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Introduction
Dyslipidemia, defined as elevated total or low-density lipoprotein cholesterol (LDL-c) levels or as a low 
level of  high-density lipoprotein cholesterol (HDL-c), is an established risk factor for cardiovascular disease 
(CVD) (1, 2). American Indians suffer from disproportionately high rates of  CVD and its risk factors, such 
as obesity and diabetes (3, 4). Left ventricular hypertrophy (LVH), defined as an increase in the left ventricu-
lar mass (LVM) due to thickening of  the left ventricular (LV) wall (5), has been shown to be an independent 

BACKGROUND. Left ventricular hypertrophy (LVH) and dyslipidemia are strong, independent 
predictors for cardiovascular disease, but their relationship is less well studied. A longitudinal 
lipidomic profiling of left ventricular mass (LVM) and LVH is still lacking.

METHODS. Using liquid chromatography–mass spectrometry (LC-MS), we repeatedly measured 
1,542 lipids from 1,755 unique American Indians attending 2 exams (mean, 5 years apart). 
Cross-sectional associations of individual lipid species with LVM index (LVMI) were examined by 
generalized estimating equation (GEE), followed by replication in an independent biracial cohort 
(65% White, 35% Black). Baseline plasma lipids associated with LVH risk beyond traditional risk 
factors were identified by logistic GEE model in American Indians. Longitudinal associations 
between changes in lipids and changes in LVMI were examined by GEE, adjusting for baseline lipids, 
baseline LVMI, and covariates.

RESULTS. Multiple lipid species were significantly associated with LVMI or the risk of LVH in 
American Indians. Some lipids were confirmed in Black and White individuals. Moreover, some 
LVH-related lipids were inversely associated with risk of coronary heart disease (CHD). Longitudinal 
changes in several lipid species were significantly associated with changes in LVMI.

CONCLUSION. Altered fasting plasma lipidome and its longitudinal change over time were 
significantly associated with LVMI and risk for LVH in American Indians. Our results offer insight 
into the role of individual lipid species in LV remodeling and risk of LVH, independent of known risk 
factors.
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risk factor for CVD in various ethnic groups (6–9) including American Indians (10). Additionally, lipid dys-
regulation has been associated with LVM and risk of  LVH (11–13). However, the mechanisms underlying 
the association between dyslipidemia, LVH, and CVD are not fully understood. The routinely used lipid 
panels in clinical practice measure the blood concentrations of  bulk lipoproteins, but these methods do not 
distinguish the hundreds to thousands of  individual lipid species in a blood sample. A comprehensive pro-
filing of  these individual lipid species (i.e., lipidome) is crucial to understanding the disease mechanism and 
identifying novel biomarkers for risk stratification, early prevention, or intervention of  CVD.

Lipidomics is a mass spectrometry–based (MS-based) omics technology that can identify and quan-
tify hundreds to thousands of  individual lipid species in a biospecimen. Using this technology, previous 
studies have reported associations of  altered lipid species, such as ceramides, triacylglycerols, sphingolip-
ids, and phospholipids, with LVM and LVH in human populations (14, 15). However, these studies were 
largely cross-sectional and limited by small sample size and/or low coverage of  the blood lipidome. To 
date, there have been limited large-scale lipidomic studies examining the association between individual 
lipid species and LV remodeling, especially in longitudinal settings. Here we report findings from what 
we believe to be the first large-scale longitudinal lipidomic profiling of  LVM and LVH in 3,336 fasting 
plasma samples from 1,755 unique American Indians (1,755 at baseline; 1,581 at follow-up) attending 2 
clinical exams (~5 years apart) in the Strong Heart Family Study (SHFS) (16). Our objectives include (a) 
identifying individual lipid species associated with LVM and incident LVH, beyond known risk factors; (b) 
examining whether LVH-related lipid species are associated with incident coronary heart disease (CHD) 
during an average 18-year follow-up; and (c) testing the longitudinal association between changes in plas-
ma lipidome and changes in LVM over an average 5-year follow-up.

Results
As shown in Table 1, the mean age of  SHFS participants was 39.9 years at baseline and 45.1 years at fol-
low-up. The mean LVM index (LVMI) was 38.7 (g/m2.7) and 39.4 (g/m2.7) at baseline and follow-up, respec-
tively. Over an average 5 years of  follow-up, 5.5% of  participants developed incident LVH (all belong to 
eccentric hypertrophy). The mean age of  Bogalusa Heart Study (BHS) (17, 18) participants was 47.9 years, 
and the mean LVMI was 38.6 (g/m2.7) at the time of  blood drawn for metabolomic analysis.

Plasma lipid species associated with LVMI. At the SHFS baseline visit, we identified 289 lipid species (106 
known) significantly associated with LVMI at P < 0.05. Of  the 106 known lipids, 49 lipids remained statis-
tically significant after multiple testing correction (q < 0.05). At the SHFS follow-up visit, 314 lipids (128 
known) were associated with LVMI at P < 0.05. Of  the 128 known lipids, 51 lipids remained statistically 
significant after multiple testing correction (q < 0.05). Meta-analysis combining results from both time 
points showed that 421 lipid species (152 known) were significantly associated with LVMI at P < 0.05. Spe-
cifically, 113 lipids — including 43 sphingomyelins (SMs), 40 phosphatidylcholines (PCs), 15 triacylglyc-
erols (TAGs), 4 diacylglycerols (DAGs), 4 phosphatidylethanolamines (PEs), 3 cholesterol easters (CEs), 
3 fatty acids (FAs), and cholesterol — were inversely associated, whereas 39 lipids — including 13 PCs, 6 
PEs, 4 acylcarnitines (ACs), 4 SMs, 3 ceramides (CERs), 2 glycosylceramides (GlcCers), 2 phosphatidyli-
nositols (PIs), 2 TAGs, CE(16:1), FA(22:1), and PG(17:0/19:0) — were positively associated with LVMI. 
Among them, 90 known lipids remained significant after multiple testing correction (q < 0.05).

