Supplementary data

Mutation of *CRYAB* encoding a conserved mitochondrial chaperone and anti-apoptotic protein causes hereditary optic atrophy

Chenghui Wang^{1,2,3#}, Liyao Zhang^{2#}, Zhipeng Nie^{1,2,3#}, Min Liang⁴, Hanqing Liu², Qiuzi Yi², Chunyan Wang², Cheng Ai^{1,2,3}, Juanjuan Zhang⁴, Yinglong Gao^{2,5}, Yanchun Ji^{2,5}, and Min-Xin Guan^{1,2,3,6*}

The supplemental data included the following information:

- 1. Supplemental Figure 1, 2, 3, 4, 5, 6, and 7
- 2. Supplemental Table 1, 2, 3, 4 and 5

Supplemental Figure 1 (related to Figure 1). Identification of c.313G>A (p.Glu105Lys) mutation in *CRYAB* gene. Summary of whole exome sequencing of the proband (WZ1303-III-7). The identified single nucleotide variant (SNV) c.313G>A (p.Glu105Lys) is located in *CRYAB*, a gene encoding a major lens protein belonging to the small heat-shock family of proteins and possessing anti-apoptotic activities. (**B**) Partial sequence chromatograms of *CRYAB* gene. Sanger sequencing of affected individuals III-7, II-2, II-4, III-2 and unaffected individuals II-1, II-8, III-3 of the WZ1303 family. The red frame indicates the location of the nucleotide changes at position 313.

Homo_sapiens Macaca_mulatta Mus_musculus Equus_caballus Ovis_aries Gallus_gallus Chelonia_mydas Xenopus_tropicalis

