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Abstract 25 

Anal squamous cell carcinoma (ASCC) is a rare gastrointestinal malignancy linked 26 

to high-risk Human papillomavirus (HPV) infection, which develops from 27 

precursor lesions like Low-Grade Squamous Intraepithelial Lesions (LGSIL) and 28 

High-Grade Squamous Intraepithelial Lesions (HGSIL). ASCC incidence varies 29 

across populations, posing increased risk for People Living with HIV (PLWH). Our 30 

investigation focused on transcriptomic and metatranscriptomic changes from 31 

Squamous Intraepithelial Lesions (SILs) to ASCC. Metatranscriptomic analysis 32 

highlighted specific bacterial species (e.g., Fusobacterium nucleatum, Bacteroides 33 

fragilis) more prevalent in ASCC than precancerous lesions. These species 34 

correlated with gene encoding enzymes (Acca, glyQ, eno, pgk, por) and 35 

oncoproteins (FadA, dnaK), presenting potential diagnostic or treatment markers. 36 

Unsupervised transcriptome analysis identified distinct sample clusters reflecting 37 

histological diagnosis, immune infiltrate, HIV/HPV status, and pathway activities, 38 

recapitulating anal cancer progression's natural history. Our study unveiled 39 

molecular mechanisms in anal cancer progression, aiding in stratifying HGSIL 40 

cases based on low- or high-risk progression to malignancy. 41 
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mailto:ez.lacunza@gmail.com
mailto:mcabba@gmail.com


2 

Introduction 43 

Anal Squamous Cell Carcinoma (ASCC) is a rare gastrointestinal neoplasia that 44 

involves the formation of malignant tumors in the anal region. Over the past 45 

thirty years, the incidence of ASCC has been on the rise globally, particularly in 46 

mem who have sex with men (MSM) and people living with HIV (PLWH) (1). 47 

Squamous Intraepithelial Lesions (SILs), categorized into Low-Grade (LGSIL), 48 

analogous to anal intraepithelial neoplasia I, and High-Grade (HGSIL), 49 

analogous to anal intraepithelial neoplasia II and III, often precede the 50 

progression to ASCC (2, 3) Similar to cervical cancer, ASCC development is 51 

driven by the infection with oncogenic human papillomaviruses (HPV) (4, 5). 52 

The risk of anal cancer varies significantly across different population groups, 53 

with the highest risk observed in PLWH (1). This increased susceptibility is 54 

primarily attributed to a weakened immune system, which makes it more 55 

challenging to control infections, including HPV infections (6). Beyond the 56 

potential impact of oncogenic viruses, the microbiome may also play a 57 

significant role in the development of precancerous anal lesions and ASCC, as 58 

the influence of microbes is increasingly recognized in cancer development 59 

(7,8). The microbiome can influence the balance of host cell proliferation and 60 

apoptosis, disrupt anti-tumoral immunity, and affect the metabolism of host-61 

produced factors, ingested food components, and drugs. (9). In a recent study, 62 

we defined the microbiome composition of the anal mucosa of HIV-exposed 63 

individuals. Metagenomic sequencing enabled us to identify viral and bacterial 64 

taxa linked to the development of anal lesions. Our results confirmed the 65 

occurrence of oncogenic viromes in this population and identified Prevotella 66 

bivia and Fusobacterium gonidiaformans as two relevant bacterial species 67 

predisposing to SILs. Moreover, gene family analysis identified bacterial gene 68 

signatures associated with SILs that may have potential as prognostic and 69 

predictive biomarkers for HIV-associated malignancies (10). Other reports 70 

using 16S rRNA gene sequencing to analyze the ASCC demonstrated the role 71 

of the anal microbiota in anal cancer response to therapy and toxicity, as well 72 

as changes in taxonomic compositions among normal, dysplasia, and anal 73 

cancer samples (11,12). 74 

The molecular biology of ASCC is complex and not completely understood (13). 75 

However, several studies have identified potential molecular targets for ASCC 76 

therapy, including regulators of apoptosis (14), agents targeting the PI3K/AKT 77 

pathway (15), antibody therapy targeting EGFR (16) or PD-L1 expression to 78 

stratify good versus poor responders to chemoradiotherapy (17). Despite 79 

advancements in understanding ASCC from various perspectives, thus far, no 80 

prognostic or predictive markers have been identified that are useful in clinical 81 

practice. Furthermore, a notable gap in existing information is the paucity of 82 
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studies employing anal cancer biopsies for gene expression profiling, 83 

particularly utilizing advanced techniques like next-generation sequencing 84 

(NGS). 85 

Transcriptomics and metatranscriptomics profiling are powerful NGS-based 86 

tools for the functional genomics characterization of complex diseases. In this 87 

sense, bulk RNA sequencing (RNA-seq) in neoplastic disease enables the 88 

simultaneous study of the host tumor transcriptome and its 89 

microenvironment, including the tumor immune infiltrate and the associated 90 

tumor microbiome. Transcriptomic profiling provides a thorough examination 91 

of gene expression patterns, uncovering crucial insights into the molecular 92 

mechanisms driving cancer development and progression. 93 

Metatranscriptomic profiling enables researchers to analyze gene expression 94 

levels of various organisms within a microbial community, providing insights 95 

into their metabolic processes and functional activities in cancer and immune-96 

related diseases (18). In this sense, metatranscriptomics approaches enable 97 

the analysis of the active microbiota instead of more frequent studies based 98 

on 16S rRNA sequencing, which analyzes the “total” microbiota, including 99 

active and inactive bacteria.  100 

The aim of this study was to analyze the transcriptomic and 101 

metatranscriptomics changes that occur during the progression from LGSIL to 102 

HGSIL and ultimately to ASCC.  103 

We collected biopsies identified as SILs and ASCC from a cohort of 70 104 

participants, encompassing individuals both with and without HIV, all of whom 105 

provided informed consent. Biopsies were subjected to bulk RNA-seq. Our goal 106 

was to gain insights into the molecular mechanisms underlying the 107 

development and progression of anal lesions, which could potentially lead to 108 

the identification of novel biomarkers and therapeutic targets for improved 109 

diagnostic and treatment strategies in patients with ASCC. 110 

Results 111 

Clinical characteristics of patients and microbial community variations in 112 

SILs and ASCC cases. 113 

Seventy patients were included in the present study. All participants 114 

underwent anal cytology and high-resolution anoscopy with biopsies. Based 115 

on cytology and histology analysis, samples were classified into LGSIL, n=23, 116 

HGSIL, n=16, and ASCC, n=23. Demographic and clinical data were collected, 117 

including age, sex at birth (male or female), gender (cisgender men (CGM), 118 

transgender women (TGW), and cisgender women (CGW)), HPV DNA status, 119 

HIV status, and antiretroviral therapy (ART). This information is summarized in 120 

Table 1. 121 
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We first conducted a compositional analysis of the three distinct groups—122 

LGSIL, HGSIL, and ASCC— by performing permutational multivariate ANOVA 123 

(PERMANOVA) with Euclidean distance. The Principal Coordinate Analysis 124 

(PCoA) defined two distinct clusters based on component I (p<0.001). Cluster 125 

I was enriched in LGSILs, comprising 24 out of 31 samples (77%), while Cluster 126 

II predominantly featured ASCC samples with 19 out of 23 (83%) (Fig. 1A). 127 

HGSIL demonstrated an almost equal distribution between the two clusters, 128 

with 9 out of 16 in Cluster I (56%) and 7 out of 16 in Cluster II (44%) (Fig. 1A). 129 

In addition, we considered covariates such as age, gender, HIV status, and 130 

high-risk HPV DNA genotyping (HR-HPV) to evaluate the factors influencing 131 

cluster formation based on diagnostic groups. Employing PERMANOVA, our 132 

analysis of beta diversity revealed distinctions primarily in samples positive for 133 

