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ABSTRACT 45 

We evaluated the safety and viral rebound, after analytical treatment interruption (ATI), 46 

of vedolizumab and ART in recent HIV-1 infection. We used this model to analyze the 47 

impact of α4β7 on the HIV-1 reservoir size. Participants started ART with monthly 48 

Vedolizumab infusions and ATI was performed at week 24. Biopsies were obtained from 49 

ileum and caecum at baseline and week 24. Vedolizumab levels, HIV-1 reservoir, flow 50 

cytometry and cell-sorting and antibody competition experiments were assayed. 51 

Vedolizumab was safe and well-tolerated. No participant achieved undetectable viremia 52 

off ART 24 weeks after ATI. Only a modest effect on the time to achieve >1000 HIV-RNA 53 

copies/mL and the proportion of participants off ART was observed, being higher 54 

compared to historical controls. Just before ATI, α4β7 expression was associated with 55 

HIV-1 DNA and RNA in peripheral blood and with PD1 and TIGIT levels. Importantly, a 56 

complete blocking of α4β7 was observed on peripheral CD4+ T-cells but not in gut (ileum 57 

and caecum), where α4β7 blockade and vedolizumab levels were inversely associated 58 

with HIV-1 DNA. Our findings support α4β7 as an important determinant in HIV-1 59 

reservoir size, suggesting the complete α4β7 blockade in tissue as a promising tool for 60 

HIV-cure combination strategies. 61 

 62 
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INTRODUCTION  66 

 67 

Antiretroviral therapy (ART) suppresses HIV-1 replication to undetectable plasma levels 68 

but fails to eradicate the virus (1). HIV-1 remains transcriptionally active, primarily from 69 

defective HIV proviruses(2), or latent in anatomical and cellular reservoirs (3, 4). 70 

However, HIV rebounds after ART interruption in most people living with HIV (PLWH) (5, 71 

6). Therapeutic strategies are being explored to achieve the HIV eradication or 72 

permanent viral remission in the absence of ART, as occurs in persistent HIV-1 73 

controllers (7). HIV-1 preferentially infects activated memory CD4+ T-cells, which are 74 

enriched in gastrointestinal tissues (GITs) (8, 9). One of the pathways used by CD4+ T-75 

cells for trafficking into GITs is the interaction between α4β7 integrin, expressed on 76 

CD4+ T-cells, with the mucosal vascular addressin cell adhesion molecule 1 (MAdCAM-77 

1), expressed primarily on high endothelial venules within GITs (10). Additionally, α4β7 78 

integrin is also incorporated in HIV-1 virions (11). HIV-1 gp120 can bind to α4β7 integrin, 79 

expressed on CD4+ T-cells, leading to a rapid activation of lymphocyte function-80 

associated antigen 1 (LFA-1), the integrin involved in the establishment of virological 81 

“synapses” and promoting cell-to-cell transmission of infection (12). These are key 82 

aspects in HIV-1 immunopathogenesis that need to be tackled to achieve a sustained 83 

virological remission since a high number of the target cells for HIV-1-infection are in the 84 

GITs. In this sense, CD4+α4β7+ T-cells were found to harbor three times more simian 85 

immunodeficiency viruses (SIV) DNA than α4β7- T-cells subsets (13). Besides, it has been 86 

shown that high levels of CD4+α4β7+ T-cells increased the susceptibility to HIV-1 87 

infection in nonhuman primates and heterosexual women (14–16). In addition, 88 

treatment with α4β7 blocking molecules significantly reduced SIV-DNA levels in the gut 89 

(13, 17–19). However, the impact of blocking α4β7 expression on the HIV-1 reservoir 90 

landscape in peripheral blood and tissue in humans remains uncertain. These findings 91 

led to the hypothesis that α4β7 could be targeted to achieve a permanent virological 92 

remission off ART in humans. Vedolizumab is a humanized monoclonal antibody against 93 

α4β7 that is licensed for the treatment of inflammatory bowel disease (20–22). The 94 

therapeutic role of an α4β7 monoclonal antibody in HIV cure research remains unclear. 95 

In a recent clinical trial, no sustained viral remission was found after ART and 96 

vedolizumab treatment in ART-suppressed participants with chronic HIV-infection (23) 97 
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and the seminal efficacy data generated in a non-human primate model (19) could not 98 

be reproduced (24–26). In the present study, we evaluated the safety and efficacy in viral 99 

rebound, after analytical treatment interruption (ATI), of vedolizumab combined with 100 

ART on recently infected PLWH. None of the participants achieved undetectable viremia 101 

off ART at the end of the follow-up. However, importantly, α4β7 expression was 102 

associated with DNA and RNA HIV-1 levels in peripheral blood and in two gut locations 103 

(ileum and caecum). In addition, α4β7 levels were associated with PD1 and TIGIT protein 104 

levels, immune checkpoints molecules previously associated with the HIV-1 reservoir 105 

(27). Finally, just before ATI, despite the complete α4β7 blockade on peripheral CD4+ T-106 

cells, α4β7 was not entirely blocked in the gut where the percentage of α4β7 blockade 107 

and vedolizumab levels were inversely associated with HIV-1 DNA levels. Therefore, 108 

using this model we describe key insights into the role of α4β7 in vivo in human HIV-1 109 

reservoir.   110 
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RESULTS 111 

 112 

Participants’ characteristics and safety of vedolizumab and ART in PLWH 113 

Ten PLWH naïve for ART (nine cisgender males and one cisgender female) were enrolled 114 

between September 2018 and June 2019 (Fig. 1); all participants completed the study 115 

follow-up period. A total of seven monthly vedolizumab infusions were administrated, 116 

in addition to ART, to each participant for 24 weeks. No adverse effects were observed 117 

during the infusions or post-infusion periods (Supplementary Table 1). Furthermore, no 118 

participant had detectable anti-vedolizumab antibodies at baseline (BL) or throughout 119 

follow-up (data not shown). Date of HIV-1 infection was estimated as the average 120 

between a HIV-1 negative and HIV-1 positive serologic test (maximum time frame of six 121 

months) and/or 15 days before onset of symptoms compatible with acute retroviral 122 

syndrome. The median time from HIV-1 infection to study initiation was 75 (IQR: [40 to 123 

82]) days. Demographic, immunological, and virological characteristics of the study 124 

participants (vedolizumab group) are summarized in Table 1. In summary, vedolizumab 125 

was safe and well tolerated in people that star ART and vedolizumab in recent HIV-126 

infection. 127 

 128 

Efficacy after the analytical treatment interruption  129 

ART and vedolizumab were interrupted at week 24 and participants were followed every 130 

four weeks during the ATI period up to 24 weeks. The plasma viral load (pVL) kinetics 131 

before ATI is shown in Supplementary Fig. 1a. ART was restarted when pVL was >100,000 132 

HIV-1 RNA copies/mL in two consecutive measurements one month apart. All 133 

participants had detectable viremia during the ATI and none achieved undetectable 134 

viremia (<20 HIV-RNA copies/mL) after 24 weeks of follow-up in the absence of 135 

treatment (Fig. 2a). Four participants resumed ART due to the virological criteria and the 136 

other six participants completed the follow-up with pVL of 1,590 (participant 1, P1); 137 

6,250 (P4); 4,670 (P6); 10,000 (P8); 36,450 (P9) and 4,300 (P10) HIV-1 RNA copies/mL at 138 

week 48, respectively (Fig. 2a). Participant number seven restarted treatment at week 139 