	MDIAIHHEWIRRPFFPFHSESRIFDOFFGEHULDSDUFPTSTSLSPFYLR	50
	MDIAIHHEWIRRPFFPFHS <mark>ESRL</mark> FDOFFGEHLL <mark>D</mark> SDLFPTSTSLSPF <mark>YL</mark> R	50
	MDIAIHHEWIRRPFFPFHS <mark>ESRL</mark> FDO <mark>FFGEHLLES</mark> LLFSTATSLSPFYLR	50
	MDIAIHHEWIRRPFFPFHS <mark>ESRL</mark> FDO <mark>F</mark> FGEHL <mark>LES</mark> LFPTSTSLSPFYLR	50
	MDIAIHH <mark>EWIRRPFFPFHS</mark> ESR <mark>1</mark> FDO <mark>FFGEHLLES</mark> I1FPASTSLSPFYLR	50
	MD <mark>ITIHNELIRRPLFSWLTESR<mark>I</mark>FDO<mark>I</mark>FGEHLOES<mark>E</mark>LLPTSPSLSPE<mark>LMR</mark></mark>	50
	MDIAIHH <mark>ELIRRPLFSELT</mark> ETR <mark>I</mark> FDO <mark>SEGEHLSESE</mark> LFPTSGALSPELLR	50
lis	MDVAIQHEWFRRHFYSFFGENR <mark>I</mark> FDONFGEHLHEA <mark>E</mark> LFPTS.SVSPE <mark>F</mark> FR	49
	mdiaihhpwirrpffpfhspsrlfdqffgehllesdlfptstslspfylr	
	FESFLRAESWFDTGLSEMRLEKCRFSVNLDVKHFSPEELKVKVLGCVIEV	100
	FE <mark>SFLRAESWFDTGLSEMRLE</mark> KC <mark>R</mark> FSVNLDVKHFSPD <mark>ELK</mark> VKVLGD <mark>VID</mark> V	100
	FE <mark>SELRAESWIDT</mark> GLSEMRLEKC <mark>R</mark> ESVN <mark>I</mark> DVKHESPE <mark>ELK</mark> VKVLGC <mark>VIE</mark> V	100
	FE <mark>SFLRAESWIDT</mark> GLSEMRLEKC <mark>R</mark> FSVNIDVKHFSPE <mark>ELK</mark> VKVLGD <mark>VIE</mark> V	100
	FE <mark>SFLRAESWIDT</mark> GLSEVRLEKC <mark>R</mark> FSVNIDVKHFSPE <mark>ELK</mark> VKVLGD <mark>VIE</mark> V	100
	SE.FFRMESWLETGLSEMRLEKC <mark>KFSVNL</mark> DVKHFSPD <mark>ELK</mark> VKVLGCMIDI	99
	SF.FLR <mark>TESWLET</mark> GFSEMRLEKC <mark>KFSVNV</mark> DVKHFSPE <mark>DLK</mark> VKVLGD <mark>VIE</mark> V	99
lis	YF.FSRIENW <mark>IDS</mark> GLSEMKIDKDRFSVNIDVKHFSPE <mark>E</mark> LNVKVLGDFIEI	98
	ppsflrapswidtglsemrlekdrfsvnldvkhfspeelkvkvlgdviev	
	👃 Glu 105 Lys	
	HG <mark>NHEERODEHGFISRE</mark> F <mark>HR</mark> NYRI <mark>FA</mark> DVDE <mark>LT</mark> ITS <mark>SLSS</mark> DGVLT <mark>VNG</mark> PRK	150
	HGKHEERODEHGFISEPEHRKYRYPADVDELTITSSLSSDGVLTVNGPRK	
		150
	HG <mark>KHEERQDEHGFISRE</mark> FHR <mark>KYRIF</mark> ADVDE <mark>LT</mark> ITS <mark>SLS</mark> SDGVLT <mark>VNG</mark> PRK	150 150
	HG <mark>KHEERODEHGFISREFHRKYRI</mark> FADVDE <mark>LT</mark> ITSSLSSDGVLT <mark>VNG</mark> PRK HG <mark>KHEERODEHGFISREFHRKYRI</mark> FADVDELAITS <mark>S</mark> LSSDGVLTVNGPRK	150 150 150
	HG <mark>KHEERQDEHGFISREFHRKYRIFA</mark> DVDF <mark>LT</mark> ITSSLSSDGVLTVNGPRK HGKHEERQDEHGFISREFHRKYRIFADVDFLAITSSLSSDGVLTVNGPRK HG <mark>KHEERQDEHGFISREFHRKYRIF</mark> ADVDF <mark>LT</mark> ITS <mark>SLSS</mark> DGVLTMNGPRK	150 150 150 150
	HGKHEERQDEHGFISREF <mark>HRKYRIFADVDELTITSSLSSDGVLTVNG</mark> PRK HGKHEERQDEHGFISREF <mark>HRKYRIFADVDELAITSSLSS</mark> DGVLTVNGPRK HGKHEERQDEHGFISREFHRKYRIFADVDELTITSSLSSDGVLTMNGPRK HGKHEERQDEHG <mark>FIAREFSRKYRIFA</mark> DVDE <mark>LTITSSLSS</mark> DGVLT <mark>VSA</mark> PRK	150 150 150 150 149