Of  the 152 known lipids identified in the meta-analysis in the SHFS (P < 0.05), 21 lipids were also mea-
sured in the BHS (Supplemental Table 1; supplemental material available online with this article; https://
doi.org/10.1172/jci.insight.181172DS1). Of  these, 3 lipids [i.e., AC(26:0), LPC(20:4) A, LPC(20:4) B] 
were positively, whereas 2 lipids [i.e., SM(d36:2) A, SM(d36:2) B] were inversely associated with LVMI 
in the BHS at P < 0.05. Of  these 5 lipids, 3 lipids [i.e., AC(26:0), SM(d36:2) A, SM(d36:2) B] remained 
significant after multiple testing correction (q < 0.05) with the same directions of  association (Figure 1).

Of  the 21 lipids measured in both cohorts, transethnic meta-analysis found that 5 lipids, including 2 
ACs, 2 LPCs, and FA(22:1), were positively, whereas 3 lipids [i.e., PC(38:6) B, PC(40:6) B, SM(d36:2) A] 
were inversely associated with LVMI at q < 0.05.

Baseline plasma lipid species predict incident LVH beyond known clinical factors. In the SHFS, we identified 
310 lipids (134 known) significantly associated with incident LVH at P < 0.05. After correction for multiple 
testing, 46 lipids (of  134 known lipids) remained significant at q < 0.05 (Figure 2). Specifically, baseline 
levels of  46 lipids, including 25 PCs, 6 PEs, 10 SMs, 4 TAGs, and CER(d40:2), were inversely associated 
with the risk of  LVH (odds ratios [ORs], 0.39–0.70).
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As shown in Figure 3, additional inclusion of  the top 6 lipids (of  46 lipids), including PC(p-16:0/22:5)/
PC(o-16:1/22:5), PC(p-22:3/18:5)/PC(o-22:4/18:5), PC(p-34:2)/PC(o-34:3), PC(p-36:2)/PC(o-36:3), 
PC(p-38:5)/PC(o-38:6) B, and PE(p-38:5)/PE(o-38:6) B, significantly improved risk prediction for LVH 
over clinical factors (AUROC increased from 0.622 to 0.682, P = 0.024).

LVH-related lipids associated with incident CHD. During an average of  18-year follow-up, 87 SHFS par-
ticipants developed incident CHD. Of  the 46 known lipids associated with incident LVH, higher baseline 
levels of  9 lipids [i.e., 4 PCs, 3 PEs, CER(d42:0), SM(d40:1) B] were also significantly associated with a 
lower risk of  CHD (hazard ratios [HRs], 0.62–0.80), after adjusting for multiple testing (q < 0.05) and 
covariates including age, sex, study center, BMI, smoking, systolic blood pressure (SBP), diabetes, eGFR, 
LDL-c, HDL-c, and the use of  lipid-lowering medication at baseline (Figure 2 and Supplemental Table 2).

Longitudinal changes in lipid species associated with change in LVMI. In the SHFS, after adjusting for clin-
ical covariates, baseline LVMI, and baseline lipids, longitudinal changes in 148 lipids (52 known) were 
significantly associated with change in LVMI at P < 0.05. Of  the 52 known lipids, changes in LPE(20:4), 
PC(35:4), and PC(37:4) were inversely associated, whereas changes in CE(22:2) and SM(d34:0) B were 
positively associated with change in LVMI at q < 0.05 (Figure 4 and Supplemental Table 3). Among lipid 
species associated with changes in LVMI, changes in most of  them were also associated with changes in 
other cardiometabolic factors (e.g., insulin, insulin resistance) (Supplemental Figure 3).

Results from sensitivity analyses in the SHFS. Further adjustments for HDL-c, triglycerides, and the 
use of  antihypertensive drugs slightly attenuated the associations between the identified lipids and risk 
of  LVH, while the observed associations between lipid species and LVMI remained largely unchanged 
(Supplemental Tables 4 and 5). Sex-specific analysis indicated that the associations between 7 known 
lipids — including CER(d42:2) A, DAG(38:5), PC(17:1/22:5), PC(35:4), PC(36:6), SM(d38:1) B, and 
TAG(58:10) — and LVMI significantly differ in males and females (all q < 0.05). Results for sex-specific 
analyses are shown in Supplemental Table 6. Obesity status and diabetes status did not modify the asso-
ciation between lipid species and LVMI or the risk of  LVH (Supplemental Table 7). Results from the 
time-varying model and the model incorporating an interaction term (lipids × time) indicated that the 
observed associations between lipids and LVMI remained largely unchanged (Supplemental Table 8).