HR-HPV types compared to samples in which these HPV types were 134 

undetected (Figure 1B; Supp Figure 1).  135 

The ASCC microbial community, assessed through Observed and Chao 1 136 

indices based on metatranscriptome species composition, exhibited a 137 

significantly higher richness compared to LGSIL (Observed, p = 0.033; Chao 1, 138 

p = 0.035) and HGSIL (Observed, p = 0.029; Chao 1, p = 0.034). This trend 139 

persisted when merging LGSIL and HGSIL into the group termed SILs 140 

(Observed, p = 0.012; Chao 1, p = 0.018), suggesting that the ASCC 141 

environment may provide a more favorable habitat for a specific range of 142 

microorganisms, resulting in increased community richness (Fig. 1B; 143 

Supplementary Data 1). Richness indices were also augmented in the HR-HPV 144 

group compared to the negative cohort for HR-HPV types. In addition, a 145 

significant association between HIV-positive status and decreased alpha 146 

diversity was observed, in agreement with previous studies (10) (Fig. 1B).  147 

Analysis of diversity indices (Shannon and Simpson) revealed a significant 148 

increase in ASCC compared to HGSIL (Shannon, p = 0.0082; Simpson, p = 149 

0.0134), while no differences were observed between LGSIL and ASCC 150 

(Supplementary Data 1). These findings align with a recent study that reported 151 

similar alpha diversity indices between anal dysplasia and anal cancer but 152 

highlighted an elevated abundance of specific taxa in the latter (12). 153 

Consistent with our prior research we further observed a negative influence 154 

of aging on microbiome diversity (10) (Supplementary Data 1).  155 

We analyzed bacterial abundance at the phylum level between SILs and ASCC 156 

groups. Fusobacteriota, Bacteroidota, and Bacillota, among the most 157 

abundant phyla, were significantly more enriched in ASCC compared to SILs 158 

(Fig. 1D). Additionally, Pseudomonadota showed enrichment within the ASCC 159 

group compared to precancerous lesions (Fig. 1D). 160 
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At the species level, we identified a total of 25 taxa, each exhibiting a relative 161 

abundance exceeding 20% of the overall composition in at least one of the 162 

samples (Fig. 1E). Among these taxa, Fusobacterium nucleatum, 163 

Fusobacterium necrophorum, Bacteroides fragilis, and Prevotella intermedia 164 

are well-established gut-associated bacteria with previous associations with 165 

colorectal cancer (CRC) (19). Conversely, other taxa such as Mycoplasma 166 

hominis, Prevotella bivia, Fusobacterium gonidiaformans, Sneathia amnii, 167 

Campylobacter ureoliticus or Bacteroides fragilis have been linked to HPV-168 

related precancerous and cancerous genital lesions (10, 12, 20, 21, 22) 169 

To identify bacterial species associated with ASCC compared to SILs, we used 170 

MaAsLin2 analysis. To account for potential confounders, we refined the 171 

model by incorporating additional covariates, including HIV status, HR-HPV 172 

DNA status, sex at birth, and age. Significant enrichment was observed for 173 

Fusobacterium nucleatum (p= 0.001), Fusobacterium gonidiaformans (p = 174 

0.001), Bacteroides fragilis (p = 0.01), Campylobacter ureolyticus (p = 0.003), 175 

and Criibacterium bergeronii (p = 0.006) (Fig. 1E; Supplementary Data 2). 176 

Moreover, C. ureolyticus (p=0.002), F. gonidiaformans (p=0.01), and C. 177 

bergeronii (p=0.02) were associated with male sex (Supplementary Data 2). 178 

Additionally, C. ureolyticus correlated with HIV-negative cases (p=0.03) 179 

(Supplementary Data 2). 180 

F. nucleatum and B. fragilis have established roles in CRC progression, 181 

highlighting their importance in ASCC development and progression (19). 182 

While knowledge about F. gonidiaformans, C. ureolyticus, and C. bergeronii is 183 

limited, prior associations exist between F. gonidiaformans and C. ureolyticus 184 

with HPV presence and the development of precancerous lesions in anal and 185 

cervical cancers (10, 21, 23). These findings suggest a potential contribution of 186 

specific bacteria to ASCC progression. 187 

Exploring Viral Signatures in Anal Lesions Progression: Alpha 188 

Papillomavirus and Non-HPV Species. 189 

In terms of viral composition analysis, among the 40 species identified at the 190 

transcript level in all samples, eight were the most prevalent, with abundances 191 

greater than 30% of the total abundance in any sample and detected more 192 

than three times. Notably, seven of these species belonged to the Alpha 193 

Papillomavirus (Alpha-PV) genus, along with the Human endogenous 194 

retrovirus K (HERV-K), with evident variations in their relative abundances 195 

across distinct diagnostic groups (Fig. 2A). MaAsLin2 analysis revealed a higher 196 

abundance of Alpha-PV-10, which includes low-risk genotypes like HPV6 and 197 

HPV11, in both LGSIL and HGSIL compared to ASCC. (Fig. 2A, B, Supplementary 198 

Data 2). Conversely, Alpha-PV-9 (HPV16, 31, 33, 52, 58) and Alpha-PV-7 199 

(HPV18, 39, 59, 68, 45, 70) were significantly associated with HGSIL and ASCC 200 
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(Fig. 2A, B, Supplementary Data 2). This trend persisted when considering the 201 

number of positive cases for these species independent of their relative 202 

abundance (Fig. 2C). Although the significance was not established for Alpha-203 

PV-10, it remained significant for Alpha-PV-7 and Alpha-PV-9 (Fig. 2C).  204 

The HPV DNA genotyping data highlighted a robust association between 205 

HPV16 and both HGSIL and ASCC, correlating with the pattern observed with 206 

Alpha-PV-9 (Fig. 2C). However, HPV18 was detected in only one case of ASCC, 207 

contrasting with Alpha-PV-7 detected at the RNA level in over 20% of 208 

participants (Fig. 2A). This discrepancy could be due to Alpha-PV-7 containing 209 

other HPV genotypes (24). HPV6 and HPV11 were predominantly linked to 210 

LGSIL (Fig. 2D). Analyzing positive and negative cases for all low-risk (LR) HPV 211 

types and high-risk (HR) HPV types identified within the cohort revealed 212 

negative (p<0.001) and positive associations (p<0.05), respectively, with the 213 

diagnostic groups (Fig. 2E, F). These results confirm the prominence of HR and 214 

LR HPV types, particularly HPV6 and HPV16, in delineating the diagnostic 215 

groups (25). 216 

Among the non-HPV species, it is noteworthy to highlight a significant increase 217 

in the relative abundance of the endogenous HERV-K in ASCC compared with 218 

HGSIL (p<0.01; Supplementary Data 2). HERV-K overexpression is widely 219 

associated with malignant phenotypes and is upregulated in various cancers 220 

such as breast lymphoma, germ-line tumors, and melanoma (26). Additionally, 221 

Human betaherpesvirus 5 (HCMV), although with low relative abundance, 222 

demonstrated significant enrichment in ASCC compared with SILs (p<0.05; 223 

Supplementary Data 2). HCMV is linked to several cancer types, including 224 

lymphoma, cervical cancer, Kaposi’s sarcoma, CRC, prostate cancer, skin 225 

cancer, and glioblastomas (27). However, it remains unclear whether HCMV 226 

actively contributes to malignant tumor progression or is reactivated under 227 

conditions leading to chronic inflammation or immunosuppression (27). 228 

Overall, these findings confirm the significance of specific viral Alpha 229 

Papillomavirus species and their association with SILs toward ASCC 230 

progression. Furthermore, our data reveals a potential involvement of HERV-231 

K and HCMV in ASCC tumorigenesis. Additionally, the use of 232 

metatranscriptomics demonstrates remarkable reliability, sensitivity, and 233 

specificity in detecting the presence of HPV types, even in cases where DNA 234 

genotyping results were negative. 235 

Metabolic Pathways in ASCC Progression 236 

To understand the functional implications of microbial community changes 237 

between SILs and ASCC, we conducted metatranscriptomics analysis, revealing 238 

20 MetaCyc modules as significantly enriched pathways in ASCC compared to 239 

SILs (Table 2). These modules encompassed Nucleotide, Amino Acid, and Lipid 240 
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Biosynthesis pathways. This finding aligns with our prior observations, where 241 

pathways related to amino acid and de novo nucleotide biosynthesis were 242 

enriched in HIV individuals with anal precancerous lesions (10). These 243 

pathways are vital for cell growth and proliferation, as cells require energy and 244 

nutrients from their environment to support these processes. Similarly, cancer 245 

cells exhibit metabolic adaptations essential for their growth (28). Hence, our 246 

data suggest that certain bacteria within the evolving microenvironment 247 

during malignancy may exploit these pathways to thrive and proliferate, like 248 

cancer cells. 249 

Microbial Contributions to Anal Lesions: Enriched Proteins and Taxonomic 250 

Associations. 251 

To go further, we next explored the gene proteins contributed by the microbial 252 

organisms in the comparison of SILs versus ASCC. MaAsLin2 analysis yielded a 253 

total of 2523 UniRef90 sequence proteins differentially expressed 254 

(Supplementary Data 3). We further employed the KEGG database to annotate 255 

387 proteins of which 349 were significantly enriched in ASCC and 37 in SILs 256 

(Supplementary Data 3). Functional annotation using KEGG Mapper revealed 257 

metabolic pathways such as glycolysis, lipid, amino acid, and nucleotide 258 

biosynthesis, contributed by 60 bacterial proteins enriched in ASCC (Fig. 3A). 259 

Proteins like Acca (acetyl-CoA carboxylase carboxyl transferase subunit alpha), 260 

glyA (glycine hydroxymethyltransferase), glyQ (glycyl-tRNA synthetase alpha 261 

chain), eno (enolase), pgk (phosphoglycerate kinase) and por (pyruvate-262 

ferredoxin/flavodoxin oxidoreductase), previously identified in anal samples 263 

from individuals with precancerous anal lesions (10), underline their potential 264 

roles as metabolic markers in anal cancer progression. In addition, among 265 

these 60 proteins, we identified the enrichment of the oncogenic FadA 266 

adhesion protein from F. nucleatum in ASCC, a factor widely associated with 267 

CRC; and dnaK, a protein kinase with a known involvement in carcinogenesis 268 

and cancer progression (29,30). These findings align with the taxonomic 269 

abundance analysis, highlighting the significant role of bacteria like B. fragilis, 270 