	HGKHEERQDEHGFISREF <mark>H</mark> RKYRIFADVDELTITSSLSSDGVLTVNGPRK HGKHEERQDEHGFISREFHRKYRIFADVDELAITSSLSSDGVLTVNGPRK HGKHEERQDEHGFISREFHRKYRIFADVDELTITSSLSSDGVLTMNGPRK HGKHEERQDEHGFIAREFSRKYRIFADVDELTITSSLSLDGVLTVSAPRK HGKHEERQDEHGFIAREFNRKYRIFADVDELTITSSLSSDGVLTVNGPRK	150 150 150 150 149 149
lis	HGKHEERQDEHGFISREFHRKYRIEADVDELTITSSLSSDGVLTVNGPRK HGKHEERQDEHGFISREFHRKYRIEADVDELAITSSLSSDGVLTVNGPRK HGKHEERQDEHGFISREFHRKYRIEADVDELTITSSLSSDGVLTMNGPRK HGKHEERQDEHGFIAREFSRKYRIEADVDELTITSSLSSDGVLTVSAPRK HGKHEERQDEHGFIAREFSRKYRIEADVDELSITSSLSSDGVLTVNGPRK HGTHEERQDEHG <mark>VVSRDFCRRYKIESDVDEQSITSTLSFDGVLTVSG</mark> PRK	150 150 150 150 149 149 148
lis	HGKHEERQDEHGFISREFHRKYRIEADVDELTITSSLSSDGVLTVNGPRK HGKHEERQDEHGFISREFHRKYRIEADVDELAITSSLSSDGVLTVNGPRK HGKHEERQDEHGFISREFHRKYRIEADVDELTITSSLSSDGVLTMNGPRK HGKHEERQDEHGFIAREFSRKYRIEADVDELTITSSLSDGVLTVSAPRK HGKHEERQDEHGFIAREFNRKYRIEADVDELSITSSLSSDGVLTVNGPRK HGTHEERQDEHGYVSRDFORRYKIESDVDEQSITSTLSFDGVLTVSGPRK hgkheergdehgfisrefhrkyripadvdpltitsslssdgvltvngprk	150 150 150 149 149 148
lis	HGKHEERQDEHGFISREFHRKYRIFADVDFLTITSSLSSDGVLTVNGPRK HGKHEERQDEHGFISREFHRKYRIFADVDFLAITSSLSSDGVLTVNGPRK HGKHEERQDEHGFISREFHRKYRIFADVDFLTITSSLSSDGVLTMNGPRK HGKHEERQDEHGFIAREFSRKYRIFADVDFLTITSSLSLDGVLTVSAPRK HGKHEERQDEHGFIAREFSRKYRIFADVDFLSITSSLSSDGVLTVNGPRK HGTHEERQDEHGFIAREFNRKYRIFADVDFLSITSSLSSDGVLTVNGPRK HGTHEERQDEHGFIAREFNRKYRIFSDVDFQSITSTLSFDGVLTVSGPRK hgkheergdehgfisrefhrkyripadvdpltitsslssdgvltvngprk	150 150 150 149 149 148
lis	HGKHEERQDEHGFISREEHRKYRIEADVDEITITSSLSSDGVLTVNGPRK HGKHEERQDEHGFISREEHRKYRIEADVDEIAITSSLSSDGVLTVNGPRK HGKHEERQDEHGFISREEHRKYRIEADVDEITITSSLSSDGVLTVNGPRK HGKHEERQDEHGFIAREFSRKYRIEADVDEITITSSLSIDGVLTVSAPRK HGKHEERQDEHGFIAREFNRKYRIEADVDELSITSSLSSDGVLTVNGPRK HGTHEERQDEHGYVSRDECRRYKIESDVDEQSITSTLSEDGVLTVSGPRK hgkheerqdehgfisrefhrkyripadvdpltitsslssdgvltvngprk	150 150 150 149 149 148
lis	HGKHEERQDEHGFISREFHRKYRIEADVDELTITSSLSSDGVLTVNGPRK HGKHEERQDEHGFISREFHRKYRIEADVDELAITSSLSSDGVLTVNGPRK HGKHEERQDEHGFISREFHRKYRIEADVDELTITSSLSSDGVLTVNGPRK HGKHEERQDEHGFIAREFSRKYRIEADVDELTITSSLSSDGVLTVNGPRK HGKHEERQDEHGFIAREFNRKYRIEADVDELSITSSLSSDGVLTVNGPRK HGTHEERQDEHGFIAREFNRKYRIEADVDELSITSSLSSDGVLTVNGPRK HGTHEERQDEHGFIAREFNRKYRIESDVDEQSITSTLSFDGVLTVSGPRK hgkheerqdehgfisrefhrkyripadvdpltitsslssdgvltvngprk	150 150 150 149 149 148 175 175