Table 1. Clinical characteristics of study participants in the Strong Heart Family Study (SHFS) and Bogalusa Heart Study (BHS) cohorts

Characteristics
SHFS baseline  

(n = 1,755)
SHFS follow-up 

(n = 1,581) P value
BHS 

(n = 973)
Age (years) 39.9 ± 13.9 45.1 ± 13.4 2 × 10–16 47.9 ± 5.4
Female, n (%) 1096 (62.5) 997 (63.1) 0.682 564 (58.0)
BMI (kg/m2) 31.5 ± 7.1 32.5 ± 7.3 3 × 10–4 31.3 ± 7.7
Current smoking, n (%) 706 (40.2) 600 (38.0) 0.12 207 (21.3)
Type 2 diabetes, n (%) 294 (16.8) 371 (23.5) 3.4 × 10–5 102 (10.5)
SBP (mmHg) 122.0 ± 15.2 122.7 ± 16.6 0.39 123.3 ± 16.6
DBP (mmHg) 77.1 ± 10.6 74.6 ± 11.1 2.4 × 10–9 78.7 ± 11.4
eGFR (mL/min/1.73m2) 90.6 ± 20.3 108.1 ± 20.8 6.6 × 10–15 93.4 ± 17.0
HDL-c (mg/dL) 52.1 ± 14.5 50.8 ± 15.1 0.033 51.9 ± 16.3
LDL-c (mg/dL) 101.2 ± 29.9 105.8 ± 30.7 5 × 10–4 115.1 ± 35.7
Triglycerides (mg/dL) 160.7 ± 113.9 156.8 ± 107.2 0.26 125.7 ± 68.2
Total cholesterol (mg/dL) 184.5 ± 34.2 187.4 ± 37.8 0.12 192.2 ± 39.7
Relative wall thickness (cm) 0.3 ± 0.04 0.3 ± 0.03 0.33 0.4 ± 0.08
LV mass (g) 157.1 ± 38.0 158.6 ± 40.4 0.44 159.1 ± 53.4
LV mass index (g/m2.7) 38.7 ± 8.7 39.4 ± 9.1 0.06 38.6 ± 11.5
E/A ratio 1.39 ± 0.5 1.26 ± 0.4 1.5 × 10–11 1.18 ± 0.3
Deceleration time (ms) 217.6 ± 41.5 221.5 ± 51.9 0.033 187.4 ± 45.3
Isovolumic relaxation time (ms) 78.7 ± 11.4 76.5 ± 12.3 2.4 × 10–4 93.7 ± 21.6
Lipid-lowering medication, n (%) 53 (3.0) 156 (9.9) 1.1 × 10–13 113 (11.6)

Continuous variables were expressed as mean ± SD, and qualitative variables were expressed as n (%). BMI, body mass index; SBP, systolic blood pressure; 
DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate calculated using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) 
equation; HDL-c, high-density lipoprotein cholesterol; LDL-c, low-density lipoprotein cholesterol; LV, left ventricular; E/A, peak early filling velocity to peak 
late filling velocity. P values were obtained by generalized estimating equation model accounting for correlation among family members.
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Discussion
To our knowledge, this is one of  the first large-scale longitudinal lipidomic studies, comprising 1,755 
unique American Indians from a community-dwelling prospective cohort, and in this study, we have 
several important findings. First, cross-sectional analysis reveals that altered levels of  multiple individual 
lipid species, including glycerophospholipids, sphingolipids (e.g., SMs, CERs), glycerolipids (e.g., DAGs, 
TAGs), cholesterol esters, and FAs, were significantly associated with LVMI in American Indians. Some 
lipids were replicated in an independent cohort consisting of  individuals with similar age but different 
racial/ethnic backgrounds. Second, our prospective association analysis demonstrated that baseline lev-
els of  134 lipids, largely glycerophospholipids, SMs, and TAGs, were inversely associated with the risk 
of  LVH, independent of  known risk factors. Some of  them were also inversely associated with incident 
CHD. Third, our repeated measurement analysis shows that longitudinal changes in several lipid species 
(e.g., PCs, SMs, CEs) were significantly associated with change in LVMI, independent of  clinical factors 
and baseline LVMI and lipids. Together, our results demonstrate that perturbed lipid metabolism is asso-
ciated with LVMI and risk of  LVH in American Indians.

We found that baseline levels of  multiple glycerophospholipids [e.g., PCs, PC(P)/PC(O), PE(P)/
PE(O)] were inversely associated with LVMI and risk of  LVH in American Indians. Longitudinal changes 
in glycerophospholipids were also significantly associated with changes in LVMI and cardiometabolic 

Figure 1. Plasma lipid species associated with left ventricular mass index (LVMI). Regression coefficients (βs) and 95% CIs in the Strong Heart Family 
Study (SHFS) were obtained by linear generalized estimating equation (GEE) models, adjusting for age, sex, study center, BMI, smoking, systolic blood 
pressure, diabetes, eGFR, LDL-c, and the use of lipid-lowering medication at the time blood sample was drawn. βs in the Bogalusa Heart Study (BHS) 
(replication) were obtained by linear regression model, adjusting for age, sex, race, smoking, systolic blood pressure, BMI, eGFR, diabetes, LDL, and the use 
of lipid-lowering medication. Only 21 known lipids with P < 0.05 in the SHFS that are also available in the BHS are shown. The names of lipids confirmed in 
the BHS (q < 0.05) are highlighted in blue. The letter A, B, or C in the name of lipids represents the appropriate isomer.
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factors, such as BMI, blood pressure, fasting plasma glucose (FPG), and insulin resistance. The observed 
associations of  phospholipids with LVH in our study appear to be in agreement with previous studies 
showing that some PCs [e.g., LPC(20:4), PC(38:4), PC(38:6)] were inversely associated with CVD mor-
tality in other racial and ethnic groups (19–21). The inverse associations of  ether-glycerophospholipids 
[e.g., PC(P)/PC(O), PE(P)/PE(O)] with LVMI, as well as risk of  LVH and CHD observed in our study, 
corroborate previous studies demonstrating that baseline levels of  ether-glycerophospholipids [e.g., PC(p-
18:1/20:4)/PC(o-18:2/20:4), PC(p-36:2)/PC(o-36:3), PC(p-38:6), PC(p-40:6), PC(o-36:5), PE(p-18:1)] 
were inversely associated with risk of  diabetes (22, 23), CHD (24), CVD mortality (19, 25), hypertension 
(26), and LV dysfunction (27) in American Indians and White participants.

