene regulating visceral adiposity 

relied on a nearest gene assumption as the lead SNV resides in non-coding DNA(12). Distinct 

SNVs linked to T2D and not in linkage disequilibrium with our lead SNV are also in non-coding 

DNA. Given only partial recapitulation of the phenotypes predicted by GWAS with UBE2E2 loss 

of function in mice, we revisited our hypothesis of UBE2E2 as the causal gene. We first applied 

functional assays, previously applied in the prioritization of UBE2E2(12), but broadened the 

analysis to include additional genes in the topological neighborhood, as defined by residing 

within 500 kB of the UBE2E2 locus or within the predicted UBE2E2 topologically associated 

domain (TAD)(Figure 2A). This included UBE2E2 and UBE2E1, both of which have supporting 

eQTL evidence for SNV regulatory effects, albeit not consistently in adipose tissue itself, and 

additional genes without known SNV associated eQTL (GTEx database V10). Although we 

cannot exclude the possibility of non-UBE2E2 causal genes located within or beyond the TAD, 

we reasoned that this approach would capture genes most likely affected by UBE2E2 

associated SNV. In MSC directed to adipocyte differentiation, we observed dynamic changes in 

UBE2E2 expression by quantitative real-time (q)PCR, as well as other genes in the topological 

neighborhood (Figures 2B,S2).  With shRNA-knockdown of genes in the topological 

neighborhood in murine 3T3L1 cells, we found reproducible attenuation of adipogenesis when 

targeting Ube2e1 with two different shRNAs (Figure 2C). For several other neighborhood 

genes, one out of two shRNAs attenuated adipogenesis, including Nkiras1, Rpl15, Rarb, and 

Top2b. Such differences could not be easily explained by correlative differences in estimated 

knockdown efficiency (Table S1). Though we do not exclude an adipogenic function for genes 

where there was a discrepant result between two targeting hairpins, we advance Ube2e1 as a 

candidate adipogenic factor with higher confidence given that both targeting hairpins had a 

functional effect.  



In the absence of a single clear functionally important gene, we next tested whether 

CRISPR/Cas9 targeting of the non-coding regions containing adiposity/T2D SNVs near 

UBE2E2 would modulate its expression or expression of other genes in the topological 

neighborhood. We delivered CRISPR/Cas9 and guide RNA flanking approximate 100-200 bp 

regions, inclusive of the lead SNVs to human MSC (Figure 2D). We performed four 

independent biological replicate experiments and assessed the modulation of UBE2E2 and 

additional genes contained within the topological neighborhood by qPCR (Figure 2D). Targeting 

of the non-coding region containing the lead SNV from the GWAS meta-analysis that identified 

UBE2E2 as a candidate gene for visceral adiposity led to a significant reduction (approximately 

25%) in UBE2E2 expression. Overall, targeting 3 of the 5 SNV regions resulted in statistically 

significant reductions in UBE2E2 expression. When we considered additional genes contained 

within the topological neighborhood, we discovered a more consistent effect on UBE2E1, with 

significant reduction in expression with targeting each of the 5 SNV-containing regions. The 

expression of two neighborhood genes, NR1D1 and NKIRAS1, were not modified by editing any 

of the 5 SNV regions. While most edits led to reduced expression, excision of a region 

containing rs6780569 resulted in an approximate 4-fold increase in expression of THRB.  These 

data collectively suggest that multiple genes in the topological neighborhood of UBE2E2 display 

evidence of potential functionality, including UBE2E1 which met multiple criteria as a second 

potential candidate causal gene (Table 1).  

 

Overlap of putative cis-regulators of UBE2E2 and UBE2E1 

Given that UBE2E1 was most consistently implicated as a second potential causal gene 

(Table 1), we next investigated potential polygenic effects of non-coding variation at the 

UBE2E2 locus involving both UBE2E2 and UBE2E1. We integrated ATAC-seq analyses of 

human MSC with CRISPRi screening to identify potential regulatory regions controlling UBE2E2 

expression and/or UBE2E1 expression.  For the CRISPRi screen, we utilized in situ RNA 



probes to report on UBE2E2 or UBE2E1 expression in human MSC coupled with flow cytometry 

as a transcriptional readout as demonstrated by others (18, 19)(Figure 3A)(18, 19). This 

entailed introduction of a custom guide RNA library by viral transgenesis covering a region of 

hg19.Chr3: 22,500 kb – 24,500 kb, inclusive of all known SNVs associated with the UBE2E2 

and UBE2E1 genes, and all known regulatory regions within a single topologically associated 

domain (TAD) across different cell types(20) MSC were sorted by flow cytometry to select and 

sequence cell populations that corresponded to high or low UBE2E2 or UBE2E1 expression.  

We applied a sliding window analysis of consecutive gRNA to identify candidate 

regulatory domains. PCA analysis demonstrated discrimination of different cell populations, with 

clearest distinction of UBE2E2-low and -medium and UBE2E1-high and -medium from the 

respective high expressing populations (Figure S3). We performed pairwise comparisons of 

gRNA enrichment focusing on differential gRNA enrichment between either of the two low-

expressing populations relative to the high-expressing population. By contrast to what has 

previously been shown when this method has been used to identify potent cis-regulatory 

domains at loci that are hyper-expressed, such as MYC in cancer cells, hotspots of gRNA 

enrichment were modest in scale, which is consistent with similarly modest effects on gene 

expression with CRISPR excision of SNV-containing regions. For example, when we focused 

specifically on gRNA targeting regions in proximity to putative promoters within 1000 bp of the 

transcriptional start site (TSS) upstream of exon 1 (Figure 3B), we observed enrichment of 

gRNA in the suppressed populations with log2-fold differences in the range of 0.5-1. While the 

on-target action of CRISPRi results in recruitment of a repressive complex to putative cis-

regulatory domains, it has previously been noted that additional regulatory mechanisms may 

also be operative, including paradoxical augmentation of gene expression through sequestration 

of repressive factors. Consistent with this dichotomy, we found evidence of differential gRNA 

enrichment consistent with both mechanisms, for example, in the vicinity of the UBE2E1 TSS 

we observed enrichment of gRNA in UBE2E1-low cells and in UBE2E2-high cells (Figure 3B).   