lis	HGKHEERQDEHGFISREFHRKYRIEADVDELTITSSLSSDGVLTVNGPRK HGKHEERQDEHGFISREFHRKYRIEADVDELAITSSLSSDGVLTVNGPRK HGKHEERQDEHGFISREFHRKYRIEADVDELTITSSLSSDGVLTVNGPRK HGKHEERQDEHGFIAREFSRKYRIEADVDELTITSSLSDGVLTVNGPRK HGKHEERQDEHGFIAREFNRKYRIEADVDELSITSSLSSDGVLTVNGPRK HGTHEERQDEHGFIAREFNRKYRIEADVDELSITSSLSSDGVLTVNGPRK HGTHEERQDEHGFIAREFNRKYRIEADVDELSITSSLSSDGVLTVNGPRK HGTHEERQDEHGFIAREFNRKYRIEADVDELSITSSLSSDGVLTVNGPRK HGTHEERQDEHGFIAREFNRKYRIEADVDELSITSSLSSDGVLTVNGPRK HGTHEERQDEHGFIAREFNRKYRIEADVDELSITSSLSSDGVLTVNGPRK HGTHEERQDEHGFIAREFNRKYRIEADVDELSITSSLSSDGVLTVNGPRK GVSGPERTIPITREEKFAVTAAPKK	150 150 150 149 149 148 175 175
lis	HGKHEERQDEHGFISREFHRKYRIEADVDELTITSSLSSDGVLTVNGPRK HGKHEERQDEHGFISREFHRKYRIEADVDELAITSSLSSDGVLTVNGPRK HGKHEERQDEHGFISREFHRKYRIEADVDELTITSSLSSDGVLTVNGPRK HGKHEERQDEHGFIAREFSRKYRIEADVDELTITSSLSLDGVLTVSAPRK HGKHEERQDEHGFIAREFSRKYRIEADVDELSITSSLSSDGVLTVNGPRK HGTHEERQDEHGFIAREFSRKYRIESDVDEQSITSTLSFDGVLTVSGPRK hgkheergdehgfisrefhrkyripadvdpltitsslssdgvltvngprk QVSGPERTIPITREEKFAVTAAPKK QVSGPERTIPITREEKFAVTAAPKK QVSGPERTIPITREEKFAVTAAPKK	150 150 150 149 149 148 175 175 175
lis	HGKHEERQDEHGFISREFHRKYRIFADVDFITITSSLSSDGVLTVNGPRK HGKHEERQDEHGFISREFHRKYRIFADVDFIAITSSLSSDGVLTVNGPRK HGKHEERQDEHGFISREFHRKYRIFADVDEITITSSLSSDGVLTVNGPRK HGKHEERQDEHGFIAREFSRKYRIFADVDEITITSSLSDGVLTVSAPRK HGKHEERQDEHGFIAREFSRKYRIFADVDELSITSSLSSDGVLTVNGPRK HGKHEERQDEHGFIAREFNRKYRIFADVDELSITSSLSSDGVLTVNGPRK HGKHEERQDEHGFIAREFNRKYRIFADVDELSITSSLSSDGVLTVNGPRK hgkheerqdehgfisrefhrkyripadvdpltitsslssdgvltvngprk QVSGPERTIPITREEKFAVTAAPKK QVSGPERTIPITREEKFAVAAAPKK QVSGPERTIPITREEKFAVAAAPKK QASGPERTIPITREEKFAVTAAPKK	150 150 150 149 149 148 175 175 175 175
lis	HGKHEERQDEHGFISREEHRKYRIEADVDEITITSSLSSDGVLTVNGPRK HGKHEERQDEHGFISREEHRKYRIEADVDEIAITSSLSSDGVLTVNGPRK HGKHEERQDEHGFISREEHRKYRIEADVDEITITSSLSSDGVLTVNGPRK HGKHEERQDEHGFIAREFSRKYRIEADVDEITITSSLSDGVLTVSAPRK HGKHEERQDEHGFIAREFSRKYRIEADVDELSITSSLSSDGVLTVNGPRK HGTHEERQDEHGFIAREFNRKYRIEADVDELSITSSLSSDGVLTVNGPRK HGTHEERQDEHGFISREFRRKYRIEADVDELSITSSLSSDGVLTVNGPRK hgkheerqdehgfisrefhrkyripadvdpltitsslssdgvltvngprk QVSGPERTIPITREEKFAVTAAPKK QVSGPERTIPITREEKFAVTAAPKK QXSGPERTIPITREEKFAVTAAPKK QASGPERTIPITREEKFAVTAAPKK QSGPERTIPITREEKFAVTAAPKK QSDVPERSIPITREEKFAZAAPKK	150 150 150 149 148 175 175 175 174 175
lis	HGKHEERQDEHGFISREFHRKYRIEADVDELTITSSLSSDGVLTVNGPRK HGKHEERQDEHGFISREFHRKYRIEADVDELAITSSLSSDGVLTVNGPRK HGKHEERQDEHGFISREFHRKYRIEADVDELTITSSLSSDGVLTVNGPRK HGKHEERQDEHGFIAREFSRKYRIEADVDELTITSSLSDGVLTVNGPRK HGKHEERQDEHGFIAREFNRKYRIEADVDELSITSSLSSDGVLTVNGPRK HGKHEERQDEHGFIAREFNRKYRIEADVDELSITSSLSSDGVLTVNGPRK HGTHEERQDEHGFISREFNRKYRIEADVDELSITSSLSSDGVLTVNGPRK HGTHEERQDEHGFISREFNRKYRIEADVDELSITSSLSSDGVLTVNGPRK HGTHEERQDEHGFISREFNRKYRIEADVDELSITSSLSSDGVLTVNGPRK GVSGPERTIPITREEKFAVTAAPKK QVSGPERTIPITREEKFAVTAAPKK QVSGPERTIPITREEKFAVTAAPKK QASGPERTIPITREEKFAVTAAPKK QASGPERTIPITREEKFAVTAAPKK QSDVPERSIPITREEKFATAGSQRK QTDVPERTIPITREEKFATAGAQRK	150 150 150 149 149 148 175 175 175 174 175