PCs, the most abundant glycerophospholipids in human cardiac tissue, are key components of  cell 
membrane and are involved in many biological processes including cell signaling, oxidative stress, and 
metabolism (28). PCs are the structural components of  cellular membranes. The bioactive lipid products 
resulting from their hydrolysis, such as lysoPCs, are formed through a process facilitated by lipopro-

Figure 2. Baseline plasma lipids associated with risk of left ventricular hypertrophy (LVH) (mean follow-up: 5 years) in the SHFS. Several plasma lipid 
species (baseline) associated with incident LVH were also associated with incident coronary heart disease (CHD) (mean follow-up: 18 years). Odds ratios 
(ORs) were obtained by GEE, adjusting for age, sex, study center, BMI, smoking, systolic blood pressure, diabetes, eGFR, LDL-c, and the use of lipid-lower-
ing medication at baseline. Hazard ratios (HRs) and 95% CIs were obtained by frailty Cox proportional hazards models, adjusting for same covariates plus 
HDL-c at baseline. Lipids with P < 0.05 are highlighted in blue. The letter A, B, or C in the name of lipids represents the appropriate isomers.
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tein-associated phospholipase A2 (Lp-PLA2) (29), which plays an important role in vascular inflamma-
tion, oxidative stress, and other biological processes (29, 30). Elevated blood level of  Lp-PLA2 has been 
linked to cardiac remodeling (31) and subsequent cardiovascular events (32), suggesting a potential con-
nection between altered PCs, oxidative stress, inflammation, cardiac remodeling, and CVD. Ether-glycer-
ophospholipids are a class of  glycerophospholipids characterized by the presence of  an ether bond at the 
sn-1 position (33). They may function as potential endogenous antioxidants and are involved in various 
signaling pathways (33, 34). Perturbed ether-glycerophospholipid metabolism has been implicated in car-
diac remodeling (35) and may also contribute to CHD by exacerbating atherosclerotic plaque formation 
and promoting oxidization (24, 36).

Besides glycerophospholipids, some long-chain unsaturated SMs and certain CERs were inversely 
associated with incident LVH in our study. In support of  these findings, our group has previously report-
ed that some SMs [e.g., SM(d36:2), SM(d40:1), SM(d40:2), SM(d41:2)], and CER(d40:2) were inversely 
associated with all-cause mortality (37), diabetes (22), hypertension (26), and depression (38) in the same 
group of  American Indian participants. In addition, we found that some CERs, such as CER(d42:2) A, 
and CER(d40:0), were positively associated with LVMI. These findings appeared to be in agreement 
with previous studies reporting positive associations of  CER(d42:2) and CER(d40:0) with LVMI (39, 40) 
and CHD (41) in White participants. Interestingly, while 1 study shows that CER(d40:2) was positively 
associated with CVD risk in a Chinese population (mean age, 49) over a mean follow-up of  12.9 years 
(42), we found an inverse relationship between CER(d40:2) [or CER(d18:2/22:0)] and the risk of  LVH 
and CHD in American Indians. Our findings corroborate another study showing that plasma levels of  
CER(22:0) were inversely associated with the risk of  heart failure in White participants and African 
Americans (43). CERs are complex bioactive lipids that play crucial roles in endothelial function, inflam-
mation, and apoptosis (44, 45), but different species of  CERs may have distinct effects. For instance, 
CER(16:0) increases apoptosis (46), while CER(22:0) protects against hypoxia-induced apoptosis (47). 
Some CERs, such as CER(d18:1/16:0), CER(d18:1/18:0) and CER(d42:2), have been widely reported 

Figure 3. Incremental value of the identified plasma lipids in risk prediction for LVH. We used data from 2 study cen-
ters (North/South Dakota and Arizona) as training sample (n = 762, 42 cases), and those from another center (Oklaho-
ma) (n = 675, 37 cases) as testing sample. The training sample was used for model training, and the testing sample was 
used to test classification performance. Model 1: traditional risk factors only, including age, sex, BMI, smoking, systolic 
blood pressure, diabetes, eGFR, LDL-c, and the use of lipid-lowering medication at baseline. Model 2: clinical factors + 
6 significant lipids, including PC(p-16:0/22:5)/PC(o-16:1/22:5), PC(p-22:3/18:5)/PC(o-22:4/18:5), PC(p-34:2)/PC(o-34:3), 
PC(p-36:2)/PC(o-36:3), PC(p-38:5)/PC(o-38:6) B, and PE(p-38:5)/PE(o-38:6). Compared with the model that included 
clinical factors only (model 1), additional inclusion of plasma lipids (model 2) significantly increased risk prediction for 
LVH. AUROC increased from 0.622 to 0.682 (P = 0.024).
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to be positively associated with the risk of  CHD (43, 44, 48–52). However, we did not find significant 
associations between CER(d18:1/16:0) and CER(d18:1/18:0) with LVMI or LVH. This discrepancy may 
be due to the differences in genetic makeup and/or environmental exposures (e.g., lifestyle, behavior) 
between American Indians and other ethnic groups (53, 54).