F. nucleatum, and C. ureolyticus, alongside other relevant and distinct gut 271 

microbiota taxa, in orchestrating these processes (Fig. 3A). Furthermore, four 272 

proteins linked to the oncogene E6 from Human Papillomavirus 16 were 273 

enriched in ASCC (Fig. 3B). E6 oncoprotein promotes p53 degradation, 274 

contributing to keratinocyte immortalization. In SILs, 37 enriched proteins 275 

were detected, all predominantly associated with genes from the LR Human 276 

Papillomavirus genomes HPV6 and HPV11, underscoring their potential role as 277 

drivers or sustainers of precancerous anal lesions (31) (Fig. 3B). 278 



8 

Transcriptomic profiling and functional insights across anal lesion 279 

progression. 280 

We then explored the host transcriptome of LGSIL, HGSIL, and ASCC. Like the 281 

metatranscriptomes analysis, the unsupervised clustering of samples revealed 282 

two primary clusters (Fig. 4A). Cluster I is predominantly composed of LGSILs, 283 

with the inclusion of some HGSILs. In contrast, Cluster II comprises most anal 284 

cancer samples, alongside a subgroup of SILs. One plausible interpretation for 285 

this distribution is that precancerous lesions may be at varying stages of 286 

progression, with some nearing malignant transformation and others in a 287 

regressive or early stage (32). 288 

Next, we applied supervised comparative analysis between LGSIL and HGSIL as 289 

well as HGSIL and ASCC. The analysis revealed a higher number of differentially 290 

expressed genes (DEG; FC>2, FDR < 0.05) in the transition from HGSIL to ASCC 291 

(544 DEG) than in the comparison among the two SIL groups (121 DEG) (Fig. 292 

4B, C; Supplementary Data 4). Among the most significant genes, a decrease 293 

in keratins in HGSIL compared to LGSIL stands out (Fig. 4B) as well as the 294 

overexpression of members of the MAGE gene family of cancer/testis antigens 295 

in ASCC compared with HGSIL, like MAGEA4, MAGEA3, and MAGEA1 (Fig. 4C). 296 

The MAGE family has gained attention as a potential cancer biomarker and 297 

immunotherapy (33). Notably, a phase I trial for autologous T-cell therapy 298 

targeting MAGEA4-positive solid cancers is currently underway (34). 299 

To comprehend the functional significance of DEG, we employed Gene Set 300 

Enrichment Analysis (GSEA) on Gene Ontology (GO), Cancer Hallmarks, and 301 

Disease Ontology (DO) terms. GSEA revealed activated processes such as 302 

nuclear division, chromatin modification, and cell proliferation, along with 303 

suppressed pathways like keratinocyte differentiation and leukocyte-304 

mediated immunity in HGSIL compared to LGSIL (Fig. 4D; Supplementary Data 305 

5). These processes align with the histopathological features of HGSIL, 306 

including a higher nuclear-to-cytoplasmic ratio, decreased organization of cell 307 

layers, a greater degree of nuclear pleomorphism, and increased mitotic index 308 

(35). Furthermore, analysis of Cancer Hallmarks indicated the activation of 309 

pathway terms associated with sustaining proliferative signaling, such as MYC 310 

targets, E2F targets, G2M checkpoint, or mitotic spindle (Fig. 4E). Notably, 311 

there was a decrease in genes related to IFN-alpha and IFN-gamma levels, 312 

potentially compromising the ability of the immune system to mount an 313 

effective defense against viral infections and favoring persistent infection and 314 

progression to HGSIL (36) (Fig. 4E). The activation of DNA repair genes may be 315 

a response to potential damage caused by viral oncoproteins E6 or E7, which 316 
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aim to integrate the host genome through DNA double breakpoints (35) (Fig. 317 

4E). 318 

The network representation resulting from GSEA with GO comparing LGSIL to 319 

HGSIL provided valuable insights into the molecular landscape 320 

(Supplementary Fig. 2A). Three distinct clusters emerged, each revealing 321 

specific functional themes: a DNA and chromosome organization cluster, 322 

characterized by a dense interconnection of genes primarily related to 323 

histones and chromatin modifiers, suggesting a potential role in the epigenetic 324 

regulation and structural integrity of the genome; a chromosome segregation 325 

cluster with genes predominantly linked to processes such as the mitotic 326 

spindle and cell division; and a skin development cluster, offering insights into 327 

the gene network governing epidermal differentiation (Supplementary Fig. 328 

2A). These findings suggest a complex interplay of molecular events involving 329 

DNA organization, chromosome segregation, and skin differentiation in the 330 

transition from LGSIL to HGSIL. Some of these events may be attributed to HPV 331 

E6 oncoprotein. The expression of viral E6 enhances cell cycle progression and 332 

induces mitotic defects leading to centrosome amplification observed in 333 

keratinocytes, contributing to chromosomal instability through aberrant 334 

chromosome segregation (37). 335 

Moreover, Disease Ontology (DO) revealed additional clusters of genes related 336 

to gut inflammatory processes, HIV disease, and B cell immunodeficiency 337 

(Supplementary Fig. 2B). Together, these data unveil the impact on the anal 338 

transcriptome caused during the transition from LGSIL to HGSIL, defining 339 

distinct driver processes, including several genes that can be new avenues for 340 

further research. 341 

Conversely, in comparing HGSIL and ASCC, GO analysis revealed a 342 

predominant activation of immune response in ASCC but a decrease in 343 

epidermal differentiation-related genes (Fig. 4F). Hallmarks analysis 344 

demonstrated activation of IFN pathways emphasizing immune activation. 345 

Remarkably, suppression of the p53 pathway may be linked to the 346 

overexpression of HPV16 E6 protein (Fig. 4G). The network representation of 347 

GO revealed clusters of genes mainly representing immune activation, 348 

leukocyte migration, cytokine and immunoglobulin production but also 349 

epidermal cell differentiation (Supplementary Fig. 2C). Additionally, DO yield 350 

terms related to inflammatory processes of colon, HIV, and skin disease 351 

(Supplementary Fig. 2D).  352 

Therefore, unlike the comparison between LGSIL and HGSIL, the data suggest 353 

that the transition from HGSIL to ASCC is characterized by a predominance of 354 

immune response activation over processes related to cell proliferation or 355 

DNA modifications (38). 356 
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Host transcriptome reveals two intrinsic signatures with varied features 357 

and prognoses. 358 

GSEA highlighted deregulated processes across anal lesion stages, 359 

emphasizing central roles for the cell cycle, immune response, viral infection, 360 

and epidermal differentiation. We focused on significant gene signatures 361 

obtained by GSEA related to these processes to visualize gene expression 362 

patterns including epidermal differentiation (30 genes – Fig. 5A, 363 

Supplementary Data 6), immune response (72 genes – Fig. 5B, Supplementary 364 

Data 6), and cell cycle (86 genes – Fig. 5C, Supplementary Data 6) Heatmaps 365 

revealed at least two subtypes within each diagnosis group, one with high 366 

expression of the gene signature and the other with low expression. To 367 

categorize samples, we introduced "high" and "low" scores based on the 368 

average expression of each gene signature, divided by the median value (Fig. 369 

5 A-C). 370 

Next, we incorporated these signatures along with LR and HR HPV and HIV 371 

status into the unsupervised clustering of samples. This allowed us to discern 372 

two primary clusters with distinct characteristics (Fig. 6A). Cluster I primarily 373 

comprised SILs (p< 0.01; 24 out of 26 in Cluster I) with a low immune signature 374 

(p<0.001), high epidermal differentiation (p<0.001), a low cell cycle signature 375 

(p<0.05), and a smaller number of samples infected with HR HPV types 376 

detected at both RNA (p<0.05) and DNA (p<0.05) levels compared to Cluster 377 

II. In contrast, Cluster II encompasses 91% of anal cancer cases (p< 0.01; 21 out 378 

of 23 ASCC) and 62 % of HGSIL (10 out of 16 HSGIL) It exhibits a higher immune 379 

signature score (p<0.001), low epidermal differentiation (p<0.001), a greater 380 

number of samples with a high cell cycle signature (p<0.05), and a higher 381 

prevalence of HR HPV infections (p<0.05; Fig. 6A). Of note, Cluster II included 382 

most of the subjects without HIV (92%; 11 out of 12 HIV-negative cases) 383 

compared with Cluster I (p<0.05) which was mainly integrated with PLWH (25 384 

out of 26 cases in Cluster I). 385 

Immune infiltration and cell composition analysis. 386 

We utilized EPIC and ESTIMATE algorithms for predicting immune infiltration 387 

and cell fraction composition (Fig. 6B). Cluster II exhibited a higher level of 388 

immune infiltration, as determined by EPIC (p<0.001). The analysis of cell 389 

composition revealed a significant increase in B cells (p<0.001), CD4 T cells 390 

