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Introduction
Anal squamous cell carcinoma (ASCC), a rare gastrointestinal neoplasia, involves the formation of  malig-
nant tumors in the anal region. Over the past 30 years, ASCC incidence has risen globally, particularly in 
men who have sex with men (MSM) and people living with HIV (PLWH) (1).

Squamous intraepithelial lesions (SILs), categorized into low-grade SILs (LGSILs), analogous to 
anal intraepithelial neoplasia I, and high-grade SILs (HGSILs), analogous to anal intraepithelial neopla-
sia II and III, often precede progression to ASCC (2, 3). Similar to cervical cancer, ASCC development 
is driven by infection with oncogenic human papillomaviruses (HPVs) (4, 5). The risk of  anal cancer 
varies significantly across different population groups, with the highest risk observed in PLWH (1). This 
increased susceptibility is primarily attributed to a weakened immune system, which makes it more chal-
lenging to control infections, including HPV infections (6). Beyond the potential impact of  oncogenic 
viruses, the microbiome may also play a significant role in the development of  precancerous anal lesions 
and ASCC, as the influence of  microbes is increasingly recognized in cancer development (7, 8). The 
microbiome can influence the balance of  host cell proliferation and apoptosis, disrupt antitumor immu-
nity, and affect the metabolism of  host-produced factors, ingested food components, and drugs (9). In a 
recent study, we defined the microbiome composition of  the anal mucosa of  HIV-exposed individuals. 

Anal squamous cell carcinoma (ASCC) is a rare gastrointestinal malignancy linked to high-risk 
human papillomavirus (HPV) infection, which develops from precursor lesions like low-grade 
squamous intraepithelial lesions and high-grade squamous intraepithelial lesions (HGSILs). 
ASCC incidence varies across populations and poses increased risk for people living with HIV. 
Our investigation focused on transcriptomic and metatranscriptomic changes from squamous 
intraepithelial lesions to ASCC. Metatranscriptomic analysis highlighted specific bacterial species 
(e.g., Fusobacterium nucleatum, Bacteroides fragilis) more prevalent in ASCC than precancerous 
lesions. These species correlated with gene-encoding enzymes (Acca, glyQ, eno, pgk, por) and 
oncoproteins (FadA, dnaK), presenting potential diagnostic or treatment markers. Unsupervised 
transcriptomic analysis identified distinct sample clusters reflecting histological diagnosis, immune 
infiltrate, HIV/HPV status, and pathway activities, recapitulating anal cancer progression’s natural 
history. Our study unveiled molecular mechanisms in anal cancer progression, aiding in stratifying 
HGSIL cases based on low or high risk of progression to malignancy.

https://insight.jci.org
https://doi.org/10.1172/jci.insight.180907
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Metagenomic sequencing enabled us to identify viral and bacterial taxa linked to the development of  
anal lesions. Our results verified the occurrence of  oncogenic viromes in this population and identi-
fied Prevotella bivia and Fusobacterium gonidiaformans as 2 relevant bacterial species predisposing to SILs. 
Moreover, gene family analysis identified bacterial gene signatures associated with SILs that may have 
potential as prognostic and predictive biomarkers for HIV-associated malignancies (10). Other reports 
using 16S rRNA gene sequencing to analyze the ASCC demonstrated the role of  the anal microbiota in 
anal cancer response to therapy and toxicity, as well as changes in taxonomic compositions among nor-
mal, dysplasia, and anal cancer samples (11, 12).

The molecular biology of  ASCC is complex and not completely understood (13). However, studies 
have identified potential molecular targets for ASCC therapy, including regulators of  apoptosis (14), agents 
targeting the PI3K/AKT pathway (15), and antibody therapy targeting EGFR (16) or programmed cell 
death ligand 1 (PD-L1) expression to stratify good versus poor responders to chemoradiotherapy (17). 
Despite advancements in understanding ASCC from various perspectives, thus far, no prognostic or predic-
tive markers have been identified that are useful in clinical practice. Furthermore, a notable gap in existing 
information is the paucity of  studies using anal cancer biopsies for gene expression profiling, particularly 
utilizing advanced techniques like next-generation sequencing (NGS).

Transcriptomic and metatranscriptomic profiling are powerful NGS-based tools for the function-
al genomics characterization of  complex diseases. In this sense, bulk RNA sequencing (RNA-Seq) 
in neoplastic disease enables simultaneous study of  the host tumor transcriptome and its microenvi-
ronment, including the tumor immune infiltrate and associated tumor microbiome. Transcriptomic 
profiling provides thorough examination of  gene expression patterns, uncovering crucial insights into 
the molecular mechanisms driving cancer development and progression. Metatranscriptomic profil-
ing enables researchers to analyze gene expression levels of  various organisms within a microbial 
community, providing insights into their metabolic processes and functional activities in cancer and 
immune-related diseases (18). In this sense, metatranscriptomic approaches enable the analysis of  the 
active microbiota instead of  more frequent studies based on 16S rRNA sequencing, which analyzes the 
“total” microbiota, including active and inactive bacteria.