q sgpertipitreekpavtaapkk

Supplemental Figure 2 (related to Figure 1). Alignments of the amino acid sequences of CRYAB family among different species. The alignment was generated using the DNAMAN software. The organisms and corresponding accession numbers used for this analysis are as follows: *Homo sapiens* (NP_001276737.1), *Macaca mulatta* (XP_028688504.1), *Mus musculus* (CAJ18549.1), *Equus caballus* (XP_001501829.1), *Ovis aries* (NP_001012475.1), *Gallus gallus* (NP_990507.2), *Chelonia mydas* (XP_007072715.3) and *Xenopus tropicalis* (XP_002932964.1). Numbers give the position of residues in proteins in relation to the first methionine of the Homo sapiens. Amino acid residues shaded black are identical; those shaded pink and faint blue are similar in at least six residues and four residues of eight homologs, respectively.

Supplemental Figure 3 (related to Figure 4): Quantification of OXPHOS subunits. (A) Quantification of mtDNA encoding subunits: ND1, ND2, ND5, CYTB, CO2 and ATP8 in mutant and control cell lines. (B) Quantification of nucleus-encoding subunits: NDUFS1, NDUFS2, NDUFA8, NDUFA10, NDUFB8, SDHB, SDHC, CYC1, UQCRFS1, UQCRC2, COX4, COX5A, ATP5B and ATP5C in mutant and control cell lines. Data are as shown as mean \pm SEM of triplicates. *P* indicates the significance, according to the t-test, of the differences between mutant and control cell lines. **P* < 0.05; ***P* < 0.01; ****P* < 0.001; *****P* < 0.0001; ns, not significant.

Supplemental Figure 4 (related to Figure 4): Western blotting analysis of OXPHOS subunits from *CRYAB* knock-down cell line. (A and C) Twenty micrograms of total cellular proteins from various cell lines were electrophoresed through a denaturing polyacrylamide gel, electroblotted, and hybridized with antibodies for 22 subunits of OXPHOS (6 encoded by mtDNA and 16 encoded by nuclear genes), and TOM20 as a loading control, respectively. (B and D) Quantification of mitochondrial proteins: 6 mtDNA-encoding subunits (B) and 16 nucleus-encoding subunits (D). Average relative each polypeptide content per cell was normalized to the average content per cell of TOM20 in each cell line. The values for the latter are expressed as percentages of the average values for the WT cell line. (E) Average levels of subunits from each complex of OXPHOS (8 of complexes I, 2 of II, 6 of III, 3 of IV, and 3 of V). The calculations were based on three independent determinations. Data are as shown as mean \pm SEM of triplicates. *P < 0.05; **P < 0.01; ***P < 0.001; ***P < 0.001; ns, not significant.

Supplemental Figure 5 (related to Figure 4): Assessment of mitochondrial dynamics and mtDNA contents of CRYAB knock-down cell lines. (A) Mitochondria from CRYAB knock-down cell lines were visualized by immunofluorescent staining with MitoTracker Red. Scale bar = 20um. (B) Western blot analysis of mitochondrial fusion-associated proteins (MFN1, OPA1) and mitochondrial fission-associated proteins (DRP1, FIS1) among CRYAB knock-down cell lines, with GAPDH as a loading control. (C) Measurement of mtDNA contents by qPCR. Mitochondrial DNAs from mutant and control cell lines were normalized to β -actin encoded by nuclear gene (71). The calculations were based on three independent experiments. Data are as shown as mean \pm SEM of triplicates. *P* indicates the significance, **P*<0.05, ***P*<0.01, ****P*<0.001; ns, no statistically significant by one-way ANOVA followed by Bonferroni's post hoc test.

Supplemental Figure 6 (related to Figure 5 and 6): (A) Relative quantification of retinal ganglion cells. (B) Axonal counts from mice optic nerve cross-section of Cryab^{+/+}, Cryab^{+/105K} and Cryab^{105K/105K}. Five points in each nerve were photographed using a 100× objective lens. One picture in each set was excluded based on highest degree of longitudinally arranged axonal fibers. Four remaining pictures were manually counted. N=4. (C) Immunohistochemistry of mouse retina. Rhodopsin⁺ for rod photoreceptor, Calb1⁺ for horizontal cells, Pkc- α^+ for bipolar cells, and Vimentin⁺ for Müller cells. (D) Quantification of mouse retinal thickness. (E) Quantification of apoptosis-related proteins. The calculations were based on three independent determinations. Data are as shown as mean ± SEM of triplicates. *P* indicates the significance, **P*<0.05, ***P*<0.01, ****P*<0.001; ns, no statistically significant by one-way ANOVA followed by Bonferroni's post hoc test.