36 (12 weeks after ATI) and showed new viral recrudesce at week 40, compatible with 140 

self-reported intermittent low adherence to the treatment during the whole clinical 141 

trial. For that reason, participant 7 was removed from HIV-1 reservoir analysis. No ART 142 
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resistance mutations were detected at BL, week 24 and 48 in this participant (data not 143 

shown). Overall, there were no decreases in CD4 T-cells counts at week 24, 28 and 48 144 

compared to the BL; in fact, we observed a significant increase in CD4 T-cells counts at 145 

week 24 and 28 (Supplementary Fig. 1b). We neither observed a significant decrease 146 

from ATI to week 48 (Supplementary Fig. 1b). Therefore, in this study we did not see 147 

sustained viral remission during ATI after 24 weeks of ART treatment and vedolizumab 148 

in recently infected PLWH. 149 

Subsequently, in a post hoc analysis, we compared the pVL kinetics during the ATI from 150 

the vedolizumab group with historical controls from the placebo arm of the AELIX-002 151 

study (NCT03204617) which also included a 24-weeks ATI (28). Both groups were 152 

matched by estimated time since HIV-1 acquisition at the moment of starting ART, sex 153 

and age (Table 1). At the moment of ATI, CD4+ T-cell counts and CD4/CD8 ratio were 154 

higher in the historical controls, as these participants had been ART suppressed for one 155 

year more than the vedolizumab group (Table 1). For the purpose of this post hoc 156 

comparison, time off ART was analyzed with the same virological ART resumption 157 

criteria as the vedolizumab group. We did not observe significant differences in the 158 

proportion of participants remaining off ART between the two studies (Fig. 2b). 159 

However, longer time to first VL>1,000 HIV-RNA copies/mL was observed in the 160 

vedolizumab group (p=0.034) (Fig. 2c). Time off ART was 24 [8 – 24] and 8 [5 – 20] weeks 161 

in our study and the historical control cohort, respectively (p= 0.06; Supplementary 162 

Table 2). A non-significant increase  in the time to reach >2000 HIV-RNA copies/mL 163 

(p=0.074)was observed in the vedolizumab group, and no differences were observed in 164 

the time to first VL >10000 or 20000 HIV-RNA copies/mL (p=0.333 and p=0.303, 165 

respectively) (Supplementary Fig. 1c-e) and other parameters (Supplementary Table 2). 166 

HLA protective alleles has been associated with the spontaneous control of HIV viremia 167 

(29, 30). Individual with these alleles may bias viral rebound kinetics after ATI. 168 

Considering only participants without protective HLA alleles (participants 36, 16 and 17 169 

from historical control cohort and participant 4 from our study were excluded), with the 170 

aim of avoiding confusing factors that could favor the viremia control, the differences 171 

between pVL kinetics increased between groups. There was a  a higher but not 172 

significant (p=0.051) proportion of participants remaining off ART in the vedolizumab 173 

group (Fig. 2d). Interestingly, the time off ART (24 [8 - 24] vs 7 [4 - 10]) and to peak VL (8 174 
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[4 - 14] vs 4 [4 - 7]) were higher in the vedolizumab group compared to the historical 175 

controls (p=0.027 and p=0.047), respectively, the same as the time to first VL>1000 HIV-176 

RNA copies/mL (p=0.044) (Fig. 2e). A non-significant increase was observedin the time 177 

to reach >2000 HIV-RNA copies/mL (p=0.094) in the vedolizumab group, and no 178 

differences were observed in the time to first VL>10000 or 20000 HIV-RNA copies/mL 179 

(p=0.263 and p=0.285, respectively). It is important to note, that VL pre-ART, in these 180 

participants without protective HLA alleles, was higher in the vedolizumab group 181 

compared to the historical control group (6.09 [5.12–6.90] vs 4.95 [4.43–5.73], p=0.030). 182 

 183 

Combined therapy resulted in decreased HIV-1 reservoir levels 184 

Next, although no sustained viral remission was found, we took advantage of the study 185 

design to explore the relationship between immunological factors in the intervention 186 

cohort, focusing on α4β7+ expression, and HIV-1 reservoir levels in peripheral blood and 187 

GIT. Regarding HIV reservoir levels, a decrease in total HIV-1 DNA was observed in 188 

PBMCs at weeks 24 and 28. (Fig. 3a, left panel). A similar pattern was observed in cell 189 

associated HIV-1 RNA except for week 28 (Fig. 3a, right panel). This may be due to the 190 

fact that all participants at week 28 were without ART but with detectable viral load (Fig. 191 

2a). Interestingly, in all of the studied time points, participants who restarted ART (red 192 

bars) showed higher levels of total HIV-1 DNA in PBMCs, than participants who reached 193 

study week 48 of follow-up without ART (blue bars) (Supplementary Fig. 2a, left panel). 194 

The same kinetic was observed for cell associated HIV-1 RNA but only for BL and week 195 

28 (Supplementary Fig. 2a, right panel). HIV-1 reservoir was also assayed in ileum and 196 

caecum cells (Fig. 3b). A significant decrease was observed in both locations in total HIV-197 

1 DNA and cell-associated HIV-1 RNA at week 24 respect to BL (Fig. 3b, left and right 198 

panel, respectively). We did not observe differences in HIV-1 reservoir levels (DNA or 199 

RNA) between ileum and caecum neither at BL nor week 24. Participants who restarted 200 

ART (red bars) presented similar levels of HIV-1 reservoir in GIT (DNA or RNA) than those 201 

who did not restart ART (blue bars) with no significant differences at BL and week 24 202 

neither in ileum nor caecum (Supplementary Fig. 2b, left and right panel, respectively). 203 

There was a strong positive correlation between total HIV-1 DNA reservoir in ileum and 204 

caecum and the plasma viral load at BL (Fig. 3c, left panels). Interestingly, this correlation 205 
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was not observed with the HIV-1 reservoir (DNA or RNA) in peripheral blood (Fig. 3c, 206 

right panels). 207 

 208 

Effect of combined therapy on β7 integrin expression 209 

The percentage of memory CD4+ T-cells expressing β7 integrin was determined 210 

throughout the follow-up period. Quantification of α4β7+ levels was performed by 211 

gating CD4+CD45RO+β7+ as previously described (9, 14, 31, 32). We did not observe 212 

differences in neither in the percentage (Fig. 4a) nor in the absolute numbers 213 

(Supplementary Fig. 3a)  CD4+CD45RO+β7+ cells in PBMCs during follow-up. 214 

Nevertheless, PLWH who restarted ART (red bars) had higher levels of 215 

CD4+CD45RO+β7+ in PBMCs at week 24 compared to those participants who completed 216 

the ATI period (blue bars) (Supplementary Fig. 4a). The same trend was observed for 217 

absolute CD4+CD45RO+β7+ cell counts but at not significant level (Supplementary Fig. 218 

5a). Interestingly, those participants who resume ART after ATI increased 219 

CD4+CD45RO+β7+ in PBMCs at week 24/28 and these increases were associated with 220 

non-significant higher viral load levels (p=0.077), total cell associated HIV-DNA (p=0.034) 221 

and HIV-RNA levels (p=0.034) in PBMCs  (Supplementary Fig. 4b) and higher HIV-RNA in 222 

ileum (p=0.034) and HIV-DNA in caecum at BL (p=0.077) (Supplementary Fig. 4c). 223 