We next examined genomic regions in the vicinity of the five GWAS SNVs (Figure 3CD). 

In each case, different patterns became evident with respect to the SNV proximity to ATAC 

peaks or gRNA hotspots. Two of the SNVs (rs7374732, rs9812056,) mapped to an ATAC peak, 

two were within 5kb of an ATAC peak (rs6780569, rs6792370), and one was approximately 

17kb from the nearest ATAC peak (rs7612463) (Figure 3C-D, Table 2).  Each of the SNVs 

mapped near one or more candidate regulatory domains identified by the CRISPRi screens for 

both UBE2E2 and UBE2E1, with one prominent example of closely overlapping signals of guide 

RNA enrichment in low expressing cells near rs7612463 (Figure 3D). We next leveraged these 

data to examine the degree of potential overlap of candidate UBE2E2 and UBE2E1 regulatory 

domains. We applied a permissive filter of a nominal p value <0.05 for pairwise comparisons 

and then secondarily limited the analysis to gRNA enrichment signals consistent with an on-

target CRISPRi effect (gRNA enrichment in cells with lower gene expression) or candidate 

regulatory domains that correlated with ATAC-seq peaks. At each level of stringency, we found 

a subset of candidate cis-regulatory domains common to both UBE2E2 and UBE2E1 (Figure 

3E). If there was co-regulation of UBE2E2 and UBE2E1, then we predicted that expression of 

these two genes might be correlated. To test this, we interrogated the GTEX data base and 

assessed for a correlation at the transcriptomic level across cells/tissues (Figure 3F). Indeed, 

we discovered a strong positive correlation (R2=0.4, p<0.0001). Collectively, these data are 

consistent with a model whereby non-coding variants at the UBE2E2 locus may regulate both 

the nearest gene (UBE2E2) and the more distant UBE2E1.   

 

Functional divergence of UBE2E2 and UBE2E1 

 UBE2E2 and UBE2E1 are both members of the same family of E2 conjugating enzymes 

raising the question of whether they are functionally redundant, particularly given that genetic 

targeting of both genes inhibited adipogenesis, in vitro. Moreover, neither member has been 

extensively studied and therefore the current literature does not provide a clear indication of 



shared protein targets or E3 ligase cooperativity. To explore this question, we sought to test for 

molecular redundancy. We transduced 3T3L1 cells with previously validated shRNA plasmids 

targeting Ube2e2 or Ube2e1 and confirmed inhibition of adipogenesis using oil-red-o staining 

and qPCR for adipogenic genes as complementary readouts to the fluorescence-based screen 

shown in Figure 2C (Figure S4). We then performed comparative TMT-based quantitative 

proteomics on confluent 3T3L1 cells and again 24 hours after adipogenic induction (Figure 4A). 

At each timepoint, differential proteins included products of genes previously demonstrated to 

regulate adipogenesis or linked to T2D (Figure 3B). There were generally a greater number of 

proteins that increased with targeting of either Ube2e2 or Ube2e1, consistent with the canonical 

role of E2 conjugating enzymes in proteosome-mediated degradation (Figure 3C). Although a 

subset of differential proteins was shared between Ube2e2 and Ube2e1 knockdown cells at 

each timepoint, the majority were distinct. 

 We also performed RNA-seq in cells under similar culture conditions to determine with 

the proteomic level differences would translate into different gene programs (Figures 4D). We 

performed GSEA analyses to test the degree to which differentially regulated pathways were 

shared. We included hallmark gene sets (MH, normalized p < 0.05), curated canonical 

pathways (M2, normalized p < 0.01), and Biological Process ontology (M5, normalized p < 0.01) 

gene sets from the GSEA Mouse MSigDB Collections and found limited overlap between 

Ube2e2 and Ube2e1 knockdown cells, regardless of adipogenic induction (Figure 4E, S4). This 

unbiased multi-omics characterization of the UBE2E2- and UBE2E1-dependent molecular 

programs in 3T3L1 preadipocytes links the regulatory functions of these two proteins to 

pathways of relevance to adipocyte development and/or function, while arguing against 

molecular redundancy.  

 

UBE2E1 loss of function disrupts glucose homeostasis in mice 



 Given the collective data suggesting UBE2E1 as an alternative candidate causal gene 

for GWAS SNV near UBE2E2, we next explored whether genetic loss of UBE2E1 would drive 

adiposity and metabolic phenotypes. We employed CRISPR/Cas9 to target Ube2e1, generating 

two lines that exhibited disruption of the target exon by sequencing (Figure S5). Like Ube2e2 

null mice, primary adipocyte progenitor cells isolated from Ube2e1 null mice exhibited an 

adipogenesis defect ex vivo (Figure S5). In an early experiment, we also discovered evidence 

of impaired glucose tolerance after 12 weeks of high fat feeding (Figure S5). This motivated a 

second, better powered diet-induced obesity experiment (Figure 5A). Over 12 weeks of high fat 

feeding, body weights of wild-type and Ube2e1 null mice remained similar except for a transient 

period when the weights of male Ube2e1-/- mice lagged wildtype controls, an effect that was no 

longer evident at completion of the 12-week feeding period (Figure 5B). In contrast to Ube2e2 

null mice (Figure 1B), Ube2e1-/-  mice had a less overt adiposity phenotype with a significant 

difference in fat mass only observed in the gonadal depot of one of the two knockout lines 

(Figure 5C). In pre-sacrifice glucose tolerance testing (Figure 5D), we observed impaired 

glucose tolerance that was directionally consistent in both sexes and in line with the initial pilot 

experiment (Figure S5), yet more robustly evident in female mice (Figure 5D). In neither sex 

did we observe a difference in insulin tolerance (Figure 5E). Collectively, these data point to 

mild disruption in glucose homeostasis with global Ube2e1 targeting.  