The aim of  this study was to analyze the transcriptomic and metatranscriptomic changes during the 
progression from LGSIL to HGSIL and ultimately to ASCC.

We collected biopsies identified as SILs and ASCC from a cohort of  70 participants, both with and 
without HIV, who provided informed consent. Biopsies were subjected to bulk RNA-Seq. Our goal was to 
gain insights into the molecular mechanisms underlying the development and progression of  anal lesions, 
which could lead to identifying novel biomarkers and therapeutic targets for improved diagnostic and treat-
ment strategies in patients with ASCC.

Results
Clinical characteristics of  patients and microbial community variations in SILs and ASCC cases. Seven-
ty patients were included in the study. All underwent anal cytology and high-resolution anoscopy 
with biopsies. Based on cytology and histology analysis, samples were classified into LGSIL, n = 23; 
HGSIL, n = 16; and ASCC, n = 23. Demographic and clinical data were collected, including age, sex 
at birth (male or female), gender (cisgender men, CGM; transgender women, TGW; and cisgender 
women, CGW), HPV DNA status, HIV status, and antiretroviral therapy (ART). This information is 
summarized in Table 1.

We first conducted a compositional analysis of  the 3 distinct groups — LGSIL, HGSIL, and ASCC — 
by performing permutational multivariate ANOVA (PERMANOVA) with Euclidean distance. The principal 
coordinate analysis (PCoA) defined 2 distinct clusters based on component I (P < 0.001). Cluster I was 
enriched in LGSILs, comprising 24 out of  31 samples (77%), while cluster II predominantly featured ASCC 
samples with 19 out of  23 (83%) (Figure 1A). HGSIL demonstrated an almost equal distribution between 
the 2 clusters, with 9 out of  16 in cluster I (56%) and 7 out of  16 in cluster II (44%) (Figure 1A). In addition, 
we considered covariates such as age, gender, HIV status, and high-risk HPV (HR-HPV) DNA genotyping 
to evaluate the factors influencing cluster formation based on diagnostic groups. Using PERMANOVA, our 
analysis of  β-diversity revealed distinctions primarily in samples positive for HR-HPV types compared with 
samples in which these HPV types were undetectable (Figure 1B and Supplemental Figure 1; supplemental 
material available online with this article; https://doi.org/10.1172/jci.insight.180907DS1).

https://doi.org/10.1172/jci.insight.180907
https://insight.jci.org/articles/view/180907#sd
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The ASCC microbial community, assessed through Observed and Chao 1 indices based on metatran-
scriptome species composition, exhibited a significantly higher richness compared with LGSIL (Observed, 
P = 0.033; Chao 1, P = 0.035) and HGSIL (Observed, P = 0.029; Chao 1, P = 0.034). This trend persisted 
when merging LGSIL and HGSIL into the group termed SILs (Observed, P = 0.012; Chao 1, P = 0.018), 
suggesting the ASCC environment provides a more favorable habitat for a specific range of  microorgan-
isms, resulting in increased community richness (Figure 1B and Supplemental Data 1). Richness indices 
were also augmented in the HR-HPV group compared with the HR-HPV– cohort. In addition, a significant 
association between HIV-positive status and decreased α-diversity was observed, in agreement with previ-
ous studies (10) (Figure 1C).

Analysis of  diversity indices (Shannon and Simpson) revealed a significant increase in ASCC compared 
with HGSIL (Shannon, P = 0.0082; Simpson, P = 0.0134), while no differences were observed between 
LGSIL and ASCC (Supplemental Data 1). These findings align with a recent study reporting similar α-di-
versity indices between anal dysplasia and anal cancer but elevated abundance of  specific taxa in the latter 
(12). Consistent with our prior research, we further observed a negative influence of  aging on microbiome 
diversity (10) (Supplemental Data 1).

We analyzed phylum-level bacterial abundance between SILs and ASCC groups. Fusobacteriota, Bac-
teroidota, and Bacillota, among the most abundant phyla, were significantly more enriched in ASCC than 
SILs (Figure 1D). Additionally, Pseudomonadota showed enrichment within the ASCC group compared 
with precancerous lesions (Figure 1D).

At the species level, we identified a total of  25 taxa, each exhibiting a relative abundance exceeding 
20% of  the overall composition in at least 1 of  the samples (Figure 1E). Among these taxa, F. nucleatum, 
F. necrophorum, B. fragilis, and P. intermedia are well-established gut-associated bacteria with previous 
associations with colorectal cancer (CRC) (19). Conversely, other taxa such as M. hominis, P. bivia, F. 
gonidiaformans, S. amnii, C. ureoliticus, or B. fragilis have been linked to HPV-related precancerous and 
cancerous genital lesions (10, 12, 20–22).