(p<0.001), CD8 T cells (p<0.05), and macrophages (p<0.001), aligning with the 391 

high immune signature assigned to this cluster (Supplementary Data 7). A 392 

possible explanation for these findings could be the higher prevalence of HIV-393 

negative cases in Cluster II, suggesting a potentially less compromised immune 394 

system compared to individuals in Cluster I. 395 
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To explore this further, we conducted a comparison of the immune profile 396 

between HIV-positive and HIV-negative individuals, irrespective of their 397 

cluster assignment. Results revealed a significant reduction in B cells (p<0.01) 398 

and CD4+ T cells (p<0.001) among PLWH in our cohort (Supplementary Data 399 

7). This aligns with the asymptomatic phase of HIV infection, characterized by 400 

ongoing viral replication leading to a gradual depletion of CD4+ T cells, which 401 

can be partially restored with ART. While the impact of HIV on B-cell numbers 402 

is less clear, studies indicate a reduction in B-cell counts in HIV-infected 403 

individuals (39). Dysregulation of B cells during HIV infection is also influenced 404 

by ART therapy. Of note, a significant portion of individuals in our HIV-infected 405 

cohort were on ART during recruitment, contributing to observed variations in 406 

B cell composition. 407 

Furthermore, we explored whether there was an association between these 408 

immune profiling differences and HPV16 infection. Results indicated a 409 

significantly higher immune profile of macrophages in HPV16-infected cases 410 

(p<0.01; Supplementary Data 7). Previous studies have reported that M2-like 411 

macrophages infiltrate HPV16-associated tumors, suppressing antitumor T-412 

cell response and facilitating tumor growth (40). 413 

Overall, Cluster II is represented by ASCC tumors and precancerous lesions 414 

with a high immune infiltration. The significance of tumor-infiltrating 415 

lymphocytes (TILs) in influencing favorable outcomes across various tumor 416 

types, including ASCC, has been reported in the literature (41, 42, 43, 44). Our 417 

recent study demonstrated the crucial role of PD-L1 expression in influencing 418 

complete response rates and survival outcomes in non-metastatic ASCC 419 

patients undergoing standard definitive chemoradiotherapy (17). Motivated 420 

by the importance of immune factors in ASCC, we employed the T cell 421 

dysfunction and exclusion score (TIDE) in our current study to predict cancer 422 

immunotherapy response. 423 

The results yielded a compelling connection between immune-related 424 

characteristics and treatment response. Cluster II, characterized by a higher 425 

immune signature and immune cell infiltration, exhibited a significantly higher 426 

number of responders (p<0.05; Fig. 6C). The TIDE analysis highlighted specific 427 

immune cell changes associated with responders, including an increase in 428 

CD4+ TILs (p<0.05) and macrophages (p<0.05), and a concurrent decrease in 429 

cancer-associated fibroblasts (CAFs, p < 0.01) and endothelial cells (p<0.01) 430 

(Supplementary Data 7). These findings underscore the potential predictive 431 

value of immune-related parameters in discerning responders and non-432 

responders to cancer immunotherapy in the context of anal cancer 433 

progression. 434 
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Furthermore, we compared the gene expression profiles of two surrogate 435 

markers for HPV-related malignancy, Ki67 and p16. Results showed that both 436 

markers were higher in Cluster II (Fig. 6D). Additionally, Cluster I was linked to 437 

younger subjects and MSM, while Cluster II was associated with older patients, 438 

enriched in TGW and cis-gender women (Fig. 6E). In coincidence with the 439 

latter, high p16 expression has been shown to correlate with the female sex 440 

and with better outcomes following chemo-radiotherapy (45,46,47). 441 

These findings might help to better understand the molecular landscape 442 

within and between different stages of anal lesions and reveal potential 443 

biomarkers and therapeutic pathways for further research. 444 

Immune profiling of p16, CD3 / CD8 cells and PD-L1 expression among 445 

ASCC 446 

The immunohistochemical (IHC) analysis of p16, CD3, CD8, and PD-L1 in anal 447 

cancer not only provides valuable insights into the tumor microenvironment, 448 

but also serves as a guide for treatment decisions and aids in predicting patient 449 

outcomes (17). 450 

In our study, we explored these markers in 10 (for p16) and 14 (for CD3, CD8 451 

and PD-L1) out of the 23 ASCC samples using IHC. Ninety percent of ASCC (9 452 

out of 10) showed a diffusely positive pattern of p16 (Fig. 7A). The density of 453 

CD3 and CD8 TILs was moderate to high in 47% (6 out of 14) of ASCC samples 454 

(Fig. 7B). Of note, all these samples exhibited a high immune signature, 455 

correlating with increased immune infiltration as assessed by EPIC (Fig. 7C). In 456 

this context, tumors with moderate to high CD3 and CD8 expression were 457 

associated with lower tumor purity scores (p<0.01) and higher cell fractions of 458 

cancer-associated fibroblasts (CAFs) (p<0.05), macrophages (p<0.05), and CD4 459 

T cells (p<0.05) as revealed by EPIC analysis (Fig. 7D). The PD-L1 expression 460 

status was assessed in the 14 ASCC cases using the Combined Positive Score 461 

(CPS). Notably, 57% of positive cases (8 out of 14) exhibited moderate to high 462 

PD-L1 expression levels (CPS > 5%), while the remaining samples showed low 463 

PD-L1 expression levels (CPS < 5%;6 out of 14) (Fig. 7B). This analysis indicates 464 

a complex relationship between TILs and tumor microenvironment factors, 465 

shaping the immune profile of ASCC tumors and potentially influencing 466 

treatment approaches. 467 

Comparative transcriptome analysis of HPV-related squamous cell 468 

carcinomas. 469 

We analyzed relevant HPV-associated cancer studies to compare the gene 470 

expression signatures identified in ASCC with head and neck squamous cell 471 

carcinomas (HNSCC) and cervical squamous cell carcinomas (CSCC) cases. In a 472 
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previous study, Zhang et al. conducted RNA-seq on 36 HNSCC (18 HPV+ and 18 473 

HPV-), identifying two HPV+ subtypes. One subtype was enriched in "immune 474 

response" related genes, while the other was enriched in "keratinocyte 475 

differentiation" related genes (48), which is consistent with our ASCC findings. 476 

We applied the gene signature distinguishing these subtypes in HNSCC across 477 

our sample cohort, sorted by immune score (Figure 8A; Supplementary Data 478 

8). Additionally, we employed our gene signature, derived from the most 479 

significantly deregulated genes in the HGSIL vs. ASCC comparison, on HNSCC 480 

samples, grouped by the subtypes defined by the authors (Figure 8B; 481 

Supplementary Data 8). Results indicate similar gene expression patterns 482 

between locations, with variations in gene composition, yet lined with similar 483 

biological processes. For CSCC, we utilized den Boon et al.'s study, despite 484 

being microarray-based, due to its comprehensive analysis of premalignant 485 

(CIN1, CIN2, and CIN3) and CSCC specimens (49). Like our approach, we 486 

established a gene signature by comparing CIN2/CIN3 (comparable to HGSIL) 487 

versus CSCC and visualized the gene expression profile in our sample cohort 488 

(Figure 8C; Supplementary Data 8). This analysis and the application of our 489 

signature to cervical lesion samples, sorted by immune score (Figure 8D; 490 

Supplementary Data 8), showed an almost mutually exclusive relationship 491 

between immune and epidermal differentiation processes. This suggests a 492 

significant decrease in keratinocyte differentiation as the disease progresses, 493 

alongside a significant increase in immune response genes. 494 

Mutational profiling of cancer driver genes among ASCC and other 495 

squamous cell carcinomas 496 

We conducted mutational profiling on ASCC biopsies from 23 patients based 497 

on RNA-seq data, revealing 51 somatic missense mutations in cancer driver 498 

genes among 87% of ASCC cases (20 out of 23). We identified mutations in 499 

KMT2C (also known as MLL3, 30%), PIK3CA (20%), EP300 (20%), NOTCH1 500 

(15%), IDH1 (15%), PRDM1 (15%), FGFR2 (15%), SETD2 (15%), FGFR3 (10%), 501 

MAP3K1 (10%), and MET (10%). Single cases of mutations were found affecting 502 

TP53, TET2, ATM, TSC1, EZH2, CASP8, ARID1B, APC, NCOR1, SF3B1, STK11, 503 

BRCA1, KDM6A, and STAG2 (Fig. 9A). Several of these mutated genes are 504 

commonly found in HPV-driven squamous cancers like cervix, head and neck, 505 

vulva, and anus, including KMT2C, EP300, PIK3CA, NOTCH1, FGFR2, ATM, 506 

TP53, and BRCA1 (50, 51, 17).  507 

Consistent with our results, comparable frequencies of KMT2C, PIK3CA and 508 

the chromatin remodeler EP300, have been reported at the genomic level 509 
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through NGS or targeted sequencing among the most mutated genes in ASCC 510 