  

Compound heterozygous loss of Ube2e2 and Ube2e1 recapitulates GWAS phenotypes 

 No single genetic manipulation in our functional genomics analyses replicated the full 

range of predicted adipose and metabolic outcomes. If UBE2E2 and UBE2E1 do indeed 

regulate distinct molecular programs, however, targeting both genes might be necessary to fully 

recapitulate metabolic phenotypes. Moreover, the total loss of function model is extreme relative 

to the modest effects on gene expression observed with targeting of non-coding regions near 

UBE2E2. Therefore, we reasoned that compound heterozygous loss of function of Ube2e2 and 



Ube2e1 would more closely reflect the observed effects of targeting putative regulatory domains 

in the non-coding regions around Ube2e2. As such, we subjected Ube2e2+/-;Ube2e1+/- and 

Ube2e2+/+;Ube2e1+/+ control mice to diet-induced obesity (Figure 6A). Male mice exhibited 

similar body weight trajectories with high-fat diet, whereas female compound heterozygous 

mutant mice gained more weight than wild-type controls (Figure 6B). Compound heterozygous 

loss of Ube2e2 and Ube2e1 also resulted in increased adiposity evident across depots (Figure 

6C). Glucose and insulin tolerance testing demonstrated modest effects in female mice (Figure 

6DE). The negative effect on metabolic health was more evident in terminal measurements of 

insulin and HOMA-IR, where targeting Ube2e2 and Ube2e1 augmented both metrics (Figure 

6FG). Interestingly, despite no difference in body weight between male control and mutant mice, 

insulin and HOMA-IR measures were directionally consistent with the female mice that did 

exhibit an overt body weight phenotype. Nonetheless, sex may be an additional modifying factor 

of importance even though this study did not perform the additional metabolic phenotyping (e.g. 

metabolic cage studies) that might reveal candidate mechanisms for the modifying effect of sex 

on body weight gain. 

The ratio of serum adiponectin to leptin is an emerging metric of adipose tissue 

function(21, 22). We measured each adipokine at the time of sacrifice, finding a reduction in this 

ratio in compound heterozygous mice consistent with adipose tissue dysfunction (Figure 6H, 

Figure S5). Therefore, these collective data demonstrate that targeting Ube2e2 and Ube2e1 

with partial loss of function—as might be observed with disruption of a non-coding domain 

regulating both genes—is sufficient to drive increased adiposity, adipose tissue dysfunction, and 

diabetic pathophenotypes.  

 

Discussion 

In this study we performed in vitro and in vivo functional genomics analyses of the 

UBE2E2 locus previously linked to adiposity and T2D traits. Irrespective of the assay, 



nomination of a single causal gene was complicated because: (1) targeting of multiple genes in 

the neighborhood of UBE2E2 attenuated adipogenesis in an in vitro functional assay; (2) 

CRISPR excision of SNV-containing non-coding regions and a CRISPRi regulatory screen 

across the locus suggested concomitant regulation of UBE2E2, the more distant UBE2E1, and 

perhaps additional genes; (3) Ube2e2 and Ube2e1 genetic loss of function in mice 

independently resulted in pathophenotypes resembling those predicted by GWAS signals; (4) 

compound heterozygous loss of function of both Ube2e2 and Ube2e1 better phenocopied the 

collective adiposity and metabolic phenotypes than homozygous loss of either gene in isolation. 

Our collective data implicates a two-part model: (1) that a subset of non-coding variants impact 

expression of more than one gene in the topological neighborhood of UBE2E2 and (2) that the 

inter-related phenotypic effects on adiposity and glucose homeostasis are driven by this 

polygenic regulatory effect. Our study provides an example of the increasingly recognized 

phenomenon of regulatory effects of non-coding variation extending beyond the nearest gene, 

while also implicating polygenic modulation of relevant metabolic phenotypes by non-coding 

variation. 

The fact that UBE2E2 and UBE2E1 both code for members of the E2 ubiquitin 

conjugating family of proteins—coupled with attenuation of adipogenesis with UBE2E2/UBE2E1 

loss of function—raises the question of functional redundancy. E2 conjugating enzymes transfer 

activated ubiquitin to proteins, an interaction mediated by E3 ligases which impart protein target 

specificity(23). Although the family of >600 distinct E3 ligases exceeds the number of potential 

E2 partners by over one order of magnitude, E3 ligases may still interact with multiple E2 

enzymes(23-26). This combinatorial complexity decreases the likelihood of complete functional 

redundancy of two different E2 conjugating enzymes, which is consistent with our finding of only 

partial molecular overlap in comparative analyses of the proteomic and transcriptomic 

consequences of targeting each protein independently in 3T3L1 cells. Moreover, the murine 

genetic loss of function models did not phenocopy one another: UBE2E2 loss of function 



increased adiposity without overt metabolic consequences whereas UBE2E1 loss of function 

worsened metrics of glucose homeostasis with minimal effects on adiposity.   