Likewise at week 24, those participants who increased CD4+CD45RO+β7+ levels in 224 

PBMCs at week 24/28, had higher CD4+CD45RO+β7+, total and defective HIV-DNA and 225 

HIV-RNA levels in PBMCs at just before ATI (week 24) (Fig. 4b and Supplementary Fig. 226 

4d). The same results were observed when analyzing absolute CD4+CD45RO+β7+ T-cells 227 

counts (Supplementary Fig. 3b and 5b-d). In addition, cell associated HIV-RNA, total and 228 

defective, but not intact HIV-1 DNA levels were also directly associated with 229 

CD4+CD45RO+β7+ in PBMCs at week 24 (Fig. 4c). Furthermore, PLWH who restarted 230 

ART (red bars) presented higher levels of defective HIV-1 DNA levels (Supplementary Fig. 231 

4e). Unlike PBMCs (Fig. 4a), the CD4+CD45RO+β7+ subset was significant decreased in 232 

ileum and caecum at week 24 respect to BL (Fig. 4d). There were no decreases in total 233 

CD4+ T-cell levels in GI tissue (Supplementary Fig. 4f) and no differences were detected 234 

between PLWH who restarted ART (red bars) or not (blue bars) in GI tissue at BL and 235 

week 24 (Supplementary Fig. 4g).  236 
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To deeply analyze the importance of α4β7 integrin in the HIV reservoir levels, we also 237 

determined the HIV-1 reservoir in peripheral CD4+CD45RO+β7+ and β7- sorted cells (Fig. 238 

4e). CD4+CD45RO+β7+ cells presented higher levels of total HIV-1 DNA and cell 239 

associated HIV-1 RNA at BL and week 24 than CD4+CD45RA+β7- cells. Although 240 

statistical differences were not observed at week 24 in HIV-1 RNA levels, 33.3% were 241 

positive for HIV-1 RNA levels in CD4+CD45RA+β7- cells compared to 66.6% in 242 

CD4+CD45RA+β7+ cells (Fig. 4e). Interestingly, we only observed a decrease in HIV-1 243 

DNA and RNA in CD4+CD45RO+β7+ cells at week 24 relative to BL (Fig. 4e). 244 

 245 

Inefficient α4β7-blocking in GIT is associated with higher HIV-1 reservoir levels 246 

Serum concentrations of vedolizumab were determined prior each monthly infusion and 247 

at weeks 28 and 32 after ATI (Fig. 5a). The concentrations were similar to those reported 248 

in clinical trials of inflammatory bowel disease (20, 21) but the median concentration was 249 

slightly lower compared to the clinical trial performed in chronic HIV-1-infection(23). 250 

This may occur because vedolizumab can also be bound to the α4β7 integrin present on 251 

free virus envelope from participants with high detectable viremia. Using the anti-α4β7 252 

mAb clone ACT-1, with the same target epitope of vedolizumab, we observed that α4β7 253 

integrin was completely blocked by vedolizumab on peripheral CD4+ T-cells at week 24 254 

(Fig. 5b, left panel) while partial blocking was found in ileum and caecum in the same 255 

time point (Fig. 5b, right panel). Indeed, there was a positive correlation between the 256 

fraction of CD4+CD45RO+α4β7+ not blocked by vedolizumab and HIV-1 DNA in ileum 257 

and caecum (Fig. 5c, left panels). However, when we used the clone FIB504, which 258 

epitope is recognized independently of bounded vedolizumab, we did not observe this 259 

correlation (Fig. 5c, right panels). Taking this into account, we calculated the percentage 260 

of blocked α4β7 with the combination of ACT-1 and FIB504 clones. There were no 261 

differences in the percentage of CD4+CD45RO+α4β7+ cells blocked between ileum and 262 

caecum at week 24 neither between PLWH who restarted ART (red bars) or not (blue 263 

bars) (Supplementary Fig. 6a). Interestingly, we found an association between HIV-1 264 

DNA reservoir and CD4+CD45RO+α4β7+ cells blocked in both ileum and caecum at the 265 

same time point (Fig. 5d). Importantly, we also observed a negative correlation between 266 

the HIV-1-RNA levels in ileum and vedolizumab concentration at week 20 (Fig. 5e), this 267 

correlation was also observed for HIV-DNA levels on PBMCs (Supplementary Fig. 6b).  268 
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 269 

Immune checkpoint molecules are associated with α4β7 integrin and HIV-1 reservoir 270 

levels 271 

Immune checkpoint molecules have been associated with HIV-1 reservoir levels(27). We 272 

quantified the expression of PD1, TIGIT, TIM3 and LAG3 in memory CD4 T-cells in PBMCs 273 

and GI tissue cells and analyzed its association with α4β7 integrin and HIV-1 reservoir 274 

levels. Following the same trend as overall α4β7 expression in peripheral blood (Fig. 4a), 275 

we did not observe differences neither in PD1 and TIGIT expression (Fig. 6a) nor LAG3 276 

and TIM3 (Supplementary Fig. 7a) during follow-up. We observed that PD1 memory 277 

CD4+ T cell levels positively correlated with peripheral total HIV-DNA and a similar but 278 

non-significant (p=0.125) correlation was observed for TIGIT memory CD4+ T cell levels 279 

(Fig. 6b). In the same way, PD1 and TIGIT memory CD4+ T cell levels positively correlated 280 

with CD4+CD45RO+β7+ levels (Fig. 6c). We calculated the “multiple immune checkpoint 281 

phenotype” in combination with β7 integrin (simultaneous expressions of three or more 282 

of the analyzed markers). The simultaneous expression index of these markers 283 

(β7+LAG3+PD1+TIM3+TIGIT+) positively correlated with CD4+CD45RO+β7+ and 284 

peripheral total HIV-DNA (Fig. 6d), showing the highest levels in PLWH who restarted 285 

ART after ATI (Fig. 6d and Supplementary Fig. 7b). Furthermore, we analyzed whether 286 

these multiple immune checkpoints, α4β7+ expression and HIV-1 reservoir were 287 

associated with inflammation. Inflammatory soluble markers such as hsCRP, the 288 

coagulation biomarker D-Dimer (DD) and beta-2 microglobulin (B2M) were assayed (Fig. 289 

6e). B2M levels decreased along the follow-up (Fig. 6e, right panel) and at week 24 were 290 

associated with α4β7 and PD1 memory CD4+ T-cell expression, and with HIV-1 DNA 291 

levels, which in turn were also associated with DD levels (Fig. 6f).  292 

Finally, we also analyzed these molecules in GIT. In this case, the HLA-DR, LAG3, TIM3 293 

(Supplementary Fig. 7c) and PD1 expression (Fig. 6g), were significantly decreased in 294 

memory CD4 T-cells at week 24 respect to BL in ileum and caecum, contrary to what 295 

occurred in peripheral blood (Fig. 6a). Follicular CD4 T-cells (Tfh) express PD1 and are 296 

enriched in α4β7 integrin (33). Although Tfh levels did not change during follow-up (Fig. 297 