Supplemental Figure 7 (related to Figure 5 and 6): Mitochondrial morphologies in RGCs from WT and MT mice at 8 weeks of age by transmission electron microscopy. Ultrathin sections were visualized with $8000\times$, $30000\times$, and $80000\times$ magnifications. The white rectangular dashed frame is the enlarged area. Scale bars: 1 µm.

Gene	Position	Replacement	AA change	Conservation (H/B/M/X)#	CRS [‡]	WZ1303 III-7	TZ008 III-1	TZ206 III-1	Previously Reported [†]
D-loop	73	A-G			Α	G	G	G	Yes
	150	C-T			С	Т			Yes
	210	A-G			Α		G		Yes
	249	del A			А			del	Yes
	263	AG			Δ	G	G	G	Ves
	205	T TC			т	тс	тс	тс	Vec
	310	1-IC T.C			т Т	1C	10	ic	ICS V
	469	I-C			T	C		C	Vec
	10095	1-C			, C				105
	16129	G-A			G		~	А	res
	16140	T-C			Т		C		Yes
	16164	A-G			A	G		G	Yes
	16172	T-C			Т	С		С	Yes
	16182	A-C			Α	С			Yes
	16183	A-C			Α	С	С		Yes
	16189	T-C			Т	С	С		Yes
	16304	T-C			Т			С	Yes
	16399	4-G			А			G	Ves
	16510	TC			т		C	c	Ves
100 8314	10319	1-0			ċ		~	C	Ves
12S fRNA	709	G-A		G/A/A/-	G	~	A	~	105
	750	A-G		A/A/A/-	A	G	G	G	Yes
	752	C-T		C/C/A/-	С	Т			Yes
	1107	T-C		T/C/T/T	Т	С			Yes
	1438	A-G		A/A/A/G	Α		G	G	Yes
16S rRNA	2706	A-G		A/G/A/A	Α	G	G	G	Yes
	3537	A-G	Svn		Α		G		Yes
MT-ND1	3528	C-T	Syn		С	Т			Yes
1011 10201	3970	C-T	Sun		Ċ			т	Ves
	1086	C-1	Syn		c			т	Vec
	4080	0-1	Syn		~	c	c	r C	Ves
MI-ND2	4769	A-G	Syn		A	G	G	G	105
	4883	C-T	Syn		C	1			Yes
	5178	C-A	Leu-Met	L/T/T/T	С	А			Yes
	5301	A-G	Ile-Val	I/L/M/L	Α	G			Yes
	6392	T-C	Syn		Т			С	Yes
	6960	C-T	Syn		С		Т		Yes
MT-COX1	6962	G-A	Svn		G			А	Yes
	7028	C-T	Svn		С	Т			Yes
	8291-9	del	- ,				del		Yes
MT ATD6	0201	C A	Ale Thr	A /X7/X7/T	G		Δ		Ves
MI-AIF0	0.204	G-A	The Ala	T/S/T /O	4	c	А		Ves
	8701	A-G	The Ala	1/5/L/Q	A 4	G	G	G	Vec
	0052	A-G	Can Aan	1/A/A/1	Ċ	G	G	4	Vac
	9033	G-A	Ser-Asp	S/G/G/1	6	<u> </u>		А	1 ts
	9180	A-G	Syn		A	G			res
MI-	9540	T-C	Syn		Т	С			Yes
COXS		~ .	~		~				37
	9548	G-A	Syn		G		~	А	ies
	9950	T-C	Syn		Т		С		Yes
	10310	G-A	Syn		G			A	Yes
	10325	G-A	Syn		G		A		Yes
MT-ND3	10397	A-G	Syn		Α	G			Yes
	10398	A-G		T/T/T/A	Α	G	G		Yes
	10400	C-T	Thr-Ala		С	Т			Yes
MT-ND4	10873	T-C	Svn		Т	С			Yes
	11380	A-G	Sun		А			G	Yes
	11710	G A	Syn		G	Δ	Δ	4	Vec
	11/19	G-A	Syn		T	с С	~	л	Vos
	11944	1-C	Syn		1	C			105
	12026	A-G	Ile-Val	I/I/M/L	A	G			Yes
MT-ND5	12705	C-T	Syn		С	Т			Yes
	12882	C-T	Syn		С			Т	Yes
	13759	G-A	Ala-Thr	A/T/T/I	G			Α	Yes
	13928	G-C	Ser-Thr	S/T/S/T	G		С		Yes
MT-CYB	14766	C-T	Thr-Ile	T/S/T/S	С	Т	Т	Т	Yes
	14783	T-C	Svn		Т	С			Yes
	15043	G-A	Sun		Ģ	Ā			Yes
	15005	-A	Syn 8		4		G		Vec
	15201	A-G	syn		л С	*	G		1 CS
	15301	G-A	Syn		G	A	~	~	1 es
	15326	A-G	Thr-Ala	T/M/I/I	A	G	G	G	Yes