One premise underpinning this study is that adiposity and T2D traits are inter-related—

that adiposity endophenotypes are drivers of T2D—prompting the question of why the 

augmented adiposity observed in Ube2e2 null mice did not translate into detectable metabolic 

dysfunction. In murine genetic models, metabolic pathophenotypes are often not easily 

detectable without a secondary challenge, with the diet-induced obesity model used here being 

a common experimental stressor. It is possible that UBE2E2 dependent metabolic phenotypes 

might emerge more dramatically in contexts not tested in our study, such as with aging or with 

alternative metabolic stressors. It is also possible that in the absence of an overt obesity 

phenotype, the metabolic consequences of a modest increase in adiposity are not easily 

detectable with standard mouse phenotyping methods. Increased adiposity is not necessarily 

deterministic for T2D, given precedent for coexistence of insulin sensitivity with extreme obesity 

in a small subset of genetic murine models(27, 28). Although we cannot exclude an uncoupling 

of adiposity and metabolic dysfunction, considering the large body of evidence linking adipose 

tissue excess and/or dysfunction to metabolic disease coupled with the deleterious metabolic 

effects of compound Ube2e2/Ube2e1 heterozygous loss of function, the Ube2e2 null phenotype 

of increased adiposity is more likely to be pathological rather than metabolically benign.  

In addition to being a risk factor for cardiometabolic disease, visceral adipose tissue is 

more permissive to adipogenesis(29, 30), which may explain in part the subcutaneous to 

visceral fat redistribution observed with some non-generalized lipodystrophies—i.e. those that 

do not completely abolish all white adipocyte development. Based on a GWAS signal for 

visceral adiposity coupled with an associated in vitro adipogenesis defect, our a priori 

hypothesis was that UBE2E2 loss of function would manifest as a lipodystrophic phenotype in 

mice. It is important to acknowledge therefore that we found no evidence of a lipodystrophic 

phenotype with either UBE2E2 or UBE2E1 genetic loss of function, in vivo, as increased 



adiposity extended to the inguinal subcutaneous depot. This discrepancy could simply reflect 

mouse-human differences in the biology of specific fat depots or alternatively the additional 

modifying effects of causal gene(s) beyond UBE2E2 and UBE2E1.  

How does this study then reflect the utility of the adipogenesis assay as a functional 

genomics tool, considering the apparent disconnect between the in vitro adipogenesis defect 

and the absence of corresponding overt lipodystrophy with in vivo loss of function? In the 

standard ex vivo adipogenesis protocol, conversion of adipocyte precursor cells to lipid-laden 

adipocytes is dependent on cellular processes that are not necessarily specific to the molecular 

differentiation program, including cell cycle activity (mitotic clonal expansion) at the outset, 

insulin responsive energy uptake, de novo lipogenesis, and finally lipid droplet formation(31-36). 

It is therefore possible that aspects of the in vitro adipogenesis assay effectively reports on 

more general aspects of adipose tissue function beyond fate specification and/or on cellular 

functionalities that are operative in other metabolically relevant tissues. Despite the limitations of 

using such cellular assays for functional genomics assessments of complex multicellular, multi-

tissue diseases, the adipogenesis assay arguably fulfilled it utility as a screening tool in our 

study as both genes that we ultimately nominated for in vivo study manifested relevant loss of 

function phenotypes that can be plausibly linked to the originating GWAS traits. Indeed, other 

studies have demonstrated predictive power of the adipogenesis assay for relevant metabolic 

phenotypes or for functional categorization of GWAS genes(37, 38). As such, we view the 

adipogenesis assay as a tool best applied for prioritization—but not definitive discrimination—of 

candidate disease genes.   

The genomics landscape has been reoriented by the recognition of (1) the functional 

relevance of variation in non-coding DNA (2) the potential for long-distance cis-regulatory 

effects such that the causal gene for GWAS signals may not be the ‘nearest gene’ and (3) non-

coding regulatory domains may regulate multiple gene targets, although there are limited 

empirical examples of this third concept(39-47). In establishing functional relevance for the 



UBE2E2 locus to metabolic disease, this study also implicates all three of these mechanisms 

underpinning functional manifestations of non-coding variation. By identifying more than one 

contributing ‘causal gene’, we provide an experimental example of how the polygenic paradigm 

may extend down to the level of individual disease associated variants. In the functional 

genomics field, a single candidate causal gene is often nominated based on having the 

strongest effect size in a functional assay and therefore this study suggests the importance of 

considering supporting roles for additional genes with lesser effect sizes in functional genomics 

screens. Given the known phenomenon of clustering of functionally related genes(48, 49), it is 

possible that the interplay between non-coding genetic variation and causal gene clusters is 

more prevalent than appreciated. It will be important to consider and quantify the contributions 

of secondary variant-gene couplings that may represent an under-appreciated component of the 

genetic architecture of polygenic disease.  

 

Methods 

Sex as a biological variable 

Our study examined male and female mice. Some of the reported phenotypes were sexually 

dimorphic with respect to the scope of effect size. 

 

Murine studies 

Mice were maintained under a 12-hour dark/light cycle at 22°C ± 2°C receiving food and water 

ad libitum unless specified. The diet-induced obesity model was performed by administering 

adult mice a high fat diet or normal chow control diet (Research Diets D12492/ D12450J). 

Ube2e2 and Ube2e1 knockout mice were generated using CRISPR technology by the 

Transgenic Mouse Core at Harvard Medical School. Guide RNAs (gRNAs) targeting the coding 

regions of Ube2e2 and Ube2e1 are detailed in Supplemental Table 1. To achieve knockout, 



paired gRNAs and Cas9 protein were microinjected into one-cell embryos with removal of the 

targeted regions confirmed by sequencing. 