(51,52,53,17).  511 

Our data revealed KMT2C mutations at comparable rates in the early stages of 512 

anal lesions, reaching 30% in HGSIL and 42% in LGSIL (Fig. 9A), suggesting a 513 

potential pivotal role for KMT2C as a driver gene in anal carcinogenesis 514 

progression. Additionally, increased mutation frequencies for EP300 (21% in 515 

ASCC, 4% in HGSIL, and 13% in LGSIL) and PI3KCA (17% in ASCC, 8% in HGSIL, 516 

4% in LGSIL) were observed compared to earlier stages of anal lesions (Fig. 9A), 517 

indicating potential shifts in the molecular landscape during disease 518 

progression. 519 

A higher mutation rate of 3.5 (21 mutations in 6 samples) was observed in 520 

ASCC with a low immune signature compared to the high immune signature 521 

group (p < 0.01), which had a mutation rate of 1.76 (30 mutations in 17 522 

samples). This implies distinct tumor subpopulations with mutations in cancer 523 

driver genes (Fig. 9A).  524 

Furthermore, all mutations in KMT2C (7 mutations in 6 cases), PRDM1 (3 525 

mutations in 3 cases) and FGFR2 (3 mutations in 2 cases) occurred in HPV16-526 

infected cases, comprising 25% of total mutations (Fig. 9A). PRDM1 is a master 527 

regulator of lymphoid cell differentiation and a tumor suppressor gene in 528 

lymphoma (54). It has been identified as a master regulator for HPV16 E6/E7 529 

proteins (55) Aberrant FGFR signaling and HPV16 E5 expression have been 530 

shown to be correlated with cervical cancer progression (56). Furthermore, 531 

the interaction between HPV16 E5 and FGFR2 alters keratinocyte 532 

differentiation and inhibits tumor-suppressive genes, suggesting a role in the 533 

early stages of HPV infection and transformation (56). 534 

Consistent with our findings, previous studies have recognized KMT2C and 535 

EP300 as the most frequently mutated genes in metastatic ASCC (51). KMT2C 536 

mutations are associated with abnormal H3K4 methylation, linked to 537 

oncogenic transformation in preclinical models (57). KMT2C plays a crucial role 538 

in activating TP53 gene expression, demonstrated by targeted inactivation 539 

studies in mice (58). 540 

Regarding EP300, the oncoprotein HPV/E6 mediates TP53 degradation by 541 

binding to the histone acetyltransferase EP300, inhibiting EP300-mediated 542 

TP53 acetylation, and promoting TP53 degradation (59,60). Consequently, 543 

dysregulated histone/chromatin modulation within the context of impaired 544 

DNA repair mechanisms emerges as a driver of malignancy. We categorized 545 

mutated genes into cancer hallmarks and observed that Genome Instability 546 

predominated (Supplementary Data 9). Genes like KMT2C, EP300, IDH1, 547 
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SETD2, TET2, BRCA1, TP53, APC, ATM, KDM6A, NCOR1, SF3B1, and STAG2 548 

defined a gene network critical for ASCC, regardless of HPV infection, aligning 549 

with TP53 association with HPV-HR negativity in our study, consistent with 550 

prior research (17,51,52). 551 

To perform a comparative analysis of the mutational profile identified in ASCC 552 

with other squamous cell carcinomas, we analyzed two combined cervical 553 

cancer datasets (MSK-CESC and TCGA-CESC) and a head and neck cancer 554 

dataset (TCGA-HNSC) retrieved from cBioPortal online resource 555 

(http://www.cbioportal.org/). Only drivers and putative drivers’ somatic 556 

missense or truncating mutations were considered for frequency estimations 557 

among cohorts. The comparative analysis showed that one third of the most 558 

frequents cancer driver mutations identified in ASCC (8 out of 25 genes) were 559 

also frequently mutated (>5% of cases) in CSCC and HNSCC (KMT2C, EP300, 560 

PIK3CA, NOTCH1, TP53, CASP8, STK11 and KDM6A) (Fig. 9B). 561 

Our mutational profiling of ASCC biopsies from 23 patients offered valuable 562 

insights into the somatic mutation landscape of cancer driver genes, 563 

particularly given their derivation from transcriptomic data. However, we 564 

recognize the significance of the limited sample size when drawing definitive 565 

conclusions.  566 

Discussion 567 

ASCC represents only 2% of all gastrointestinal tumors but is characterized by 568 

high morbidity and mortality. Unfortunately, treatment options for ASCC have 569 

not evolved in the past 20 years; concurrent chemoradiotherapy continues to 570 

be the standard care strategy for non-metastatic cases. For patients with 571 

metastasis at diagnosis or those who develop metastatic recurrences after 572 

chemoradiation therapy, the 5-year survival rate is below 20% (61). To date, 573 

platinum-based chemotherapy doublets are the most commonly used 574 

anticancer drugs for palliative chemotherapy, and no targeted agents have 575 

been approved. In clinical practice, prognostic factors of survival in ASCC are 576 

the T and N stage, sex, differentiation, tumor location, high-risk HPV infection, 577 

and occurrence of a complete response after CRT (17). These clinical 578 

parameters related to survival cannot be used to personalize therapy or 579 

predict treatment response in individual patients. Less is known regarding 580 

early-stage prognostic biomarkers of ASCC.  581 

Comprehensive characterization of anal squamous precancerous and 582 

cancerous lesions at metatranscriptome and transcriptome levels allowed us 583 

to identify the most relevant changes that occur at the cell host and their 584 

associated microenvironment – the immune infiltrate and the microbiome – 585 
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during the progression from preinvasive to the invasive stages. Unsupervised 586 

analyses allowed us to identify two patient clusters (Cluster I and Cluster II) 587 

based on their histological diagnosis, microbial composition, cell cycle, 588 

immune infiltrate, immune response, viral infection (HIV and HPV), epidermal 589 

differentiation and activity of specific metabolic and signaling pathways. 590 

Cluster I was mainly composed by LGSIL and HGSIL differentiated and low 591 

proliferative cases with low immune infiltrate and almost infected by low-risk 592 

HPV types. Meanwhile Cluster II was significantly enriched in ASCC and HGSIL 593 

cases with higher immune signature score, low epidermal differentiation, a 594 

greater number of samples with a high cell cycle signature, and a higher 595 

prevalence of high-risk HPV. In this sense, Cluster II was associated with higher 596 

expression of Ki67 and p16, older patients, TGW, and females. These findings 597 

align with previous studies that have implicated specific viral infections, 598 

immune responses, and molecular pathways in the progression of anal lesions 599 

(4,10,17). The observed distinctions between Cluster I and Cluster II provide 600 

valuable insights into potential prognostic and therapeutic considerations in 601 

the management of anal squamous lesions (62). 602 

Microbiome changes in preinvasive and invasive stages of anal cancer 603 

A comparison of the microbiota composition at phylum and species levels 604 

reveals expected differences between SILs and ASCC regarding the prevalence 605 

of HR HPV subtypes but also identifies several viruses and bacteria species 606 

significantly associated with anal cancer not previously reported. In this sense, 607 

Fusobacterium nucleatum, Fusobacterium gonidiaformans and Bacteroides 608 

fragilis, previously associated with CRC progression at early stages (17), were 609 

significantly enriched in ASCC compared with premalignant lesions. More 610 

importantly, these taxa together with HPV16 contributed with gene encoding 611 

enzymes (e.g.: Acca, glyQ, eno, pgk and por) and oncoproteins (FadA and dnaK) 612 

and a distinctive ASCC metabolic profile characterized by the enrichment of 613 

pathways related to oxidative, energetics or biosynthetic processes, including 614 

glycolysis, lipid, amino acid, and nucleotide biosynthesis that could facilitate 615 

and promote the survival and proliferation of cancerous cells (10, 29, 30). 616 

Among these enzymes and proteins, Acca, glyA, glyQ, eno, pgk, and por were 617 

identified in our previous study as associated with precancerous anal lesions, 618 

highlighting their roles as metabolic markers in cancer progression (10). In line 619 

with our results, Serrano and Villar also found pgk and eno overexpressed in 620 

the microbiome of HGSIL subjects, while they propose succinyl-CoA and 621 

cobalamin as markers associated with HGSIL (8). This reinforces the idea that 622 

HPV-infected cells can modify metabolism by regulating genes involved in 623 

cellular growth and metabolism, which is crucial to oncogenesis (63). 624 

Considering and validating these microbial proteins as markers could offer 625 

alternative tools in cancer prevention. 626 
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Cell signaling pathways affected in preinvasive and invasive stages of anal 627 

cancer  628 

Our integrative analysis of the host transcriptome provided valuable insights 629 

into the molecular landscape underlying anal cancer development. The 630 

transition from HGSIL to ASCC was characterized by a statistically significant 631 

number of DEG, with notable alterations in keratin expression and 632 

overexpression of members of the MAGE gene family in ASCC. Functional 633 

analysis revealed key biological processes and pathways associated with each 634 

stage. In HGSIL compared to LGSIL, activated processes included nuclear 635 

division, chromatin modification, and cell proliferation, aligning with 636 

histopathological features indicative of high-grade lesions (35). Conversely, 637 

the transition from HGSIL to ASCC revealed immune response activation, 638 

marked by upregulation of IFN pathways, highlighting the role of the immune 639 

system in the progression to anal squamous cell carcinoma (38). Indeed, 640 

patients of Cluster II were characterized by a higher immune signature and 641 

immune cell infiltration, as assessed by gene expression profiling of immune 642 

cell fractions, IHC of CD3 and CD8 TILs as well as PDL-1 expression. 643 

Therefore, in comparing HGSIL and ASCC, the data underscored the 644 

predominance of immune response activation in ASCC, contrasting with the 645 

cell proliferation and DNA modification processes observed in the transition 646 

from LGSIL to HGSIL. Noteworthy findings included the suppression of the p53 647 

pathway potentially linked to the overexpression of HPV16 E6 protein, 648 

highlighting the intricate interplay between viral oncoproteins and host 649 

cellular processes in the progression to ASCC (64). 650 

Shared and unique immune and molecular changes across squamous cell 651 

carcinomas 652 

Through the integration of transcriptomic studies on HNSCC and CSCC with our 653 

ASCC transcriptome, we found shared gene expression patterns across tumor 654 

sites indicating a shift towards immune response genes and a decrease in 655 

keratinocyte differentiation genes during disease progression from 656 

preinvasive to invasive stages. These patterns align with the known biology of 657 