Some FAs [e.g., FA(18:3), FA(20:5)] were found to be inversely associated with LVMI in our study. 
These results appeared to be in line with previous studies showing a potential beneficial role of  FAs in 
antiinflammation (55), blood pressure regulation (56, 57), and cardioprotection (58). FA(18:3), also 
known as α-linolenic acid (ALA), is a precursor to long-chain omega-3 FAs. ALA enhances membrane 
fluidity incorporating into PCs (59). Additionally, ALA is converted into other omega-3 FAs, such 
as FA(20:5), also known as eicosapentaenoic acid (EPA). EPA plays a significant role in membrane 
stabilization (59), antiinflammatory regulation (59), and blood pressure regulation (56). Previous epi-
demiological studies (56) demonstrated that omega-3 FA intake above the recommended level of  3 g/d 
were associated with additional benefits in lowering blood pressure among groups at high risk for CVD. 
Furthermore, evidence (60) shows that EPA was associated with a reduced risk of  CVD mortality. On 
the contrary, we found that FA(22:1) was positively associated with LVMI. This finding appears to be 
consistent with previous evidence suggesting that high levels of  FA(22:1) were associated with reduced 
heart function (61) and blood pressure regulation (62). Together, these findings suggest that FAs may 
play different roles in modulating inflammation and hypertension as well as other biological processes 
that are involved in cardiac remodeling and CVD.

Our repeated-measurement analysis revealed the association between longitudinal changes in plasma 
lipidome and change in LVMI above and over baseline measurements and clinical factors. Specifically, 
changes in CEs, sphingolipids (e.g., SMs, CERs), FAs, glycerophospholipids (e.g., PCs, PEs, and glycero-
lipids (e.g., TAGs, DAGs) were associated with changes in LVMI as well as changes in cardiovascular risk 
factors. Some of  the identified cholesterol esters [e.g., CE(16:1), CE(22:6)] were also enriched in athero-
sclerotic plaques (63). Cholesterol esters are primarily synthesized in plasma through the transfer of  FAs to 
cholesterol from PC (64). Altered FA metabolism may influence changes in LVMI by regulating the overex-
pression of  acyl-coenzyme A synthetase-1 (ACSL1), a key enzyme in mitochondrial oxidative metabolism 
in the heart (65, 66). Perturbations in glycerophospholipids may indicate oxidative stress, inflammation, 
and endothelial cell activation in the cardiomyocyte (67, 68). Disturbance in TAG metabolism may con-
tribute to changes in LVMI through their roles in metabolic energy or membrane formation by multiple 
biological processes, such as mitochondrial β-oxidation, and insulin signaling (69, 70).

In line with previous evidence for a sex difference in LVMI (71, 72) or lipid profiles (73, 74), we 
found that sex modifies the associations of  7 lipids, including CER(d42:2) A, DAG(38:5), PC(17:1/22:5), 
PC(35:4), PC(36:6), SM(d38:1) B, and TAG(58:10), with LVMI in our sample. These sex-specific effects of  

Figure 4. Manhattan plot displaying the longitudinal associations between change in plasma lipids and change in LVMI over an average of 5-year 
follow-up. The x axis, lipid classes; the y axis, –log10 P. Different colors represent different lipid categories. The dashed lines represent significance 
level at P = 0.05 and q = 0.05.
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lipids on LVMI observed in our study align with previous studies showing the effects of  sex hormones on 
cardiac structure and function (71, 75–77).

We found that several lipid species (e.g., glycerolipids, glycerophospholipids, and SMs) associated 
with LVMI were also linked to LV diastolic dysfunction parameters, such as the ratio between early and 
late LV filling peak velocity (E/A ratio), deceleration time, and isovolumic relaxation time (Supplemen-
tal Tables 9–11). These findings corroborate previous metabolomic studies (78, 79) showing that altered 
blood metabolites were associated with LV diastolic function. They also offer new insights into the role 
of  lipid metabolism in LV structural changes and diastolic function. Moreover, given the strong rela-
tionship between cardiac remodeling, hypertension, and heart failure, our results may help enhance our 
understanding of  the metabolic underpinnings of  diastolic dysfunction and heart failure with preserved 
ejection fraction (HFpEF).

Several limitations of  our study should be noted. First, although our study detected many lipid spe-
cies, a large proportion of  them are unknown compounds. Further characterization of  these unknown 
lipids and isomers is needed in future studies. Second, all participants included in our study are American 
Indians who suffer high rates of  obesity and diabetes. However, we adjusted for BMI and diabetes in all 
our analyses. In addition, given the rising trends of  obesity and diabetes worldwide, our findings could 
likely be generalized to other racial/ethnic groups. Moreover, some of  the lipids identified in Ameri-
can Indians were able to be replicated in an independent cohort consisting of  individuals with different 
racial/ethnic backgrounds, suggesting the robustness of  our findings. Third, although our statistical mod-
els controlled for many known risk factors, we cannot rule out potential confounding by unknown or 
unmeasured variables. In addition, since blood lipids and their effects on cardiometabolic risk factors may 
change over time, statistical models that do not take into consideration of  the time-varying effects may not 
be appropriate. Nonetheless, to address this limitation, we employed the inverse probability of  treatment 
weighting (IPTW) method (80, 81) to account for the time-varying effects of  these variables. We also test-
ed the interaction between time and lipids on LVMI by adding an interaction term (time [baseline versus 
follow-up] × lipids) to the model. These analyses show that the observed associations of  lipids with LVMI 
remained largely unchanged. Furthermore, due to lack of  cardiac MRI data in our study population, 
we utilized transthoracic echocardiography to measure LVM in our analysis. Future research should use 
MRI for more precise measurement of  cardiac remodeling. Fourth, hypertension is known to affect LVM 
(77, 82), but this should not be an issue for our study, as we adjusted for blood pressure in all statistical 
analyses. Moreover, further adjustment for use of  antihypertensive medications did not change our results. 
Fifth, although we identified multiple individual lipid species that can significantly improve the prediction 
of  risk for LVH beyond traditional risk factors, the interpretation of  these findings should be cautious due 
to the lack of  an external cohort with similar population settings that allows us to further confirm this 
finding. Furthermore, although our analysis provides the direction of  association between lipid levels and 
LVMI or risk of  LVH, increases or decreases in lipid levels alone may not be able to define distinct lipid 
signatures. Finally, the observational nature of  our study precludes any causal inference regarding the 
causal role of  altered lipid metabolism in LVH pathogenesis.