 Glucose and insulin tolerance testing was performed as previously described(50). Mice 

were fasted for 16 and 4 hours respectively. Glucose (1.5g/kg BW) or insulin (0.5-1.0 U/kg BW, 

for obese mice, we used 1.0U/kg BW, for lean mice, use 0.5U/kg BW) were administered by 

intraperitoneal injection and glucose measurements performed by sampling a few microliters of 

blood from the tail vein with a glucometer (Bayer Contour or Medline Pro). 

 

In vitro adipogenesis models 

Three different adipocyte precursor cell-types were utilized for adipogenesis assays in this 

study: primary adipocyte progenitor (AP) cells isolated from genetic mouse models cellular 

adipogenesis models, murine 3T3L1 cells for viral genetic loss of function studies due to their 

high adipogenesis efficiency, and human mesenchymal stem cells (MSC) for experiments 

where the human genome was critical.   

 For isolation of primary AP cells, mice were sacrificed at approximately 4-weeks-old. 

Adipose tissue depots were minced and digested in an enzyme cocktail, consisting of 

collagenase D (Roche) and dispase II (Zenbio or Invitrogen), as described previously(50). After 

centrifugation (4°C, 400g, 10 mins), the pelleted stromal vascular fraction was subjected to 

negative selection by column-based magnetic-assisted cell sorting (MACS), using monoclonal 

anti-CD31 microbeads (Miltenyi Biotec) and a biotin-conjugated monoclonal anti-lineage cocktail 

followed by anti-biotin MicroBeads (Miltenyi Biotec) to negatively select endothelial cells and 

hematopoietic cells respectively. The targeted lineage+/CD31+ cells were then depleted by 

retaining them on a MACS Column in the magnetic field of a MACS Separator. The unselected 

cell fraction was eluted through the column and cultured in DMEM-F/12 GlutaMAX medium 

(Gibco) with 10% Premium FBS (Corning) and Pen/Strep.  



3T3-L1 cells (ZenBio), hTERT immortalized adipose-derived human MSCs (hMSCs, 

ATCC, SCRC-4000), and primary AP cells were cultured to confluence. AP cells were cultured 

in DMEM/F-12 GlutaMAX with 10% FBS, while 3T3-L1 cells were cultured in DMEM GlutaMAX 

with 10% FBS. hMSCs were cultured in MSC basal medium (ATCC PCS-500-030) 

supplemented with the MSC growth kit (ATCC PCS-500-040) according to the manufacturer's 

instructions. To stimulate adipogenesis in 3T3-L1 cells and primary APs, an adipogenic cocktail 

containing dexamethasone (1 μM), insulin (10 μg/ml), and isobutylmethylxanthine (0.5 mM) was 

used. For the induction of hMSCs, rosiglitazone (0.5 μM) was added to the adipogenic cocktail. 

After 96 hours of induction, the cells were switched to a maintenance medium, which consisted 

of standard culture medium supplemented with insulin (10 μg/μl). The maintenance medium 

was refreshed every 2 days. For Nile Red staining, cells were plated in Corning™ 96-Well Clear 

Bottom Black plates and with fluorescent signal after adipogenic differentiation quantified with a 

SpectraMax M5 plate reader (Molecular Devices). 

 

CRISPR deletion   

For CRISPR deletion experiments in human MSC, we designed guide RNAs (gRNAs) using the 

CRISPOR tool to target specific non-coding regions associated with single nucleotide variants 

(SNVs) at the UBE2E2 locus. Two gRNAs (located upstream and downstream of the targeted 

SNP site, respectively)  for each region were selected based on predicted high on-target 

efficiency and minimal off-target potential. We cloned two gRNA into the LentiCRISPR-V2 

backbone to generate a dual-gRNA CRISPR lentivirus. After CRISPR-mediated excision, we 

confirmed the deletion of the target regions by amplifying the regions surrounding the cut sites 

using PCR. Since 80-290bp regions were targeted, we were able to confirm the removal of the 

genomic DNA in this region using genomic DNA PCR.  

 We assessed the effect of these deletions on the expression of genes located in the 

neighborhood of the UBE2E2 locus. Our a priori criteria to define the UBE2E2 neighborhood 



included genes located within ~500 kb of the UBE2E2 locus or more distant genes within the 

putative topological neighborhood identified by incorporating the physical proximity of genomic 

elements and the regulatory architecture. Specifically, we used chromatin interaction datasets 

(Hi-C) to identify chromatin loops that define the boundaries of the topologically associating 

domain (TAD), which included UBE2E2, and within which genes and regulatory elements are 

more likely to interact(20). We also incorporated chromatin interaction maps, such as promoter 

capture Hi-C, to detect long-range enhancer-promoter interactions with an emphasis on 

regulatory elements that may interact with UBE2E2 and overlayed epigenomic data that 

included all known regulatory effector binding regions (e.g., histone modification marks such as 

H3K27ac, H3K4me1, H3K4Me3) and DNaseI hypersensitive (DHS) elements(51). 

 

CRISPRi screen 

We used cultured hMSC to conduct a parallel CRISPRi screen across the UBE2E2 and 

UBE2E1 loci for regulation of UBE2E2 and UBE2E1 expression, following Fulco’s protocol with 

minor modification(18, 19). We acquired a custom guide RNA library from GenScript, which 

included a single genomic locus tiling hg19 Chr3: 22,500 kb – 24,500 kb (92,683 gRNAs with 

MIT Specificity score > 50) and non-targeting gRNAs (4082 gRNAs from Weissman Non-

targeting pool and 3673 gRNAs targeting 70 randomly non-expressed gene promoter region) in 

the same pool (Supplemental File). The sgRNA libraries were constructed into the sgOpti vector 

(Addgene) using the NEBuilder HiFi DNA Assembly kit (NEB, E5520). To create a dox-inducible 

KRAB-dCas9-expressing hMSC line, we performed lentiviral infection using the pCW-KRAB-

dCas9-BSD-BFP vector and selected positive cells with blasticidin (10 μg/ml). We then 

transduced the gRNA libraries into the hMSC line at a low multiplicity of infection (~0.3) and 

selected the positive cells with puromycin (2.5 μg/ml) for 4 days. After selection, we collected 

positive cells using 0.05% trypsin-EDTA and reseeded them into new culture dishes. The cells 



were grown to confluence with 0.2 μg/ml puromycin and 1 μg/ml doxycycline. Ultimately, we 

collected 320 million cells for analyses. 