HPV carcinogenesis, where HPV E6 oncoprotein downregulates keratinocyte 658 

differentiation genes and upregulates mesenchymal lineage genes (65). 659 

Regarding the immune response, the elevated immune score and the high 660 

frequency of TILs cell fraction observed in cluster II samples from our analysis 661 

are also in line with a higher prevalence of HR-HPV. HPV-positive tumors may 662 

have increased numbers of TILs, myeloid dendritic cells, and proinflammatory 663 

chemokines, which are thought to improve treatment response in patients 664 

with head and neck and cervical cancers (66,67). Our results showed that a 665 

strong immune response is associated with better treatment outcomes, as 666 



18 

indicated by TIDE score analysis. Studies have shown that TILs may improve 667 

treatment responses or outcomes in CSCC patients undergoing chemotherapy 668 

or radiotherapy (68,69). TIL-based immunotherapy has shown promise as an 669 

alternative treatment for advanced cervical cancer, with positive results (70). 670 

In advanced ASCC, immunotherapy trials primarily focus on targeting 671 

PD1/PDL1 and E6/E7 proteins (71). Therefore, combining TIL therapy with 672 

checkpoint blockade and HPV E6/E7 vaccination offers a potent anti-tumor 673 

therapy with the potential to eradicate malignancy in ASCC completely. 674 

Furthermore, ASCC exhibited somatic missense mutations in cancer driver 675 

genes, with KMT2C, PIK3CA and EP300, being the most mutated genes in 676 

agreement with previous reports. The prevalence of these mutations varied at 677 

different stages of anal precancerous lesions, suggesting their involvement in 678 

early stages of anal cancer development. Additionally, there were distinct 679 

tumor subpopulations with different mutation rates and immune signatures. 680 

Mutations in KMT2C, PRDM1, and FGFR2 were predominantly found in HPV16-681 

infected cases, indicating their association with HPV-related carcinogenesis 682 

(51,52). The comparative analysis of mutational profiles across different 683 

squamous cell carcinomas, including ASCC, HNSCC, and CSCC, revealed 684 

significant overlaps in the mutation landscape. By examining datasets from 685 

cBioPortal, encompassing a substantial number of cases, we identified 686 

common mutations in several cancer driver genes among these carcinomas. 687 

Approximately one third of the frequently mutated genes in ASCC were also 688 

prevalent in HNSCC and CSCC, suggesting potential shared molecular 689 

mechanisms underlying these cancers. Key drivers such as KMT2C, EP300, 690 

PIK3CA, NOTCH1, TP53, CASP8, STK11, and KDM6A emerged as recurrently 691 

altered across these cohorts. However, the remaining two thirds of the 692 

mutated genes appear to be specific to ASCC, indicating distinct genetic 693 

alterations driving the development and progression of anal cancer.  694 

Our study has a number of limitations given its cross-sectional nature and the 695 

low sample size utilized for data collection due the rarity of anal cancer. The 696 

small sample size might not fully represent the biological diversity and 697 

variability within the population under investigation, potentially limiting the 698 

generalization of the findings. Furthermore, the high risk of false discovery 699 

poses a considerable concern, especially in exploratory analyses or when 700 

multiple comparisons are conducted. Due to the cross-sectional design 701 

adopted in this study, establishing causal associations becomes challenging. 702 

However, this is the first cross-sectional study that identifies 703 

metatranscriptomics and transcriptomics changes among premalignant and 704 

the malignant stages of anal cancer. Furthermore, these findings provide 705 

valuable insights into novel prognostic biomarkers that may help to stratify 706 

patients with precancerous lesions in low- vs. high-risk groups of progression 707 
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to the malignant stage. Future research employing larger sample sizes and 708 

longitudinal designs would be needed to address these limitations and 709 

corroborate our findings. 710 

Methods 711 

Sex as a biological variable 712 

Sex at birth (male or female) and gender identity (cisgender men (CGM), 713 

transgender women (TGW), and cisgender women (CGW)), were incorporated 714 

into our study design as biological variables. 715 

Sample Collection and RNA Sequencing 716 

We collected 70 anal biopsies from patients with different stages of anal 717 

lesions: 31 LGSIL, 16 HGSIL, and 23 ASCC, stored in RNAlater (Thermo Fisher 718 

Scientific, USA). Clinical data including age, HPV status, ART treatment, and 719 

HIV status were recorded at enrollment. RNA was extracted using miRNeasy 720 

Tissue/Cells Advanced Kits (Qiagen), and its quality was assessed on an Agilent 721 

2100 Bioanalyzer. Samples with RNA integrity number (RIN) >7 were chosen 722 

for RNA-seq. Directional RNA-seq libraries were prepared using Illumina Total 723 

RNA Prep with Ribo-Zero Plus kit. Sequencing was performed on an Illumina 724 

Novaseq 6000 platform, yielding approximately 80 million clusters per sample 725 

with >92% >Q30 quality scores. 726 

DNA purification and HPV detection and genotyping 727 

Samples were collected using Qiagen specimen collection devices (Qiagen, 728 

USA) by qualified staff at Fundación Huésped and Hospital Udaondo. DNA 729 

purification utilized QIAMP DNA kits (Qiagen, USA). DNA integrity and 730 

concentration were assessed by Nanodrop spectrophotometry. HPV detection 731 

was performed at Institute Malbrán via PCR using biotinylated Broad-732 

Spectrum General Primers BSGP5+/GP6, designed to amplify a 140 bp 733 

fragment of the HPV-L1 gene. Genotyping was conducted using reverse line 734 

blot hybridization (RLB) for 36 HPV genotypes (validated by Global HPV 735 

LabNet) (72). Biotinylated amplicons were denatured and hybridized with 736 

genotype-specific oligonucleotide probes immobilized as parallel lines on 737 

membrane strips. 738 

Metatranscriptomic Data Analysis. 739 

For metatranscriptomics analysis, the obtained RNA-seq data were processed 740 

using the Biobakery suite of tools: KneadData was used to separate the human 741 

and the non-human reads; taxonomic profiling was performed using 742 

MetaPhlAn to identify and quantify microbial taxa at species level present in 743 

the anal samples (73). 744 
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Species richness and diversity were calculated using the R function 745 

estimate_richness from R package phyloseq (74). We considered the observed 746 

species and Chao1 indices for richness, and the Shannon and Simpson indices 747 

for diversity. Beta diversity was measured by Bray–Curtis, weighted UniFrac, 748 

and unweighted UniFrac. For Principal Coordinate Analysis, the Aitchison 749 

distance was used as the distance metric to analyze the compositional data. 750 

To test whether the samples cluster beyond that expected by sampling 751 

variability we applied permutational multivariate analysis of variance 752 

(PERMANOVA) Differences in richness and diversity indices between groups 753 

were determined using the Wilcoxon rank sum test with a significance level of 754 

0.05. For relative abundance analysis and visualization, we used R phyloseq 755 

packages. 756 

Differential abundance analysis 757 

For determining the relative differential abundance and the multivariable 758 

association between subjects’ metadata and microbial features, we used the 759 

MaAsLin2 package from the bioBakery suite in R/Bioconductor (75). We used 760 

default parameters for normalization (TSS method), transformation (Log), 761 

analysis method (LM), correction method (BH), and significance threshold (q-762 

value < 0.25). The minimum abundance for each feature was set to 0.001 763 

(0.1%) while the minimum percent of samples for which a feature was 764 

detected (prevalence, Pr) at minimum abundance was used as follows: 0.05 765 

(5%) for viruses, 0.1 (10%) for bacteria and pathways and 0.2 (20%) for gene 766 

families. 767 

Pathways and gene family analysis 768 

Metatranscriptomics pathway analysis was conducted using the HMP Unified 769 

Metabolic Analysis Network 3 (HUMAnN3) pipeline to investigate potential 770 

variations in metabolic pathways. HUMAnN3 employs a multifaceted 771 

approach, extracting species profiles from KneadData output, aligning reads 772 

to pan-genomes, executing translated searches on unclassified reads, and 773 

quantifying gene families and pathways. By default, gene families are 774 

UniRef90 annotated and metabolic pathways are annotated using MetaCyc 775 

database (76,77). The UniRef90 gene family abundance from HUMAnN3 was 776 

then regrouped to Kyoto Encyclopedia of Genes and Genomes (KEGG) 777 

orthology (KO) (78) We used the KEGGREST package in R/Bioconductor for KO 778 

identifiers and KEGG Mapper reconstruct tool for KEGG pathway maps (79,80). 779 

Data visualization 780 

We used the R package “phyloseq” to create a heatmap representation of taxa 781 

abundances. For the unsupervised ordination of samples, we applied the 782 

NMDS method and Bray distance in the plot_heatmap function. Heatmap 783 
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visualization of differentially represented gene proteins was done with 784 