Supplemental Table 1: mtDNA variants in 3 Han Chinese probands with optic atrophy

Conservation among 4 species: Homo sapiens (H), Bos taurus (B), Mus musculus (M) and Xenopus laevis (X);

‡ CRS: Cambridge reference sequence;
‡ See online mitochondrial genome database: http://www.mitomap.org.

Subject	Gender	Age of	Age of	Vision acuity	Level of	CRYAB
		test	onset	(Right/Left	vision	c.313G>A
		(year)	(year)	eyes)	impairment	mutation
WZ1303-I-1	Μ	82	/	1.1/1.2	normal	+/+
WZ1303-I-2	F	80	21	0.05/0.08	moderate	+/-
WZ1303-II-1	Μ	62	/	1.2/1	normal	+/+
WZ1303-II-2	F	61	24	0.1/0.1	moderate	+/-
WZ1303-II-3	Μ	58	/	1.1/1.3	normal	+/+
WZ1303-II-4	F	57	20	0.1/0.2	mild	+/-
WZ1303-II-5	Μ	54	22	0.08/0.08	moderate	+/-
WZ1303-II-6	Μ	49	18	0.1/0.2	mild	+/-
WZ1303-II-7	F	48	/	1.0/1.1	normal	+/+
WZ1303-II-8	Μ	47	/	1.0/1.2	normal	+/+
WZ1303-II-9	F	45	/	1.3/1.1	normal	+/+
WZ1303-III-1	Μ	39	/	1.0/1.1	normal	+/+
WZ1303-III-2	F	38	14	0.1/0.08	moderate	+/-
WZ1303-III-3	F	35	/	1.2/1.0	normal	+/+
WZ1303-III-4	Μ	33	/	1.0/1.3	normal	+/+
WZ1303-III-5	F	31	/	1.0/1.0	normal	+/+
WZ1303-III-6	F	28	21	0.1/0.2	mild	+/-
WZ1303-III-7	Μ	26	17	0.1/0.1	moderate	+/-
WZ1303-III-8	Μ	34	19	0.2/0.2	mild	+/-
WZ1303-III-9	Μ	32	/	1.1/1.0	normal	+/+
WZ1303-III-10	Μ	27	/	1.1/1.1	normal	+/+
WZ1303-III-11	F	24	/	1.0/1.2	normal	+/+
WZ1303-III-12	Μ	20	15	0.1/0.2	mild	+/-
WZ1303-III-13	Μ	24	/	1.3/1.3	normal	+/+
WZ1303-III-14	F	22	/	1.0/1.0	normal	+/+
WZ1303-III-15	Μ	21	/	1.1/1.0	normal	+/+
WZ1303-IV-1	Μ	26	14	0.2/0.1	mild	+/-
WZ1303-IV-2	Μ	24	/	1.2/1.1	normal	+/+
WZ1303-IV-3	Μ	22	/	1.1/1.0	normal	+/+
WZ1303-IV-4	Μ	13	/	1.0/1.3	normal	+/+
TZ008- I-1	Μ	68	20	0.1/0.2	mild	+/-
TZ008- I-2	F	67	/	1.0/1.0	normal	+/+
TZ008-II-1	Μ	47	19	0.2/0.1	mild	+/-
TZ008-II-2	F	45	/	1.1/1.0	normal	+/+
TZ008-II-3	F	45	/	1.0/1.2	normal	+/+
TZ008-II-4	М	43	/	1.1/1.2	normal	+/+
TZ008-III-1	F	22	21	0.2/0.1	mild	+/-
TZ206- I-1	М	65	19	0.1/0.2	mild	+/-
TZ206- I-2	F	63	/	1.0/1.1	normal	+/+
TZ206- II-1	М	46	/	1.1/1.1	normal	+/+
TZ206- II-2	F	45	20	0.1/0.2	mild	+/-
TZ206-III-1	М	20	18	0.2/0.2	mild	+/-