 We utilized the PrimeFlow RNA Assay Kit (Thermo Fisher, 88-18005) to perform flow 

cytometry selection according to the manufacturer's instructions. For each sample, 80 million 

cells were labeled with probesets targeting the mRNAs of genes of interest and the positive 

control, GAPDH. Probesets used are listed in Supplemental Table 2. We diluted the stained 

cells in PBS with 0.5% BSA to a concentration of 2 × 10^7 cells/ml, filtered them using a 30-μm 

filter, and sorted 80 million cells for each screen into three bins based on the fluorescence 

intensity of the target genes using the BD FACS Aria II. To control for differences in staining 

efficiency, we normalized the fluorescence associated with UBE2E2 or UBE2E1 to GAPDH. We 

set the gates for each bin on the compensated signal to capture cells according to the following 

percentiles: Low: 0–15%; Center: 35–65%; High: 85–100% 

 We collected each sorted cell sample by centrifugation at 800g for 5 minutes and 

extracted genomic DNA using the Qiagen DNeasy Blood & Tissue kit (Qiagen, 69516) with 

minor modifications to the cell lysis procedure. Briefly, we added 360 μl of Qiagen ATL buffer 

and 40 μl of Qiagen proteinase K to the lysis buffer and mixed thoroughly by vortexing for 15 

seconds. The cell lysate was incubated on a Thermomixer at 60°C with 400 rpm vibration 

overnight. We then added 400 μl of a Qiagen AL buffer mixture (398 μl AL buffer plus 2 μl 

carrier RNA), mixed the lysis by inverting it 10 times, and added 4 μl of RNase mixture (Thermo 

Fisher) followed by incubation at 37°C for 30 minutes to remove RNA contamination. After 

adding 400 μl ethanol and mixing thoroughly by vortexing, we purified the genomic DNA using 

silica-membrane-based columns according to the manufacturer’s protocol. We amplified sgRNA 

integrations from 1 μg of genomic DNA for each sample by PCR using indexed sgRNA 

sequencing library primers containing Illumina adaptors with the NEB Q5 Next Ultra II kit 

(Supplemental Table 3). The NGS library (~200 bp) was purified by 6% TBE gel separation and 

the Beckman Ampure XP kit, and the pooled library was sequenced on a NovaSeq 6000 using 



custom Illumina sequencing and index primers (Supplemental Table 4) to an average depth of 

>250 reads per sgRNA.  

Bioinformatics and biostatistical analysis were performed to quantify gRNA amplicons. 

First, based on the raw sgRNA sequencing data, we conducted text searching to extract the 

15bp sequences upstream of the ‘GTTTAAGAGCTATGCTGGAA’ sequences (the common 

downstream sequence of the different CRISPRi gRNAs) and quantified their abundance per 

sample. Second, according to the gRNA library profile (Supplemental File including No express, 

Tiling and Weissman off-target regions), we calculated the number of reads per gRNA per 

sample, and the gRNA abundance was further normalized by the total count. Next, based on 

gRNA coordinate position, gRNAs were grouped by a 2000bp-sliding-window strategy, where 

neighboring gRNAs locates within the window region were clustered together. Finally, 

differential analysis was performed to screen the windows with differential gRNA abundance 

when comparing bins of differential UBE2E2 and UBE2E1 expression (based on Primeflow 

signal). These gRNAs were further annotated by TSS and exon regions and overlapped with the 

ATAC-seq peak regions. 

 

Proteomics 

3T3-L1 cell lines with Ube2e1 or Ube2e2 knockdown were treated with or without an adipogenic 

cocktail for 24 hours. We collected cell pellets using 1% trypsin-EDTA. TMT-based quantitative 

proteomics analysis was performed by Creative Proteomics (Creative Proteomics, NY, USA). 

The TMT10plex Isobaric Label Reagent Set and the Pierce Quantitative Colorimetric Peptide 

Assay were purchased from Thermo Fisher Scientific. Labeled peptides from each group were 

fractionated into six components using HPLC. Nano LC-MS/MS analysis was performed using 

an Ultimate 3000 nano UHPLC system (Thermo Scientific, Waltham, MA) coupled online to a Q 

Exactive HF mass spectrometer (Thermo Scientific) equipped with a Nanospray Flex Ion Source 

(Thermo Scientific). For TMT-labeled samples, the full scan was performed between 350-1,650 



m/z at a resolution of 120,000 at 200 Th. The automatic gain control target for the full scan was 

set to 3e6. The MS/MS scan operated in Top 15 mode using the following settings: resolution of 

30,000 at 200 Th, automatic gain control target of 1e5, normalized collision energy at 32%, 

isolation window of 1.2 Th, charge state exclusion for unassigned, 1, >6, and dynamic exclusion 

of 40 seconds. Raw MS files were analyzed and searched against the mouse protein database 

using MaxQuant (version 1.6.2.14). The parameters were set as follows: protein modifications 

included carbamidomethylation (C) as a fixed modification and oxidation (M) as a variable 

modification; the TMT-10plex was specified; enzyme specificity was set to trypsin; the maximum 

missed cleavages were set to 2; the precursor ion mass tolerance was set to 10 ppm, and 

MS/MS tolerance was 0.6 Da. 