R/Bioconductor and the MultiExperiment Viewer software (MeV v4.9).  785 

Transcriptomic, functional enrichment and immune infiltrate analysis. 786 

The raw short-read sequences were preprocessed using Rfastp from the 787 

R/Bioconductor package Rsubread. Quality checks, adapter removal, and 788 

trimming of low-quality bases were conducted with Rfastp. Reads were 789 

aligned to the human genome reference GRCh38 using the Subread aligner 790 

algorithm from Rsubread. Gene expression abundance at the whole-genome 791 

level was calculated using featureCounts from Rsubread. Differential gene 792 

expression analysis between anal lesion stages (LGSIL vs. HGSIL and HGSIL vs. 793 

ASCC) utilized edgeR, with fold changes and adjusted p-values computed 794 

based on normalized log2 count per million values. Genes with a log-fold 795 

change >1 and adjusted p-value <0.05 were considered differentially 796 

expressed.  797 

Functional enrichment analysis of differentially expressed genes employed the 798 

clusterProfiler package for Gene Set Enrichment Analysis (GSEA) (81). 799 

Functional enrichment results were visualized using enrichplot for Gene 800 

Ontology, Hallmark of Cancers, and Disease Ontology terms. Heatmaps were 801 

generated using MultiExperiment Viewer (MeV) 4.9.0.  802 

Tumor purity, immune cell infiltration, and T cell dysfunction/exclusion scores 803 

were estimated using ESTIMATE, EPIC, and TIDE algorithms, respectively, on 804 

normalized count matrices. 805 

For comparative transcriptomics analysis, the GSE74927 dataset for HNSCC 806 

and GSE63514 for CSCC were utilized. Raw data were imported into R using 807 

GEOquery to obtain normalized matrices for each study. Differential gene 808 

expression analysis employed DESeq2 for GSE74927 and limma for GSE63514. 809 

To visualize gene expression patterns, we defined the following gene 810 

signatures: for ASCC, we used the gene signature obtained from our 811 

comparison of HGSIL vs. ASCC; for HNSCC, we used the gene signature 812 

provided in the study by Zhang et al., derived from the differential expression 813 

analysis between two HPV+ subgroups of HNSCC (48); for CSCC, we obtained 814 

a gene signature from the comparison between CIN2/CIN3 samples 815 

(comparable to HGSIL) and CSCC. Gene expression profiles across ASCC, 816 

HNSCC, and CSCC matrices were visualized after filtering out genes with <50% 817 

variance within each signature. Functional enrichment analysis of resulting 818 

genes used the ClusterProfiler package. Heatmaps were generated in MeV 819 

4.9.0 based on immune scores. 820 

Mutational analysis based on RNA-seq data. 821 
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The preprocessed reads previously used for the transcriptomic analysis were 822 

aligned and mapped to the human genome reference GRCh38 using the 823 

Subjunc aligner algorithm provided by Rsubread R/Bioconductor package. 824 

Subjunc aligner was developed for aligning RNA-seq reads and for the 825 

detection of exon-exon junctions at the same time. The Subjunc mapping 826 

results (BAM files) were used for genomic variants detection using the 827 

exactSNP variant caller algorithm provided by Rsubread package. The 828 

VariantAnnotation R/Bioconductor package was subsequently used for SNPs 829 

and InDels filtering of the obtained VCF files based on quality (QUAL > 20) and 830 

coverage (DP>10) metrics. Identified variants were annotated, filtered and 831 

interpreted using OpenCRAVAT and their aggregated variant databases and 832 

resources (GnomAD, Cancer Genome Interpreter, Cancer Hotspots, CIVIC, 833 

Cosmic, SIFT, PolyPhen2) for the prediction of somatic mutations in cancer 834 

driver genes.  835 

In addition, to perform a comparative analysis of the mutational profile 836 

identified in ASCC with other squamous cell carcinomas, we analyzed HNSCC 837 

and CSCC datasets obtained from cBioPortal online resource 838 

(http://www.cbioportal.org/). Briefly, the mutational profiles of the 25 cancer 839 

driver genes mutated in ASCC were retrieved from two combined cervical 840 

cancer datasets (MSK-CESC and TCGA-CESC, n=468) and a head and neck 841 

cancer dataset (TCGA-HNSC, n=510). Only drivers and putative drivers’ 842 

somatic missense or truncating mutations were considered for frequency 843 

estimations among cohorts. 844 

Immunohistochemistry analysis of ASCC. 845 

Immunostaining utilized a Roche Benchmark XT system with anti-CD3 (Clone 846 

2GV6, Ventana - Roche), anti-CD8 (Clone SP57, Ventana - Roche), anti-PD-L1 847 

(Clone SP263, Ventana - Roche), and anti-p16 (Clone 6H12, Leica Biosystems) 848 

antibodies. Evaluation involved two independent pathologists, with 849 

discrepancies resolved by a senior pathologist in four cases. CD3 and CD8 850 

expression levels were averaged across intra- and peritumoral areas and 851 

categorized as low (0–34%), moderate (35–64%), or high (65–100%) based on 852 

total tumor-related lymphocyte staining. PD-L1 expression was assessed using 853 

the Combined Positive Score (CPS) for gastric/gastroesophageal junction 854 

adenocarcinoma. 855 

Statistics 856 

We used R/Bioconductor for different statistical comparisons outside of 857 

MaAsLin’s analysis. To analyze continuous variables, we utilized either two 858 

tailed t-tests or Wilcoxon tests as appropriate. For categorical data, we 859 

employed Chi-squared and Fisher tests. Box-plots were created in R using the 860 

ggplot package. 861 

http://www.cbioportal.org/
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Table 1: Clinical and demographics data of patients. 1105 

*  Fisher Exact Test 1106 

 1107 

 1108 

 1109 

 1110 

 1111 

 1112 

 1113 

 1114 

 1115 

 1116 

 1117 

 1118 

 1119 

 1120 

Baseline characteristics 
LGSIL 
n=31 

HGSIL 
n=16 

ASCC 
n=23 

P-value * 

Age (years) 33.22 ± 12.88 41.31 ± 11.14 52.23 ± 13.30 < 0.001 

Sex at birth    0.011 

Male: 61 (CGM+TGW) 31 (100%) 16 (100%) 14 (61%)  
Female: 9 0 0 9 (39%)  

Gender    0.027 

CGM: 53 (all MSM) 28 (90%) 11 (69%) 14 (61%)  
TGW: 8 3 (10%) 5 (31%) 0  
CGW: 9 0 0 9 (39%)  

HPV DNA status    < 0.001 

Low Risk 21(67%) 5 (32%) 2 (9%)  
High Risk 3 (10%) 8 (50%) 16 (70%)  
Undetected 7 (23%) 3 (18%) 5 (21%)  

HIV status    0.004 

Positive 28 (90%) 15 (94%) 9 (52%)  
Negative 3 (10%) 1 (6%) 8 (48%)  
NA   6  

ART (HIV positive cases)    0.321 

Treated 27 (96%) 15 (100%) 5 (83)  
Untreated 1 (4%) 0 1 (17%)  

NA 0 0 3  
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Table 2: Metabolic pathways enriched in ASCC compared with SILs. 1121 

 1122 

 1123 

 1124 

 1125 

PWY_ID Name Description coef pval qval 

PWY-7219 adenosine_ribonucleotides_de_novo_biosynthesis Nucleotides synthesis 2.44 0.0015 0.0103 

PWY-7221 guanosine_ribonucleotides_de_novo_biosynthesis Nucleotides synthesis 1.98 0.0035 0.0113 

SER_GLYSYN PWY-_superpathway_of_L_serine_and_glycine_biosynthesis_I Amino acids synthesis 1.93 0.0141 0.0206 

PWY-6122 5_aminoimidazole_ribonucleotide_biosynthesis_II Nucleotides synthesis 1.76 0.0010 0.0103 

PWY-6277 superpathway_of_5_aminoimidazole_ribonucleotide_biosynthesis Nucleotides synthesis 1.76 0.0010 0.0103 

PWY-6121 5_aminoimidazole_ribonucleotide_biosynthesis_I Nucleotides synthesis 1.72 0.0012 0.0103 

VALSYN-PWY L_valine_biosynthesis Amino acids synthesis 1.65 0.0022 0.0113 

PWY-7208 superpathway_of_pyrimidine_nucleobases_salvage Nucleotides synthesis 1.55 0.0034 0.0113 

PWY-7228 superpathway_of_guanosine_nucleotides_de_novo_biosynthesis_I Nucleotides synthesis 1.54 0.0018 0.0103 