6h), at week 24, Tfh levels were positively associated with the fraction of CD4+ α4β7+ 298 
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not blocked by vedolizumab and a non-significant positive correlation was found with 299 

total HIV-1 DNA in GIT (Fig. 6i). 300 

 301 

Retinoic acid is associated with reservoir levels in GIT  302 

The main GITs cell subsets associated with higher α4β7 integrin expression are Tfh, 303 

regulatory CD4+ T-Cells (Treg) and IL-17- producing T helper (Th17). However, we did 304 

not observe associations between Treg and Th17 cell levels and α4β7 expression, in 305 

contrast to Tfh cells (Fig. 6i). Dendritic cells are the major producers of retinoic acid, 306 

which is required for inducing gut-tropic lymphocytes. Retinoic acid potentiates the 307 

induction of gut homing FoxP3+ Tregs and inhibits the development of Th17 cells. 308 

Th17/Treg cells ratio and retinoic acid are involved in the maintenance of GITs 309 

homeostasis and damage (34). We found that Treg levels were significant increased and 310 

consequently the ratio Th17/Treg decreased at week 24 at ileum (Fig. 7a). Although we 311 

did not observe differences in retinoic acid plasma levels during follow-up 312 

(Supplementary Fig. 8a), a negative correlation between total HIV-1 DNA levels in 313 

caecum and retinoic acid and a positive association between Treg and myeloid dendritic 314 

cells (mDCs) in caecum with retinoic acid levels were observed at week 24 (Fig. 7b). 315 

Finally, changes between peripheral HIV-1 DNA reservoir levels between BL and week 316 

24 (Supplementary Fig. 8b) and the Th17/Treg ratio at ileum and caecum showed a 317 

positivenon-significant and significant association, respectively(Fig. 7c).   318 
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DISCUSSION 319 

In this clinical trial, we analyzed the safety and efficacy of vedolizumab combined with 320 

ART to achieve virological remission in treatment naïve early-infected PLWH after ATI. 321 

Our results show that vedolizumab was safe and well tolerated. Nevertheless, no 322 

sustained undetectable viremia was seen during the ATI period. However, using this 323 

model we unveiled important insights about the role of α4β7 expression in HIV-1 324 

reservoir levels in peripheral blood and gastrointestinal tissue in humans. 325 

A previous study performed in individuals with chronic HIV-1 infection(23),using a 326 

similar regimen of vedolizumab than the one used in our study, also showed to be well 327 

tolerated, confirming a safe spectrum profile in PLWH. In the same study, vedolizumab 328 

was also not able to induce virological remission after ART interruption(23), in 329 

accordance with previous findings in the SIV model (24–26). However, the criteria for 330 

ART reintroduction after ATI in our study allowed us to observe that 60% of participants 331 

completed the ATI with no decreased CD4+ T-cell levels, and viral loads at the end of the 332 

ATI period ranging from 1,590 to 36,950 HIV-1 RNA copies/ml (median [IQR]; 5495 [3311 333 

– 13804]). Interestingly, the proportion of participants off ART and the time to achieve 334 

> 1,000 HIV-RNA copies/mL was higher compared to an historical control group (28), 335 

especially when participants with protective alleles were removed from the analysis, as 336 

a potential confounding factor. It is important to note, that these differences were 337 

observed despite the less favorable profile of the vedolizumab group in terms of the 338 

lower time on suppressive ART and the trend to have higher pre-ART viral loads, both 339 

factors associated to a faster viral recrudescence and higher levels of viremia after ATI 340 

(35, 36). Despite this modest efficacy effect, these data support the further testing of 341 

vedolizumab in combination with other immunotherapies for HIV-cure strategies. 342 

Our unique clinical trial design allowed us to analyze the role of α4β7 expression on 343 

peripheral blood and tissue and its impacts on HIV-1 reservoir levels after ART initiation 344 

in humans. First, we analyzed HIV-1 reservoir dynamics, cell associated HIV-DNA and 345 

RNA, on PBMCs and GITs along the follow-up. As expected, there was a fast decrease of 346 

HIV-1 reservoir in peripheral blood during the first 24 weeks after ART initiation, as it 347 

has been previously described after early ART and in contrast to what has been observed 348 

in chronically ART-suppressed individuals (37–39). In our clinical trial, study participants 349 
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who resumed ART early during the ATI (n=4) showed higher levels of HIV-1 reservoir, 350 

total cell associated HIV-DNA and RNA, at study entry and at ATI start in contrast to 351 

participants who remained off ART up to week 48 (n=6) in which peripheral HIV-1 DNA 352 

levels remained lower along the study. Similarly, low viral reservoir, total cell associated 353 

HIV-DNA and RNA, has been previously reported to be associated with a longer time to 354 

viral rebound (35, 36). Little is known about HIV-1 reservoir dynamics in gut-associated 355 

lymphoid tissue (GALT) after early ART initiation (40), due to the difficulty of obtaining 356 

gut biopsies in PLWH during acute HIV-1 infection (41). In our study, we also observed a 357 

sharp decrease of the HIV-1 DNA levels in GITs as it occurred in PBMCs; however, the 358 

strong direct association between pre-ART plasma viral load and HIV-1 DNA levels in 359 

GITs, but not with HIV-1 DNA in peripheral blood, highlights the important contribution 360 

of tissue reservoir to viremia, as suggested in animal models (42).  361 

The association of α4β7 levels and blocking with the modulation of HIV-1 reservoir 362 

landscape in peripheral blood and tissue in humans remains unclear. Our results 363 

revealed strong associations between memory CD4+α4β7+ and HIV-1 reservoir levels 364 

(both, cell associated HIV-DNA and HIV-RNA) in PBMCs and in two GITs locations, ileum 365 

and caecum. These results are similar to those found in a cohort of PLWH who started 366 

ART during primary infection, where total HIV-1 DNA was directly associated with α4β7 367 

expression in intestinal lamina propria mononuclear cells of ileum and rectum (43). 368 

Additionally, we were able to distinguish that this association of α4β7 levels with 369 

peripheral reservoir was mainly due to defective provirus, and not because of the intact 370 

proviral reservoir(44). However, the clinical relevance of defective HIV-DNA levels came 371 

from the fact that these levels were associated with further ART re-introduction after 372 

ATI. Further insights into the role of α4β7 expression on HIV-1 reservoir establishment 373 

came from the different α4β7 expression kinetics in peripheral blood and tissue. It is 374 

known that memory CD4+ α4β7+ cells are early target of HIV-1 infection following 375 

mucosal transmission (13, 14, 45, 46). We found that overall α4β7 expression on 376 

peripheral CD4+ T-cells did not change during combined treatment with ART for 24 377 

weeks. However, a detailed analysis of the dynamics of α4β7 expression on peripheral 378 

CD4+ T-cells demonstrated that those participants who decreased CD4+ α4β7+ cells 379 

before ATI achieved the lowest levels and this was associated with no recrudescent of 380 

viral rebound after ATI and at the same time with lower total and defective HIV-DNA 381 
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and HIV-RNA levels. These results are important because based on α4β7 dynamics and 382 

levels before ATI, we may predict those individuals who are going to resume ART. 383 

Regarding GI tissue, a uniform down-regulation of α4β7 expression was observed on 384 

ileum and caecum CD4+ T-cells during follow-up. To investigate the α4β7 block, we used 385 

two different antibodies sharing or not the same epitopes of vedolizumab binding site. 386 

This strategy led us to uncover that anti-α4β7 treatment completely blocks α4β7 in the 387 

periphery but not in GI tissue. Interestingly, we found that the cell associated HIV-DNA 388 

was strongly associated with the percentage of α4β7 not blocked on GITs memory CD4+ 389 

T-cells but not with total α4β7 expression. These data were supported by the higher HIV-390 