Our study has several strengths. First, the longitudinal profiling of  plasma lipidome in a large, com-
munity-based prospective cohort represents the major strength of  our study. To the best of  our knowledge, 
the current study represents the first longitudinal study examining the relationship between change in 
plasma lipidome and change in LVMI or risk of  LVH in any racial/ethnic groups. The relative high reso-
lution of  lipidomic analysis in a large, community-based prospective cohort of  American Indians is also 
innovative in this field. Second, our study included over 2,700 participants from 2 different populations 
with diverse demographics (e.g., race, age, sex, and socioeconomic status), genetic makeups, lifestyle (e.g., 
smoking, diet, and physical activity), and environmental exposures. Despite these variations, we were able 
to replicate the associations of  some lipid species with LVMI, signifying the robustness of  our findings. 
Third, among the limited metabolomic (including lipidomic) studies on LVM or LVH, most included 
patients with overt CVD (12, 83–85). We focused on individuals without overt CVD or LVH to minimize 
the effect of  various risk factors. This approach helped reduce the influence of  differences in cardiac 
structure and function between those with and without CVD. It allowed us to better examine the asso-
ciation between lipids and LVM or LVH. Moreover, our statistical analyses controlled for many known 
cardiovascular risk factors; thus, lipids identified in our study should be independent of  these risk factors. 
Finally, we performed cross-sectional, prospective, and repeated-measurement analyses in the same group 
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of  participants, allowing us to comprehensively examine the relationship between lipid metabolism and 
LVM or LVH in American Indians, a traditionally understudied minority population.

In a large-scale longitudinal lipidomic profiling of  LVM and LVH, we identified distinct lipidomic 
signatures and potentially novel lipid species associated with LVM and LVH in American Indians, inde-
pendent of  traditional risk factors. These findings provide insight into the role of  dyslipidemia in cardiac 
structure remodeling and offer potential opportunities for targeting lipid metabolism in developing novel 
therapeutics for early prevention or intervention of  cardiometabolic disorders.

Methods
Sex as a biological variant. Our study included both male and female participants. The criteria for diagnosing 
LVH differ between sexes (86–88). Sex was defined at birth based on biological characteristics. Our findings 
are relevant to both sexes. Sex-specific effects of  lipids on LVMI were also examined in our study.

Study populations. We leveraged 2 diverse populations to perform lipidomic analyses as described below. 
Cross-sectional, prospective, and repeated-measurement analyses were first performed in the SHFS. Puta-
tive lipids associated with LVMI were then replicated in a biracial cohort, the BHS.

The Strong Heart Study (SHS) initially focused on CVD and its risk factors in American Indians. 
Recognizing genetics’ role in CVD, SHS expanded into the SHFS (2001–ongoing), a family-based study 
aimed at identifying genetic, metabolic, and behavioral factors for CVD (4, 16, 89). Briefly, 2,786 tribal 
members (aged 14 years and older) residing in Arizona, North Dakota, South Dakota, and Oklahoma, 
USA, were recruited and examined at baseline (2001–2003) and reexamined after an over-5-year follow-up 
(2006–2009). Detailed descriptions of  the SHFS study design, laboratory protocols, and phenotype collec-
tion have previously been described (4, 16, 89). Participants received a personal interview and a physical 
examination at each visit, during which fasting blood samples were collected for laboratory tests. Laborato-
ry methods were reported previously (4). A total of  1,755 individuals (62.5% females; mean age at baseline, 
39.9 years) who were free of  overt CVD at baseline and had complete clinical and lipidomic data were 
included in the current analysis. Supplemental Figure 2 illustrates the procedures for participants’ selection 
and statistical analyses in the SHFS.

The BHS (1972–ongoing) is a biracial epidemiological study (35% Black, 65% White participants) 
designed to investigate early-life cardiometabolic risk factors in children and adolescents living in a semirural 
Louisiana, USA, community using serial cross-sectional surveys (17, 18). BHS participants eligible for the 
present study were adults (aged 34–58 years) with complete information for clinical data, including echocar-
diography, and metabolomic data. We excluded participants with overt CVD at the time of  blood drawn for 
metabolomic analysis, resulting in a final sample of  973 participants (58% females; mean age, 47.9 years).