Supplemental Table 2 (related to Figure 1). Summary of clinical data for members of 3 Han Chinese families with optic atrophy

 \overline{F} = female; M= male; The degree of visual impairment was defined according to the visual acuity as follows: normal > 0.3, mild=0.3-0.1; moderate = 0.1-0.05; severe = 0.05-0.02; and profound <0.02

Categories	II-1	II-8	II-2	III-7
Number of genomic positions for calling SNPs	44078277	43686053	43948447	41839201
Number of high-confidence genotypes	40966044	40410162	41062675	38245214
Total number of SNPs	128413	107379	118940	110364
Synonymous –coding	12053	12107	12141	12027
Missense	11472	11653	11747	11591
Nonsense	108	118	109	103
Readthrough	12	10	8	12
Splice site	175	177	185	176
Intron	38510	36945	37822	37527
5' UTR	4086	3725	3775	3851
3' UTR	7888	6915	7495	7418
Intergenic	15898	15121	15984	15559
Homozygous	74710	61588	68904	63228
Heterozygous	53703	45791	50036	47136
Frame error	0	0	0	0

Supplemental Table 3. Summary of exome sequencing data for four members of WZ1303 family

Primer names	Sequence (5'-3')	Description
CRYAB exon1-F	GAGCCACATAGAACGAAAG	Sequencing
CRYAB exon1-R	ATAAATGGGATACAGAGGACTA	Sequencing
CRYAB exon2-F	AAGCCCTACGAGGAAACA	Sequencing
CRYAB exon2-R	TGTTATGGCTTGGGACTG	Sequencing
CRYAB exon3-F	TCAGAACCTGTGCGTCAA	Sequencing
CRYAB exon3-R	TCCTGTTTATTGCCCTTG	Sequencing

Supplemental Table 4. Oligonucleotides for Sanger sequence analysis of CRYAB gene

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
CRYAB	Cell Signaling Technology	45844S
GAPDH	proteintech	10494-1-AP
DDDDK-Tag	abclonal	AE005
TOM20	abclonal	A19403
HA-Tag	abclonal	AE008
VDAC1/Porin	proteintech	55259-1-AP
Cytochrome c	proteintech	10993-1-AP
BAX	proteintech	50599-2-Ig
BCL-XL	proteintech	26967-1-AP
Caspase 9	proteintech	10380-1-AP
ND1	proteintech	19703-1-AP
ND2	proteintech	19704-1-AP
ND5	proteintech	55410-1-AP
CYTB	proteintech	55090-1-AP
CO2	proteintech	55070-1-AP
ATP8	proteintech	29398-1-AP
NDUFS1	proteintech	12444-1-AP
NDUFS2	abclonal	A12858
NSUFA8	abelonal	A12118
NDUFA10	abelonal	A 10123
NDUFB8	proteintech	14794-1-AP
SDHB	proteintech	10620-1-AP
SDHC	abcam	Ab155999
CVC1	proteintech	10242-1-AP
UOCRES1	proteintech	18443 1 AP
UOCRC2	proteintech	14742-1-AP
UOCRO	proteintech	14075 1 AP
UOCRH	abelonal	A 0305
COVA	accionar	11242.1 AP
COX5A	proteintech	11242-1-AF
ΔΤΡ5Δ	proteintech	14676.1. AP
ATPSR	proteintech	17070-1-AP
ATEC	proteintech	10010 1 AP
GADDH	COOD HEEP	AB M M001
Rm 22	Santa Cauz	AD-W-W001
BIII-5a	Abcam	ab18207
Caspace ²	Proteintech	10677 1 AD
Cleaved Corners ²	Affinite	19077-1-AP
OPA1	Andred	AF /022
UFAI MENI	Addional	A9833
DDD	Proteintech	13/98-1-AP
DKP1	Proteintech	10242-1-AP
FISI	Proteintech	12957-1-AP
Sonware Microsoft Excle	Microsoft	
GranhPad Prism0	GraphPad Software	
Oligonucleotides	orapin au software	
Primers	This paper	See Table 4

Supplemental Table 5. Key Resources table