1 reservoir levels, cell associated HIV-DNA and HIV-RNA, in sorted α4β7+ peripheral 391 

blood CD4+ T-cells compared to α4β7- cells in accordance with previous findings in the 392 

simian model (13) and in humans in cells positive for α4β1 heterodimer that were 393 

enriched in HIV-1 content compared to α4β1- cells (47). These results also open the 394 

question of whether vedolizumab administration at higher doses would have increased 395 

virological efficacy. In this sense, it is important to note the favorable safety profile of 396 

vedolizumab compared to other immunomodulators for the development of adverse 397 

events, such us progressive multifocal leukoencephalopathy (48, 49). In our study, 398 

participants received monthly doses of 300 mg vedolizumab (4.3 mg/kg [3.6-5.02]) 399 

together with ART, the approved dose used for the treatment of IBD (20, 21). In previous 400 

studies, the primatized analogue of anti-α4β7 was administered at a dose of 50 mg/kg, 401 

10-fold higher than the dose of the present study, fully masking the expression of α4β7 402 

expressed on the surface of lymphocytes harvested from GITs biopsies (17, 18, 50, 51). 403 

These results suggest that the reduction of HIV-1 reservoir may be associated with 404 

vedolizumab concentration. Indeed, we found an inverse correlation between total cell 405 

associated HIV-DNA and HIV-RNA in peripheral blood and ileum, respectively, with 406 

vedolizumab levels just before ATI. 407 

Afterwards, we performed additional phenotypical characterization of α4β7+ CD4+ T-408 

cells and analyzed their association with HIV-1 reservoir levels. The expression of the 409 

immune checkpoint molecules PD1, LAG3 and TIM3 on T-cells was also previously 410 

identified as a preferential niche for the HIV-1 reservoir enrichment(27). In accordance 411 

with previous studies (52), we found that the co-expressing phenotypes of these 412 

immune checkpoint molecules and α4β7 expression on memory CD4+ T-cells exhibited 413 
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strong correlations with total cell associated HIV-DNA. These immune checkpoint 414 

molecules were identified as a strong predictor of time to viral rebound in some ATI 415 

cohorts (53). In our clinical trial, study participants who restarted ART exhibited higher 416 

levels of memory CD4+ α4β7+LAG3+PD1+TIGIT+TIM3+ T-cells at ATI time point. 417 

Interestingly, we found that this immune checkpoint molecules and α4β7+ phenotype 418 

were associated with inflammatory biomarkers, such as β2M and D-dimer levels, 419 

previously related with cell associated HIV-1 RNA (54). Besides, we found a direct 420 

association between total cell associated HIV-DNA and D-dimer and β2M levels in 421 

plasma. These results suggest a connection between HIV-1 reservoir and inflammatory 422 

parameters, potentially related with the T-cell turnover induced by the virus and the 423 

β2M shedding even in PLWH on treatment. Remarkably, we found decreased levels of 424 

LAG3, TIM3 and PD1 CD4+ T-cell in tissue during the follow-up, reflecting the decrease 425 

HIV-1 reservoir in tissue. 426 

Finally, we analyzed immune reconstitution in GITs of the three main functional subsets 427 

of CD4+ T cells that express α4β7: Treg, Tfh and Th17 (55, 56) in relation to GITs 428 

homeostasis and HIV-1 reservoir. No reconstitution was observed in Th17 and Tfh cells. 429 

Indeed, Tfh cells, that constitutively express PD1, were associated with free, not blocked 430 

by vedolizumab, α4β7 levels with a trend towards increased HIV-1 reservoir in ileum, 431 

suggesting the preferential infection of this T-cell subset (57). Conversely, we did find 432 

enlarged Treg levels in ileum during the follow-up and, subsequently Th17/Treg ratio 433 

decreased, which has been associated with GIT homeostasis and disease progression 434 

(58, 59). Additionally, we observed that Th17/Treg ratio was associated with HIV-1 DNA 435 

reservoir changes in the periphery along the follow-up. Besides, retinoic acid, produced 436 

by dendritic cells, plays an essential role in gut homeostasis and induces the expression 437 

of α4β7 (60, 61). Furthermore, dendritic cells from GITs enhance Treg cells’ 438 

differentiation in a retinoic acid-dependent manner (62) as well as convert vitamin A in 439 

retinoic acid (63). In agreement with this, our results show a direct association between 440 

retinoic acid plasma levels and myeloid dendritic and Treg cell levels in caecum tissue.  441 

This differential immune reconstitution, depending on GIT location, was concomitant 442 

with an inverse correlation at week 24 of retinoic acid plasma levels with total proviral 443 

HIV-1 DNA reservoir in the caecum. This may support the potential role of retinoic acid 444 

as a latency reversing agent (64). 445 
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Overall, our results are in agreement with those of the simian model, where blocking 446 

α4β7 with vedolizumab together with the use of a broadly neutralizing antibody delayed 447 

viral rebound after ATI (51), but also in humans, where the use of anti-α4β7 therapy was 448 

associated with the attrition of lymphoid aggregates that may potentially impact HIV-1 449 

reservoir levels in GIT (65). 450 

One of the major limitations of this study was the low number of participants and that 451 

most of the were men. However, the stringent inclusion criteria, only participants with 452 

confirmed acute/recent HIV-1 infection were included, and the extensive tissue 453 

sampling requirements justified the trial sample size and sex bias. Another limitation 454 

was the lack of a randomized control group. However, we were able to compare the ATI 455 

outcomes from our study with the placebo recipients from a recently reported study 456 

performed in a very comparable population.  457 

In conclusion, vedolizumab, administered for 24 weeks, was safe and well tolerated in 458 

early-treated PLWH. No sustained virological remission after ART interruption was found 459 

in participants treated with vedolizumab. Importantly, this clinical trial suggests that 460 

α4β7 is an important determinant of HIV-1 reservoir levels seeding in peripheral blood 461 

and specially in tissues in humans and therefore, supports further testing of 462 

vedolizumab in combination with other compounds, as a promising tool for HIV-1 cure 463 

strategies. 464 

 465 

  466 
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MATERIALS AND METHODS 467 

 468 

Sex as a biological variable 469 

Cisgender woman and men were included in the study 470 

 471 

Study design  472 

This was an open-label, single-arm phase 2 clinical trial to assess the safety and 473 

virological effect of vedolizumab (EntyvioTM) and ART in participants with early HIV-1 474 

infection and naïve for ART that underwent analytical treatment interruption (ATI) (Fig. 475 

1). Commercially available vedolizumab and ART were supplied by Virgen del Rocío 476 

University Hospital (Seville, Spain). ART regimen was dolutegravir (DTG, 50mg), 477 

tenofovir alafenamide (TAF, 25mg) and emtricitabine (FTC, 200mg), all qd. The clinical 478 

trial was performed at the Clinic Unit of Infectious Diseases, Microbiology and 479 

Parasitology and at the Phase I/II Clinical Trials Units at Virgen del Rocío University 480 

Hospital (Seville, Spain). PLWH were eligible if they were 18 to 65 years of age. 481 

Participants were required to have a CD4+ T-cells count of > 350 cells/µl and a viremia 482 

>104 HIV-1 RNA copies/ml. Study participants were recruited between September 2018 483 

and June 2019 and started ART together with 300mg of vedolizumab intravenous 484 

infusions at 0, 4, 8, 12, 16, 20 and 24 weeks. At week 24 of follow-up ART and 485 

vedolizumab treatment were interrupted. Biopsies from ileum and caecum were 486 

obtained at BL and week 24, pre-ART and pre-ATI, respectively. Throughout the 487 

treatment interruption phase, participants were monthly monitored by measuring CD4+ 488 