Assessment of  LVM and LVH by echocardiography. In the SHFS, LV dimensions were measured by quali-
fied cardiac sonographers using the Acuson Sequoia 256 Cardiac Ultrasound Machine with 2.5–3.5 MHz 
probe and evaluated by a single experienced cardiologist who was blinded to the individuals’ clinical fea-
tures. In the BHS, 2-dimensional and tissue Doppler echocardiography were performed by trained cardiac 
sonographers at the BHS field office. Detailed methods for the measurement of  LVM and LVH had been 
described previously (79, 90). Briefly, for both studies, LVM was calculated according to the Devereux 
formula (91) and indexed to average height in meters2.7 to obtain the LVMI (92). An elevated myocardial 
relative wall thickness (RWT) was defined as greater than 0.42 cm (93). The presence of  LVH was defined 
as LVMI greater than 46.7 g/m2.7 and 49.2 g/m2.7 in women and men, respectively (86–88). LV geometry 
was considered concentric when RWT was > 0.42 cm. Four categories of  LV geometry were defined: (a) 
normal (normal RWT and LVMI); (b) eccentric hypertrophy (normal RWT and high LVMI); (c) concentric 
hypertrophy (high RWT and high LVMI); and (d) concentric remodeling (high RWT and normal LVMI) 
(92). LV diastolic function was evaluated using the ratio of  early LV filling peak velocity (E) to late LV 
filling peak velocity (A) (E/A ratio), deceleration time of  the E wave, and isovolumic relaxation time (94).

Assessment of  clinical covariates. In the SHFS, information for demographics, lifestyle, medical history, 
and use of  prescription medications was collected using standard questionnaires as previously described (4, 
16). Smoking status was categorized as current smokers, former smokers, and never smokers. Anthropomet-
ric measures including body height, weight, waist circumference, and fasting blood samples were obtained 
through physical examinations at each visit. BMI was calculated as body weight in kilograms divided by 
the square of  height in meters. FPG, insulin, and clinical lipids, including total cholesterol, triglycerides, 
LDL-c, and HDL-c, were measured by standard laboratory methods (16). Hypertension was defined as 
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blood pressure ≥ 140/90 mmHg or use of  antihypertensive medications. Type 2 diabetes was defined as 
FPG ≥ 126 mg/dL or use of  hypoglycemic drugs. Insulin resistance was assessed using homeostatic model 
assessment (HOMA) (22). Estimated glomerular filtration rate (eGFR) was calculated using the CKD Epi-
demiology Collaboration (CKD-EPI) (95). A CVD event was defined as any definite or possible fatal and 
nonfatal myocardial infarction, CHD, sudden cardiac death, congestive heart failure, or stroke as previously 
described (16). Information on the use of  lipid-lowering medications and antihypertensive medications was 
also collected at each visit (96).

In the BHS, information on lifestyle and clinical factors, such as BMI; blood pressure; smoking; use 
of  lipid-lowering medication; clinical lipids including total cholesterol, triglycerides, LDL-c, and HDL-c; 
eGFR; and definition of  CVD event, were obtained using previously described methods (79, 97).

Ascertainment of  incident CHD. In the SHFS, baseline information was collected in 2001–2003, and 
living participants were followed through December 31, 2020. Detailed methods for the ascertainment of  
incident CHD have been described previously (98, 99). Briefly, CHD included definite CHD (fatal or non-
fatal), definite myocardial infarction (fatal or nonfatal), and sudden death due to CHD. CHD events were 
ascertained by annual review of  hospitalization, death records, and self-reports (with subsequent medical 
record verification) during follow-up visits. Time to event was determined based on the date of  baseline 
examination (2001–2003) to either the date of  the first CHD event or the last follow-up. For participants 
who experienced more than 1 CHD event during the follow-up period, the earliest event date was used in 
the analysis. Information for incident CHD events was unavailable in the BHS.

Lipidomic data acquisition, preprocessing, and quality control. In the SHFS, methods for blood sample col-
lection, lipidomic data acquisition, processing, and normalization have been described previously (22). 
Briefly, relative abundance of  molecular lipid species in fasting plasma samples at 2 time points (~5 years 
apart) was quantified by untargeted liquid chromatography–MS (LC-MS). Standard methods (100) were 
used to quantify the lipids species. After excluding outlier and individuals with prevalent CVD or those 
with missing covariates, the final analysis included 1,755 participants (1,755 at baseline; 1,581 at follow-up) 
with complete clinical and lipidomic data, covering 1,542 lipids (518 known). No clear batches were 
observed in our lipidomic data (Supplemental Figure 1). Additional information on lipids assignment, 
internal standards, coefficient of  variation, instrumental drift, and handling of  missing values is described 
in the Supplemental Methods.

In the BHS, metabolomic profiling was performed using serum samples collected during the 2013–
2016 visit by untargeted, ultra-high performance LC–tandem MS (UPLC-MS/MS). Detailed methods 
for blood sample collection, data acquisition, processing, and normalization of  the metabolomic data 
have been described previously (79). Of  the 152 lipids identified in the SHFS (P < 0.05), 21 lipids were 
also available in the BHS, and we used them to replicate our findings in the SHFS (Supplemental Meth-
ods). After further excluding individuals with prevalent CVD or those with missing covariates, a total 
of  973 BHS participants (58% females, 35% Black, 65% White) with available metabolomic data were 
included in the replication analysis.