 

RNA-seq 

3T3-L1 cell lines with Ube2e1 or Ube2e2 knockdown were treated with or without an adipogenic 

cocktail for 12 hours. We collected cell pellets using 1% trypsin-EDTA. Total RNA was extracted 

using the Qiagen RNeasy Kit (Qiagen, 74104) following the manufacturer's instructions. RNA 

integrity and quantification were assessed using the Agilent 2100 Bioanalyzer. After quality 

control procedures, mRNAs were enriched using oligo(dT) beads, and rRNA was removed 

using the Ribo-Zero kit. Library construction and quality control were performed by Novogene 

(Novogene, CA, USA) following the Illumina protocol. Libraries were pooled and sequenced on 

the Illumina PE150 sequencing platform. Each sample achieved 20 million clean reads after 

filtration by FASTQC. RNA-seq quantification was analyzed using Kallisto(52) Differential 

expression analysis was performed using DESeq2 with the criteria of |log2(fold change)| ≥ 0.6 

and Q-value < 0.05 on the Dr. Tom platform (http://biosys.bgi.com) (BGI-Shenzhen, China Gene 

Set Enrichment Analysis (GSEA) was performed using the Broad Institute's GSEA algorithm 

platform(53) (http://software.broadinstitute.org/gsea/index.jsp). The RNA-seq data were 

deposited in the GEO database under accession number GSE268800. 



 

ATAC-seq 

ATAC-seq samples were prepared following the Omni-ATAC protocol(54). Library quality control 

and sequencing were performed by Novogene (Novogene, CA, USA) on a NovaSeq 6000 

sequencer. ATAC-seq data were deposited in the GEO database. Trimmomatic was applied to 

trim low-quality reads and adapter sequences and remaining reads aligned to human reference 

genome hg38 by Burrows-Wheeler Aligner and further filtered by SAMtools(55). The aligned 

reads were further filtered by SAMtools and marked Duplicates were marked with Picard tools 

and peak calling performed by MACS to identify chromatin accessible regions(56). Finally, 

peaks were annotated by R package ChIPseeker to identify their closest genes(57).  

 

qPCR  

RNA was extracted using RNAzol RT (Molecular Research Center, Inc. – RN190) according to 

manufacturer’s protocol. cDNA was synthesized using the High-Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems), and qPCR was performed using the PowerUp SYBR 

Green Master Mix (Applied Biosystems). The ∆∆Ct method was used to calculate fold change.  

 

ELISA 

Serum insulin was measured by ELISA (Sigma) as previously described(50). Serum adiponectin 

and leptin were also measured by ELISA (R&D) and expressed as the ratio of adiponectin 

concentration (µg/mL) over leptin concentration (ng/mL).  

 

Histology 

We assessed adipocytes size as we have previously published and incorporating modifications 

to promote consistency (58-60). After HE-stained adipose tissue sections were de-labeled, a 

Histology Slide Scanner (PANNORAMIC 1000) was used to obtain whole slide images of each 



tissue section. Five different regions were randomly selected from these images using 

CaseViewer software. The selected images were then imported into the Fiji program, where the 

Adiposoft plug-in was used to automatically identify adipocytes, with manual adjustments made 

for cells that were either unrecognized or misidentified by the software. The cross-sectional 

areas of adipocytes in all five randomized regions were measured and recorded. All analysis 

procedures were conducted independently by three individuals in a single-blind manner, and the 

results were averaged. 

 

Statistics 

Normally distributed data was analyzed by two-tailed t-test when comparing two experimental 

groups. For comparisons of 3 or more groups a one-way ANOVA was used. To assess 

significance of genotype effects for single timepoint variables in experiments in which both 

sexes were included, we performed two-way ANOVA and reported p-values for genotype effect 

as our a priori primary hypothesis was related to genotype.  Prism 9 or 10 was used for 

statistical analyses unless otherwise stated.  

 

Study approval 

Animal experiments were approved by and in compliance with the Brigham and Women’s 

Hospital and the University of Pittsburgh Institutional Animal Care and Use Committees. 

 

Data availability 

Data contained in this manuscript can either be accessed from the ‘Supporting data values’ file 

or from the GEO database: GSE269375, GSE268800.  
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Table 1. Functional summary of UBE2E2 topological neighborhood genes. 
 

 
 
 
 
 
Table 2. Base pair distance of each SNV to the nearest ATAC peak or putative UBE2E2 and 
UBE2E1 cis-regulatory domains identified by CRISPRi window. 
 

 
 
  



 
 
Figure 1. Increased adiposity in mice with UBE2E2 loss of function 
(a) Schematic depicting characterization of Ube2e2-/- mice, relative to wildtype controls. 10-week-old 
mice were subjected to metabolic stress of diet-induced obesity.  Metrics of adiposity and glucose 
metabolism were assessed after 12 weeks of high fat feeding.  
(b) Total body mass and adipose tissue masses measured after 12 weeks of high fat diet. Significance 
assessed by two-way ANOVA with p-values reported for genotype effect inclusive of both sexes. 
Line=mean. N=13-14. 
(c) Adipocyte size indicated by mean cross-sectional for each mouse depot. Significance assessed by 
two-way ANOVA with p-values reported for genotype effect inclusive of both sexes. Line=mean. N=13-14. 
(d) Metrics of glucose metabolism assessed after 12 weeks of high fat feeding, indicating no significant 
difference relative to wildtype mice. Box plots show median with interquartile range and whiskers indicate 
max/min. N=13-14. 
 