T-cells counts and plasma viremia. Criteria to restart ART during the ATI were a decrease 489 

in the levels of CD4 T-cells below 350 cell/µl or viral load levels above 105 HIV-1 RNA 490 

copies/ml (two consecutive measurements one month apart). These non-stringent 491 

restarting ART criteria were chosen to avoid missing a potential control of HIV-1 492 

replication after a potential peak of viremia after ATI. Participants who reached week 48 493 

of follow-up without meeting restart criteria were advised to restart ART if they had 494 

detectable plasma viremia (>20 HIV-1 RNA copies/ml).  495 

The safety end point was the proportion of participants with vedolizumab treatment-496 

related adverse events and its severity. All adverse events, severity and relationship to 497 

study product during vedolizumab infusion and follow-up were reported according to 498 
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the Division of AIDS Table for Grading the Severity of Adult and Pediatric Adverse Events, 499 

version 2.0, November 2014. The virological endpoint was defined as the number of 500 

participants remaining off ART and who achieved undetectable viral load at week 48 501 

according to the criteria above mentioned. 502 

For post-hoc efficacy analysis we compared this group of participants (vedolizumab 503 

group) with historical controls matched by age, sex and time of infection, corresponding 504 

to the placebo arm of the AELIX-002 (NCT03204617) vaccine trial performed in early-505 

treated PLWH that also included an ATI (28) for 24 weeks using the same ART 506 

resumption criteria than the vedolizumab group.  507 

 508 

Laboratory methods 509 

Absolute CD4+ and CD8+ T-cell counts were measured using an FC500 Flow Cytometer 510 

(Beckman-Coulter). The plasma HIV-1 RNA concentration was measured by quantitative 511 

polymerase chain reaction (COBAS Ampliprep/COBAS Taqman HIV-1 Test, Roche 512 

Molecular Systems; lower detection limit of 20 HIV-1 RNA copies/mL) according to the 513 

manufacturer’s protocol.  514 

 515 

Peripheral blood mononuclear cells isolation 516 

Peripheral blood mononuclear cells (PBMCs) were isolated using BD Vacutainer CPT 517 

Mononuclear Cell Preparation Tubes (with Sodium Heparin) by density gradient 518 

centrifugation one week before each vedolizumab infusion before ATI and at weeks 28, 519 

32, 36, 40, 44 and 48 of follow-up. PBMCs were cryopreserved in liquid nitrogen until 520 

further use.  521 

 522 

Isolation of gastrointestinal (GI) cells 523 

Ileal and cecal biopsies were obtained during colonoscopy at BL and at ATI start (week 524 

24). These two locations were biopsied for having a representation of immune inductive 525 

and effector sites, respectively (66). Fresh biopsies (10-13 pieces) were transported in 526 

R10 medium (RPMI medium supplemented with 10 % FBS, 1% penicillin and 1% L-527 

glutamine) and processed immediately. Intestinal biopsies were washed with phosphate 528 

buffered saline (PBS) and 14% ethylene diamine tetra-acetic acid (EDTA) during 30 529 

minutes at 37°C in agitation. The biopsies were then physically disrupted with blades. 530 
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Next, the intestinal biopsies were transferred to 20 ml of R10 containing 20 mg of Type 531 

IV collagenase (Sigma-Aldrich) and incubated for 30 minutes at 37°C with gentle 532 

agitation. After the first 15 minutes round of incubation with collagenase solution, 533 

biopsies were physically disrupted by syringes with needles. The disrupted tissue was 534 

transferred into the R10-collagenase solution for a second round of 15 minutes 535 

incubation in gentle agitation. After incubation, single-cell suspension was obtained by 536 

filtering through a 70 µm cell strainer and washed with R10 medium. Cells were 537 

cryopreserved in liquid nitrogen until further use. Two biopsies’ pieces were frozen 538 

intact in RNA-later and snap frozen at -80°C for further RNA and DNA extraction.  539 

 540 

Assay of soluble biomarkers and plasma levels of retinoic acid  541 

Serum and plasma samples were collected in serum separation tubes and in EDTA tubes 542 

and stored at -20°C until subsequent analysis of the following biomarkers: high-543 

sensitivity C-reactive protein (hsCRP), β2-microglobulin (β2M) and D-dimer (DD). The 544 

levels of hsCRP and β2M were determined by an immunoturbidimetric serum assay 545 

using a Cobas 701 analyzer (Roche Diagnostics). DD levels were measured by an 546 

automated latex-enhanced immunoassay (HemosIL D-dimer HS 500; Instrumentation 547 

Laboratory). Retinoic acid plasma levels were determined by UHPLC-MS/MS according 548 

to previously described method (67–69). All the assays were performed following the 549 

manufacturers’ instructions. 550 

 551 

Plasma levels of vedolizumab and immunogenicity 552 

Serum concentrations of vedolizumab and the presence of antidrug antibodies (ADAs) 553 

were determined in serum samples using the enzyme-linked immunosorbent assay 554 

(ELISA) RIDASCREE VDZ Monitoring (r-biopharm). The assays were performed following 555 

the manufacturer’s instructions. 556 

 557 

Immunophenotyping and quantification of α4β7 cells 558 

Cryopreserved PBMCs were thawed, washed (1800 rpm, 5min, room temperature) with 559 

phosphate-buffered saline (PBS) and incubated 35 min at room temperature with 560 

LIVE/DEAD Fixable Aqua Dead Cell Stain (Life Technologies) and extracellular anti-human 561 

antibodies anti-CD45RA (FITC); anti-TIGIT (PerCP-Cy5.5); anti-LAG3 (BV605); anti-PD1 562 
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(BV510); anti-integrin β7 (BV711); anti-CD27 (BV786); anti-CD38 (BV650); anti-CD3 563 

(APCH7); anti-integrin α4β7 (APC); anti-TIM3 (PeCF594); anti-HLA-DR (BV570); anti-CD4 564 

(AF 700); anti-CD19, anti-CD14 and anti-CD56 (Pacific Blue) (See supplementary table 3). 565 

PBMCs were then washed with PBS and permeabilized with Fixation/Permeabilization 566 

FoxP3 Kit (eBioscience) according to the manufacturer’s instructions. Cells were stained 567 

intracellularly at 4°C for 30min with anti-Ki67 (PE), and then washed and fixed in PBS 568 

containing 4% paraformaldehyde (PFA). Samples were acquired using LSR-II Fortessa 569 

Cytometer (BD Immunocytometry Systems) and analyses were performed using FlowJo, 570 

version 9.2. 571 

 572 

Isolated GI cells were thawed, washed (1800 rpm, 5min, room temperature) with PBS 573 

and incubated 35 min at room temperature with LIVE/DEAD fixable Violet Dead cell stain 574 

and extracellular anti-human antibodies anti-CCR6 (AF 647); anti-CD45RA (FITC); anti-575 

CD25 (PE-Cy7); anti-CXCR5 (BV421); anti-LAG3 (BV605); anti-CXCR3 (PerCP-Cy5.5); anti-576 

PD1 (BV510); anti-CD127 (BUV737); anti-CD45 (BUV805); anti-CD8 (BUV615); anti-CD69 577 