COA-PWY coenzyme_A_biosynthesis_I Coenzymes synthesis 1.48 0.0046 0.0113 

PWY-7220 adenosine_deoxyribonucleotides_de_novo_biosynthesis_II Nucleotides synthesis 1.47 0.0015 0.0103 

PWY-7222 guanosine_deoxyribonucleotides_de_novo_biosynthesis_II Nucleotides synthesis 1.47 0.0015 0.0103 

PWY-7663 gondoate_biosynthesis Fatty acid synthesis 1.46 0.0133 0.0206 

PWY-5973 cis_vaccenate_biosynthesis Fatty acid synthesis 1.41 0.0126 0.0206 

PWY-6151 S_adenosyl_L_methionine_salvage_I Amino acids synthesis 1.38 0.0051 0.0116 

FASYN-INITIAL-
PWY 

superpathway_of_fatty_acid_biosynthesis_initiation Fatty acid synthesis 1.31 0.0038 0.0113 

UDPNAGSYN-
PWY 

UDP_N acetyl_D_glucosamine_biosynthesis_I Nucleotides sugar 
synthesis 

1.25 0.0047 0.0113 

PWY-6125 superpathway_of_guanosine_nucleotides_de_novo_biosynthesis_II Nucleotides synthesis 1.22 0.0040 0.0113 

PWY-2942 L_lysine_biosynthesis_III Amino acids synthesis 1.16 0.0148 0.0206 

PWY-6124 inosine_5._phosphate_biosynthesis_II Amino acids synthesis 1.15 0.0040 0.0113 
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 1126 

Figure 1: Richness, diversity, and microbial profile of LGSIL, HGSIL and ASCC. A. 1127 

Principal Coordinate Analysis depicting the unsupervised distribution of samples, 1128 

assessed at the species level based on microbiota composition, and evaluated through 1129 

Euclidean distance. B. Beta diversity comparison between diagnosis groups and 1130 

covariates. C. Observed and Chao1 richness indices obtained at species level by 1131 

metatranscriptome analysis. D. Significantly altered phyla Fusobacteriota, Bacteroidota, 1132 

Bacillota and Pseudomonadota, were related to ASCC. Statistical significance was 1133 

calculated with the Wilcoxon signed-rank test. E. Heatmap representation of the relative 1134 
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abundances of the most abundant bacterial species identified across all samples. 1135 

Highlighted in red are the taxa significantly enriched in ASCC compared with SIL obtained 1136 

by MaAsLin2 analysis. * p <0.05; ** p<0.01; *** p <0.001.  1137 

 1138 

Figure 2: Viral composition of LGSIL, HGSIL and ASCC. A. Relative abundance heatmap 1139 

showing the most prevalent viral species identified in the diagnosis groups using meta-1140 

transcriptome analysis (RNA Level). B. Alpha PV-10 was found to be linked to the SIL 1141 

group, whereas Alpha PV-9 and Alpha PV-7 were associated with ASCC. Statistical 1142 

significance was derived from MaAsLin2 analysis C. Percentage of patients with 1143 

detectable viruses of the species Alpha PV 10, 9, and 7 assessed by meta-transcriptome. 1144 

Statistical significance was determined through the application of the Fisher exact test. 1145 

D. Tile plot visualizing the HPV types identified through DNA genotyping across the 1146 

different diagnosis groups. E. Percentage distribution of HPV types, assessed by DNA 1147 

genotyping and classified into low-risk and high-risk categories. F. Percentage of patients 1148 

in each diagnostic group with detectable low-risk and high-risk HPV types identified 1149 

through DNA genotyping. Statistical significance was determined through the 1150 

application of the Fisher exact test. 1151 

 1152 

 1153 

 1154 

 1155 
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 1156 

Figure 3: Functional and taxonomic enrichment of microbial gene proteins associated 1157 

with anal lesions. A. Heatmap representation of metabolic pathways enriched in ASCC 1158 

compared with SILs represented by 60 gene proteins contributed by relevant gut 1159 

microbiota taxa of which F nucleatum, B fragilis, and C ureolyticus are predominant. B. 1160 

Viral proteins identified as differentially abundant in ASCC relative to SILs contributed 1161 

by high risk and low risk HPV. 1162 
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 1163 

Figure 4: Differential gene expression analysis and functional enrichment of 1164 

transcriptomic data. A. Unsupervised hierarchical clustering of samples classified 1165 

according to diagnosis groups B-C. Volcano plots representing significant differentially 1166 

expressed genes (LogFC > 1, adj p-value < 0.05) from the comparisons between LGSIL 1167 

and HGSIL (B) and between HGSIL and ASCC (C). Upregulated genes are indicated by red 1168 

arrowheads, while downregulated genes are indicated by blue arrowheads. The top 20 1169 

significant genes are shown. D-G. Dot plots of Gene Set Enrichment Analysis obtained 1170 

from the comparisons between LGSIL and HGSIL (D-E) and between HGSIL and ASCC (F-1171 

G). D. Dot plot of significantly activated and suppressed Gene Ontology pathways in 1172 

HGSIL compared with LGSIL. E. Dot plot of significantly activated and suppressed 1173 

Hallmarks of Cancer in HGSIL compared with LGSIL. F. Dot plot of significantly activated 1174 

and suppressed Gene Ontology pathways in ASCC compared with HGSIL. G. Dot plot of 1175 

significantly activated and suppressed Hallmarks of Cancer in ASCC compared with 1176 

HGSIL. 1177 

 1178 

 1179 

 1180 
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 1181 

Figure 5: Heatmaps illustrating the expression profiles of gene signatures across 1182 

diagnostic groups—LGSIL, HGSIL, and ASCC. A. Epidermal differentiation signature. B. 1183 

Immune signature. C. Cell cycle signature. The color coding bar at the bottom of each 1184 

heatmap indicates the score (high or low) assigned to each sample based on the average 1185 

expression of the gene signature divided by the median value. 1186 
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 1187 

Figure 6: Integrative analysis of host transcriptome of LGSIL, HGSIL, and ASSC. A. Tile 1188 

plot illustrating signatures scores, HPV status, and HIV status of samples distributed 1189 

according to the unsupervised clustering analysis. Statistical significance was 1190 

determined through the application of the Fisher exact test. B. Immune profiling and 1191 

cell fraction composition for each sample using Estimate and Epic, respectively. C. T cell 1192 

dysfunction and exclusion score for each sample. Statistical significance was determined 1193 

through the application of the Fisher exact test D. Relative mRNA abundance of CDKN2A 1194 

(p16) and MKI67 (Ki67) across samples in Cluster I versus Cluster II. E. Comparative 1195 

analysis of clusters for age and gender. Statistical significance was determined through 1196 

the application of a t-test for age and Chi-square test for gender. * p <0.05; ** p<0.01; 1197 

*** p <0.001. 1198 
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 1199 

Figure 7: Comprehensive analysis of p16, CD3, CD8 TILs density, and PD-L1 expression 1200 

in the tumor microenvironment of ASCC. A. Immunohistochemistry (IHC)  results of p16 1201 

in 10 ASCC cases. Microphotographs represent negative and diffusely positive p16 1202 

staining on  ASCC (10X)   Be. Representative IHC results depicting high and low 1203 

expression levels of CD3, CD8, and PD-L1. C. Tile plot illustrating ASCC samples analyzed 1204 

by IHC, showcasing scores for immune signature, CD3, CD8, and PD-L1 IHC results, along 1205 

with EPIC cell fractions. D. Box-Plots comparing tumor purity, CAFs, and macrophage 1206 

levels, as obtained by EPIC, between tumors with low (n=8) and high (n=6) CD3/CD8 TILs. 1207 

Statistical significance was calculated with the Wilcoxon signed-rank test. 1208 

 1209 
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 1210 

Figure 8: Comparative analysis of gene signature expression patterns and enriched 1211 

pathways in HNSSC, cervical lesions and anal lesions. A. Heatmap visualization of 1212 

HNSCC gene signature across our sample cohort, grouped by immune score within each 1213 

diagnosis category. Additionally, the epidermal differentiation score is displayed. B. 1214 

Heatmap visualization of the ASCC gene signature expression profile in HNSCC samples 1215 

organized by subtype classification according to Zhang et al 2016 C. Heatmap 1216 

visualization of CSCC gene signature across our sample cohort grouped by immune score 1217 

within each diagnosis category. D. Heatmap visualization of the ASCC gene signature 1218 

across cervical lesions, arranged in ascending order based on the immune gene profile 1219 

within each diagnosis category. 1220 

 1221 
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 1228 
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 1229 

Figure 9: Mutational profiles among squamous cell carcinomas. A. Tile plot of the most 1230 

prevalent somatic cancer driver mutations identified in 23 ASCC cases through 1231 

transcriptome-based sequencing. The upper color-coded bars provide an indication of 1232 

the immune signature score and HR-HPV status for each respective sample. On the left 1233 

barplot, the proportions of somatic mutations within each group are presented, relative 1234 

to the total number of cases in that specific group. TSG: Tumor Suppressor Gene. B. 1235 

Comparative frequency of the mutations identified in the ASCC cohort with respect to 1236 

CSCC and HNSCC retrieved from the TCGA cohorts. 1237 
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