Cross-sectional association analysis. To identify lipid species associated with LVMI, we constructed gen-
eralized estimating equation (GEE) models in the SHFS using samples collected at baseline (n = 1,755) 
and follow-up (n =1,581), separately. Results at both time points were then combined by fixed-effects 
meta-analysis. The models adjusted for age, sex, study center, BMI, smoking status (current smoker versus 
ever smoker versus nonsmoker), SBP, diabetes, eGFR, LDL-c, and the use of  lipid-lowering medication at 
the time blood samples were drawn. The GEE model was used here to account for the relatedness among 
family members. The putative lipids (raw P < 0.05) in the SHFS meta-analysis were then validated in the 
BHS (n = 973, external replication) using linear regression, adjusting for age, race (White versus Black), 
sex, BMI, smoking status (current smoker versus ever smoker versus nonsmoker), SBP, diabetes, eGFR, 
LDL-c, and the use of  lipid-lowering medication. Replication was defined as lipids with q < 0.05 and 
consistent directions of  association across both cohorts. Meta-analysis was performed by inverse-variance 
weighted random-effects model to combine results across the 2 cohorts.

Prospective association analysis. To identify baseline plasma lipids associated with risk of  LVH, we con-
structed logistic GEE models. In this model, baseline lipid was the predictor, and the status of  incident 
LVH (yes/no) was the outcome, adjusting for age, sex, study center, BMI, smoking status (current smoker 
versus ever smoker versus nonsmoker), SBP, diabetes, eGFR, LDL-c, and the use of  lipid-lowering medica-
tion at baseline. Participants with prevalent LVH at baseline were excluded from this analysis.
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To assess whether the identified lipids improve the prediction of  LVH risk beyond known clinical fac-
tors, we used data from 2 study centers (North/South Dakota and Arizona) as the training set (n = 762, 42 
cases) and those from another study center (Oklahoma) (n = 675, 37 cases) as the testing set. We then com-
pared a base model including traditional risk factors only (age, sex, BMI, smoking status [current smoker 
versus ever smoker versus nonsmoker], SBP, diabetes, eGFR, LDL-c, and the use of  lipid-lowering medica-
tion) and a model containing both traditional risk factors and the significant lipids identified in the prospec-
tive analysis. The incremental predictive value of  lipids over known risk factors was assessed by area under 
the receiver operating characteristic curve (AUROC) (101).

To further examine whether the identified LVH-related plasma lipids are associated with incident CHD 
after 18-year follow-up, we constructed frailty Cox proportional hazards models. In this model, baseline 
level of  the identified LVH-related lipid was the predictor, and the time to event was the outcome, adjusting 
for age, sex, study center, BMI, smoking status (current smoker versus ever smoker versus nonsmoker), 
hypertension, diabetes, LDL-c, HDL-c, and eGFR at baseline. The frailty term was used here to account 
for the relatedness among family members.

Repeated measurement analysis. Of  1,148 participants free of  overt CVD and prevalent LVH at baseline 
and follow-up, we constructed linear GEE models to examine the longitudinal association between change 
in lipid species and change in LVMI between baseline and 5-year follow-up. In the model, change in LVMI 
was the outcome, and change in the relative abundance of  each individual lipid was the predictor. The 
model adjusted for age, sex, study center, smoking status (current smoker versus ever smoker versus non-
smoker), diabetes, use of  lipid-lowering medication, and changes in BMI, SBP, eGFR, LDL-c, baseline 
LVMI, and lipids. Lipids with q < 0.05 were considered statistically significant. The associations between 
changes in lipids and changes in cardiometabolic factors including BMI, SBP, diastolic blood pressure, 
FPG, insulin, and insulin resistance were similarly examined.

Of  note, due to the lack of  information on incident CHD and longitudinal lipidomics data in the 
BHS, the above-described prospective association analysis and repeated measurement analysis were 
only conducted in the SHFS.

Sensitivity analysis. To evaluate the robustness of  our results, we conducted the following sensitivity 
analyses. First, to examine the potential effect of  bulk lipids (e.g., HDL-c, triglycerides) and the use of  
antihypertensive medications (yes/no) on our results, we additionally adjusted for these variables in the 
statistical models. Second, to examine whether sex, obesity status, or diabetes status modulates the asso-
ciation between lipid species and LVMI or the risk of  LVH, we further included an interaction term (sex 
[male versus female] × lipids, or obesity status [yes/no] × lipids, or diabetes status [yes/no] × lipids) in 
the statistical model. Third, to examine how time and the progression of  cardiometabolic risk factors may 
affect the association between lipids and LVMI, we employed the IPTW method (80, 81) to account for 
the effects of  time-varying covariates (e.g., BMI, smoking, SBP, diabetes, eGFR). Additionally, we tested 
the interaction between time and lipids on LVMI by adding an interaction term between time (baseline 
versus follow-up) and lipids to the statistical model.

Statistics. All continuous variables including level of  lipids were standardized to zero mean and unit 
variance. P values less than 0.05 were deemed significant. Multiple testing was controlled by FDR using the 
Storey’s q value method (102, 103). Statistical analysis was conducted using R Studio (version 9).

Study approval. All SHFS and BHS participants provided informed consent. The SHFS protocols 
were approved by the IRBs of  the participating institutions and the American Indian tribes. The BHS was 
approved by the IRB of  the Tulane University Health Sciences Center.

Data availability. The SHFS phenotype data used in this study can be requested through the Strong 
Heart Study Coordinator Center (https://strongheartstudy.org/). The SHFS lipidomic data can be 
obtained from the corresponding author upon a reasonable request. Clinical and metabolomic data in the 
BHS can be requested via https://bogalusaheartstudy.org/. All codes used for the statistical analyses are 
available on GitHub at https://github.com/stephanieArtero/LVM/commit/fcb753b. Values for all data 
points in graphs are reported in the Supporting Data Values file.
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