(BB700); anti-CD103 (BV480); anti-CCR7 (BUV563); anti-CD3 (APC-H7); anti-TIM3 578 

(PE/DAZZLE 594); anti-integrin α4β7 (APC); anti-CD123 (Alexa Fluor700); anti-CD11c 579 

(BV650); anti-HLA-DR (BV570); anti-integrin β7 (BV711); anti-CD27 (BV786); anti-CD19, 580 

anti-CD14, anti-CD20 and anti-CD56 (Pacific Blue) (See Supplementary table 3). Cells 581 

were then washed and permeabilized using Fixation/Permeabilization FoxP3 Kit 582 

(eBioscience) according to the manufacturer’s instructions. Cells were stained 583 

intracellularly at 4°C for 30min with anti-FoxP3 (PE-Cy5) and anti-Ki67 (PerCP-eFluor 584 

710) and then washed and fixed in PBS containing 4% paraformaldehyde (PFA). Samples 585 

were acquired using Cytek Aurora Spectral Cytometer 4L (Cytek Biosciences) and 586 

analyses were performed using FlowJo, version 9.2. 587 

 588 

Anti-integrin α4β7 mAb (APC; clone: ACT-1) was kindly provided by Dr. Danlan Wei and 589 

Dr. James Arthos, National Institute of Allergy and Infectious Disease (NIAID-NIH, 590 

Bethesda, Maryland, USA). Anti-integrin α4β7 mAb (APC; clone: ACT-1) and vedolizumab 591 

share the same epitope. Quantification of integrin α4β7 levels was performed using anti-592 

α4β7 mAb (APC; clone: ACT-1) at BL and by gating CD4+CD45RO+β7+ along the follow-593 

up. Previous studies have demonstrated that CD4+CD45RO+β7+ cells in peripheral blood 594 
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are >99% α4β7+ (9, 14, 31, 32); therefore, this gating strategy was used to quantify α4β7 595 

expression on CD4+ T-cells (Supplementary Fig. 9). The percentage of α4β7 integrin 596 

blocked by vedolizumab was calculated through the combination of anti-α4β7 (APC; 597 

clone: ACT-1) and anti-β7 (BV711; clone: FIB504). 598 

 599 

Cell sorting 600 

CD4 memory T-cells α4β7+ and α4β7- were sorted from PBMCs. Cryopreserved PBMCs 601 

were thawed, washed with PBS (1800 rpm, 5min, room temperature) and incubated 35 602 

min at room temperature with LIVE/DEAD Fixable Violet Dead cell stain and extracellular 603 

anti-human antibodies anti-CD45RA (FITC); anti-integrin β7 (BV711); anti-integrin α4β7 604 

(APC); anti-CD27 (BV786); anti-CD3 (APC-H7); anti-CD4 (AF700); anti-CD19, anti-CD14 605 

and anti-CD56 (Pacific Blue) (See supplementary Table 3). CD4+CD45RO+β7+ and 606 

CD4+CD45RO+β7- cells were sorted using BD FACSAria Fusion Flow Cytometer (BD 607 

Immunocytometry Systems) and analysis was performed using FlowJo, version 9.2. 608 

 609 

Quantitation of cell-associated HIV-1 DNA and RNA 610 

The procedures for quantitation of total cell-associated HIV-1 DNA and RNA have been 611 

previously described in detail (70). Briefly, levels of total cell-associated HIV-1 DNA and 612 

RNA were quantified by droplet digital PCR (ddPCR) from extracted DNA and RNA using 613 

the BIO-RAD QX200 Droplet Reader. Genomic DNA was extracted using Blood DNA Mini 614 

Kit (Omega, Bio-Tek) for the bulk of PBMCs and QIAamp DNA Micro Kit (Qiagen) for 615 

CD4+CD45RO+ β7+ and β7- sorted cells following the manufacturer’s protocol. RNA was 616 

extracted using NucleoSpin RNA purification kit (Macherey-Nagel) for the bulk of PBMCs 617 

and RNeasy Micro Kit (Qiagen) for sorted cells following the manufacturer’s protocol. 618 

DNA and RNA concentration were measured by the Qubit Assay (ThermoFisher 619 

Scientific) and carried to 30 ng/µL concentration. Bio-Rad QX200 ddPCR system was run 620 

according to the manufacturer’s protocol, using an annealing temperature of 58°C, using 621 

two pair of primers targeting LTR and Gag regions (70). Copy numbers were calculated 622 

using Bio-Rad QuantaSoft software v.1.7.4. RPP30 (to cell-associated HIV-1 DNA) and 623 

TBP genes (to cell-associated HIV-1 RNA) were the host cell genes used to normalize HIV-624 

1 copies.  625 

 626 
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Full-Length Individual Proviral Sequencing (FLIP-seq) in PBMCs 627 

 FLIP-seq was assayed in PBMCs at week 24. Genomic DNA, previously extracted from 628 

PBMCs (DNeasy Blood & Tissue kit, QIAGEN), was diluted to single proviral genomes 629 

based on ddPCR results and Poisson distribution statistics, where one provirus was 630 

present in approximately 20-30% of wells. Subsequently, DNA was subjected to HIV-1 631 

near-full-genome amplification using a single-amplicon nested PCR approach. The 632 

reaction was composed of: one unit of Invitrogen Platinum Taq (catalog 11302-029) per 633 

20 μl of reaction, 1x reaction buffer, 2 mM MgSO4, 0.2 mM dNTP, and 0.4 μM of forward 634 

(first-round nested-PCR: U5-623F, 5′-AAATCTCTAGCAGTGGCGCCCGAACAG-3′; second-635 

round nested-PCR: U5-638F, 5′-GCGCCCGAACAGGGACYTGAAARCGAAAG-3′) and 636 

reverse primer (first-round nested-PCR: U5-601R, 5′-TGAGGGATCTCTAGTTACCAGAGTC-637 

3′; second-round nested-PCR: U5-547R, 5′-GCACTCAAGGCAAGCTTTATTGAGGCTTA-3′). 638 

The PCR was performed using the following thermocycler program: 2 min at 92 °C, 10 639 

cycles [10 s at 92 °C, 30 s at 60 °C, 10 min at 68 °C], 20 cycles [10 s at 92 °C, 30 s at 55 °C, 640 

10 min at 68 °C], 10 min at 68 °C and 4 °C infinite hold. PCR products were visualized by 641 

agarose gel electrophoresis. All near full-length were subjected to Illumina MiSeq 642 

sequencing at the MGH DNA Core facility. Large deleterious deletions (<8000 bp of the 643 

amplicon aligned to HXB2), out-of-frame indels, premature/lethal stop codons, internal 644 

inversions, or packaging signal deletions (≥15 bp insertions and/or deletions relative to 645 

HXB2) were identified by an automated pipeline written in Python programming 646 

language (https://github.com/BWH-Lichterfeld-Lab/Intactness-Pipeline)(71) and the 647 

presence/absence of APOBEC-3G/3F-associated hypermutations was determined using 648 

Los Alamos National Laboratory (LANL) HIV-1 Sequence Database Hypermut 2.0  649 

program (72). Viral sequences without any of the mutations previously mentioned were 650 

classified as intact sequences. Phylogenetic distances between sequences were 651 

determined through maximum-likelihood trees in MEGA 652 

(https://www.megasoftware.net/) and visualized with Highlighter plots 653 

(https://www.HIV-1.lanl.gov/content/sequence/HIGHLIGHT/highlighter_top.html). 654 