 
 
 
 
 
 
 



 
 
Figure 2. Identification of multiple candidate causal genes in the topological neighborhood of 
UBE2E2  
(a) UBE2E2 neighborhood gene map. 
(b) Heat map showing relative changes in expression of neighborhood genes by qPCR during adipogenic 
differentiation of mesenchymal stem cells (MSC) in vitro. 
(c) Adipogenesis assay with shRNA knockdown of neighborhood genes normalized to sh-scramble 
control (dotted line at 1.0) with Ube2e2 knockdown shown as positive control. Each dot represents the 
mean of technical replicates for an individual biological replicate experiment (n=5, except Nrld2a which is 
n=3). For each gene knockdown, significance assessed by one-sample t-test relative to null expectation 
equal to scramble control value of 1: *p<0.05; **p<0.01; ***p<0.005; ****p<0.001. 



(d) CRISPR/Cas9 excision of ~200bp SNV containing regions in cultured MSC. Expression of genes in 
the UBE2E2 topological neighborhood assessed by qPCR with each dot indicating mean of technical 
replicates for an independent biological replicate experiment. To merge different biological replicate 
experiments (n=4), data expressed relative to control and p-value calculated by one-sample t-test relative 
to expected null value=1. 
  



 
 
Figure 3. Integration of ATAC-seq and CRISPRi screen to define cis-regulatory landscape at the 
UBE2E2 locus 
(a) Schematic depicting CRISPRi protocol to identify candidate cis-regulatory domains for UBE2E2 and 
UBE2E1 expression as quantified by RNA FISH and flow cytometry in human MSC. 
(b) Graphs of Log2fold change in gRNA enrichment as a function of sliding window location on 
chromosome 3 at the putative UBE2E2 and UBE2E1 promoters.  
(c) ATAC-seq tracks of human MSC showing peaks (arrows) near GWAS SNV and shown by gray 
shading in ‘d’.  
(d) guide RNA enrichment in the vicinity of the five GWAS SNV for adiposity and T2D traits. 



(e) Ven diagrams showing partial overlap of candidate UBE2E2 and UBE2E1 regulatory domains using 
two different levels of stringency: left = candidate domains identified by CRISPRi; right=candidate 
domains identified by both CRISPRi and ATAC-seq. 
(f) GTEX data extracted for both UBE2E2 and UBE2E1 showing correlation of the respective transcript 
levels across tissues.   
 
 
 
  



 
 
Figure 4. Functional divergence of UBE2E2 and UBE2E1 
(a) Schematic depicting multi-omics investigation of molecular programs with Ube2e2 and Ube2e1 loss of 
function. 3T3L1 cells expressing shUbe2e2, shUbe2e1, or scramble control were analyzed at confluency 
or after adipogenic induction (DMI). 
(b) Volcano plots demonstrate differential protein levels in cell homogenates. Proteins previously linked to 
adipogenesis or T2D are indicated.  
(c) Ven diagrams showing overlap of differentially regulated proteins. 
(d) RNA-sequencing data visualized by volcano plot. 
(e) Ven diagrams showing overlap of differentially regulated gene programs as assessed by GSEA 
analyses. 
 
 
  



 

 
 
Figure 5. UBE2E1 loss of function in mice impairs glucose metabolism with diet-induced obesity 
(a) Schematic depicting experimental protocol. 8-week-old mice were entered into the study. Female n=8-
9; male n=10-15. 
(b) Body weight evolution with diet induced obesity in Ube2e1 knockout mice. Female mice showed no 
difference in body weight over time. Curves for the two Ube2e1 mutant lines diverged from control in male 
mice but converged to control by the end of the 12-week high fat feeding period. Left: male mice; right: 
female mice. # 1086 p<0.05; * 1083 p<0.05.  
(c) Terminal body mass and adipose tissue weights at time of sacrifice after 12 weeks diet induced 
obesity. Reported p-values for 2-way ANOVA, genotype effect inclusive of both sexes.    
(d) GTT of mice in “b” after 12 weeks high fat feeding. Two-way ANOVA with p-value for genotype x time 
effect reported in the bottom left corner. After Dunnett’s adjustment: * 1083 p<0.05; ** 1083 p<0.005. 
(e) ITT of mice in “b” after 12 weeks high fat feeding.  
 
  



 
Figure 6. Augmented adiposity and dysregulated glucose homeostasis with compound 
heterozygous loss of Ube2e2 and Ube2e1 
(a) Schematic depicting experimental protocol. 8-week-old mice were entered into the study.  
(b) Body weight evolution with diet induced obesity (n=11-13). P-value for genotype effect in two-way 
ANOVA. 
(c) Terminal adipose tissue and liver weights at time of sacrifice after 12 weeks diet induced obesity. 
Reported p-values for 2-way ANOVA, genotype effect inclusive of both sexes (n=9-12).    
(d) GTT after 12 weeks high fat feeding. Two-way ANOVA with p-value for genotype x time effect. 



(e) ITT after 12 weeks high fat feeding. Two-way ANOVA with p-value for genotype x time effect reported 
in the bottom left corner (n=11-12). After Sidak’s adjustment: * p<0.05. 
(f) Terminal serum insulin levels. Reported p-value for 2-way ANOVA, genotype effect (n=11-12). 
(g) Terminal HOMA-IR. Reported p-value for 2-way ANOVA, genotype effect (n=11-12). 
(h) Attenuation of adipose tissue function as assessed by terminal serum adiponectin:leptin ratio. 
Reported p-value for 2-way ANOVA, genotype effect (n=11-12). Sensitivity analysis performed by 
removing wild-type female outlier with resultant p-value=0.031.  
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