 655 

 656 

Statistical analysis 657 
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Continuous variables were expressed as medians and interquartile ranges (IQRs), and 658 

categorical variables were expressed as numbers and percentages. Friedman Test with 659 

Dunn’s multiple comparisons test correction was used to assess differences along the 660 

follow-up. The Wilcoxon signed-rank test was used to analyze related samples and 661 

Mann-Whitney U and Chi-square tests were used to analyze differences between 662 

groups. Correlations between variables were assessed using Spearman’s rank test. Log 663 

rank test and Kaplan-Meier curves were used for time to event analysis regarding 664 

virological efficacy compared to historical control group. All p values <0.05 were 665 

considered significant. Statistical analysis was performed using Statistical Package for 666 

the Social Sciences software (SPSS 22.0; SPSS, Chicago, IL, USA). Multiple immune 667 

checkpoint phenotype were constructed using Pestle version 1.6.2 and Spice version 6 668 

(provided by M. Roederer, NIH, Bethesda, MD) and quantified with the polyfunctionality 669 

index algorithm (Pindex) employing the 0.1.2 beta version of FunkyCells Boolean 670 

Dataminer software, provided by Martin Larson (INSERM U1135, Paris, France) as 671 

previously described (73). 672 

 673 

Study approval 674 

All participants gave written informed consent prior to study start; and the clinical trial 675 

was approved by the Seville Provincial Ethics Committee of research with medicines 676 

(NCT03577782, please visit https://clinicaltrials.gov/ for protocol summary; Internal 677 

Code: FIS-VED-2017-01, Study Code: Nº EudraCT: 2018-000497-30) and authorized by 678 

the Spanish Agency for Medicines and Medical Devices (AEMPS). 679 

 680 

Data availability.  681 

Due to the sensitivity of the data, individual participant data will not be made available. 682 

Data generated by this study are available in the “Supporting data values” XLS file or 683 

upon request to the corresponding author. 684 
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Table 1. Characteristics of study participants.  965 

Characteristic Vedolizumab group 
(n=10) 

Historical Control groupa 
(n=15) p value 

Age (years) at study entry 39.8 [27.0 – 42.6] 34.0 [30.0 – 42.0] 0.657 
Male sex (%) 90 100 0.211 
Time since HIV infection at study 
entry (days) 75 [40 – 82] 55 [30 – 108] 0.912 

CD4+ T-cell counts (cells/mm3) at 
study entry 540 [401 – 735] 826 [608 – 950] 0.006 

CD8+ T-cell counts (cells/mm3) at 
study entry 1093 [603 – 1287] 937 [468 – 1101] 0.202 

Ratio CD4+/CD8+ T-cells at study 
entry 0.5 [0.4 – 0.9] 1.1 [0.7 – 1.6] 0.011 

Pre ART viral load 
(Log10 HIV-1-RNA copies/mL) 5.7 [5.0 – 6.9] 4.9 [4.4 – 5.9] 0.101 

Time on ART at ATIb start (years) 0.5 [0.5 – 0.5] 1.9 [1.6 – 3.2] <0.0001 
Time with undetectable viral load 
at ATI start (years) 0.3 [0.3 – 0.4] 1.5 [1.3 – 2.9] <0.0001 

INSTI based ART, n (%) 10 (100) 15 (100) >0.999 
Continuous variables were expressed as medians and interquartile ranges (IQRs), and 966 
categorical variables were expressed as numbers and percentages. The Mann-Whitney U and 967 
Chi-square tests were used to analyze differences of continuous and categorical variables 968 
between groups, respectively. 969 
aHistorical participants in the placebo arm of a therapeutic vaccine trial 27.   970 
bAntiretroviral treatment interruption. 971 

 972 



Fig. 1. Clinical trial design. Ten individuals with HIV-1 diagnosis in acute/recent infection phase were
enrolled. Participants started ART together with vedolizumab infusions (300 mg) at week 0, 4, 8, 12, 
16, 20 and 24. At week 24, ART and vedolizumab treatment were interrupted. Biopsies were obtained 
from ileum and caecum at week 0 and 24. Abbreviations: GALT, gut-associated lymphoid tissue; ART,
antiretroviral therapy and ATI, analytic treatment interruption. Figure created with Biorender.com
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Fig. 5. Inefficient α4β7 blocking in GITs is associated with HIV-1 reservoir levels. (a) Serum concentration of vedolizumab along the follow-up.
(b) Percentage of α4β7 integrin on peripheral CD4+ T-cells and on ileum and caecum CD4+ T-cells at BL and week 24. (c) Association between
α4β7 expression on CD4 T-cells and HIV-1 reservoir at ileum and caecum before ATI (week 24). (d) Correlation between the percentage of α4β7
integrin blocked by vedolizumab and HIV-1-DNA reservoir at ileum and caecum. (e) Correlation between serum concentration of vedolizumab
and HIV-1-RNA on ileum before ATI (week24). P values were computed using Wilcoxon, Mann-Whitney U and Spearman test. Abbreviations: BL,
baseline; W, week and ATI, analytic treatment interruption.
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Fig. 6. Immune checkpoint molecules are associated with α4β7 and HIV-1 reservoir levels. (a) Dynamic
of PD1 and TIGIT expression on CD4 T-cells along the follow-up in PBMCs. (b) Correlation between total
HIV-1-DNA levels, assayed by FLIP-seq, and the expression of PD1 and TIGIT on peripheral CD4+T-cells
before ATI. (c) Correlation between the expression of α4β7 integrin and the immune checkpoint
molecules (PD1 and TIGIT) on peripheral CD4+T-cells before ATI. (d) Correlation between the expression
of α4β7 integrin and total HIV-DNA in PBMCs, assayed by FLIP-seq, and the simultaneous expression of
α4β7, LAG3, PD1 and TIM3 on peripheral CD4+ T-cells just before ATI. (e) Plasma soluble biomarkers
levels, hsCRP, D-Dimer and B2M, along the follow-up. (f) Correlation matrix representing negative (blue
shading) and positive (red shading) association between soluble biomarkers and HIV-1-DNA in PBMCs,
the expression of α4β7 and immune checkpoint molecules on CD4+ T-cells. (g) Dynamic of PD1
expression on CD4 T-cells at ileum and caecum at BL and before ATI (week 24). (h) Dynamic of CD4 Tfh at
ileum and caecum at BL and before ATI (week 24). (i) Association between Tfh and CD4+ α4β7+ T-cells
and HIV-1-DNA at ileum before ATI (week 24). P values were computed using Friedman test with Dunn’s
multiple comparisons test correction, Wilcoxon and Spearman test. Abbreviations: BL, baseline; W,
week; ATI, analytic treatment interruption; Tfh, T follicular helper cells.
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Fig.7. Retinoic acid plasma levels are associated with reservoir levels in GITs. (a) Dynamic of Th17, Tregs and Th17/Treg
ratio at ileum and caecum along the follow-up. (b) Association between retinoic acid plasma levels and HIV-DNA, Tregs
and mDCs at caecum before ATI (week 24). (c) Direct association between the dynamic of HIV-1-DNA reservoir in PBMCs
and the Th17/Treg ratio at ileum and caecum before ATI (week 24). P values were computed using Wilcoxon and
Spearman test. Abbreviations: BL, baseline; W, week; ATI, analytic treatment interruption; Treg, regulatory T cells; Th17,
IL-17 producing T helper cells.