To identify bacterial species associated with ASCC compared with SILs, we used MaAsLin2 analy-
sis. To account for potential confounders, we refined the model by incorporating additional covariates, 
including HIV status, HR-HPV DNA status, sex at birth, and age. Significant enrichment was observed 
for F. nucleatum (P = 0.001), F. gonidiaformans (P = 0.001), B. fragilis (P = 0.01), C. ureolyticus (P = 0.003), 

Table 1. Clinical and demographic data of patients

Baseline characteristics LGSIL n = 31 HGSIL n = 16 ASCC n = 23 P valueA

Age (years) 33.22 ± 12.88 41.31 ± 11.14 52.23 ± 13.30 <0.001
Sex at birth 0.011

Male: 61 (CGM + TGW) 31 (100%) 16 (100%) 14 (61%)
Female: 9 0 0 9 (39%)

Gender 0.027
CGM: 53 (all MSM) 28 (90%) 11 (69%) 14 (61%)
TGW: 8 3 (10%) 5 (31%) 0
CGW: 9 0 0 9 (39%)

HPV DNA status <0.001
Low risk 21(67%) 5 (32%) 2 (9%)
High risk 3 (10%) 8 (50%) 16 (70%)
Undetected 7 (23%) 3 (18%) 5 (21%)

HIV status 0.004
Positive 28 (90%) 15 (94%) 9 (52%)
Negative 3 (10%) 1 (6%) 8 (48%)
NA 6

ART (HIV-positive cases) 0.321
Treated 27 (96%) 15 (100%) 5 (83%)
Untreated 1 (4%) 0 1 (17%)
NA 0 0 3

AFisher’s exact test.

https://doi.org/10.1172/jci.insight.180907
https://insight.jci.org/articles/view/180907#sd
https://insight.jci.org/articles/view/180907#sd
https://insight.jci.org/articles/view/180907#sd


4

R E S E A R C H  A R T I C L E

JCI Insight 2024;9(16):e180907  https://doi.org/10.1172/jci.insight.180907

Figure 1. Richness, diversity, and microbial profile of LGSIL, HGSIL, and ASCC. (A) Principal coordinate analysis depicting the unsupervised distribution of 
samples, assessed at the species level based on microbiota composition and evaluated through Euclidean distance. (B) β-Diversity comparison between diagnosis 
groups and covariates. (C) Observed and Chao1 richness indices obtained at species level by metatranscriptome analysis. (D) Significantly altered phyla Fusobac-
teriota, Bacteroidota, Bacillota, and Pseudomonadota were related to ASCC. Statistical significance was calculated with Wilcoxon’s signed-rank test. (E) Heatmap 
representation of the relative abundances of the most abundant bacterial species identified across all samples. Highlighted in red are the taxa significantly 
enriched in ASCC compared with SIL obtained by MaAsLin2 analysis. *P < 0.05; **P < 0.01; ***P < 0.001.

https://doi.org/10.1172/jci.insight.180907
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and C. bergeronii (P = 0.006) (Figure 1E and Supplemental Data 2). Moreover, C. ureolyticus (P = 0.002), F. 
gonidiaformans (P = 0.01), and C. bergeronii (P = 0.02) were associated with male sex (Supplemental Data 2). 
Additionally, C. ureolyticus correlated with HIV-negative cases (P = 0.03) (Supplemental Data 2).

F. nucleatum and B. fragilis have established roles in CRC progression, highlighting their importance in 
ASCC development and progression (19). While knowledge about F. gonidiaformans, C. ureolyticus, and C. 
bergeronii is limited, prior associations exist between F. gonidiaformans and C. ureolyticus with HPV presence 
and the development of  precancerous lesions in anal and cervical cancers (10, 21, 23). These findings sug-
gest a potential contribution of  specific bacteria to ASCC progression.

Exploring viral signatures in anal lesion progression: A. papillomavirus and non-HPV species. In terms of  viral 
composition analysis, among the 40 species identified at the transcript level in all samples, 8 were the most 
prevalent, with abundances greater than 30% of  the total abundance in any sample and detected more 
than 3 times. Notably, 7 of  these species belonged to the A. papillomavirus (Alpha-PV) genus, along with 
the human endogenous retrovirus K (HERV-K), with evident variations in their relative abundances across 
distinct diagnostic groups (Figure 2A). MaAsLin2 analysis revealed a higher abundance of  Alpha-PV-10, 
which includes low-risk (LR) genotypes like HPV6 and HPV11, in both LGSIL and HGSIL compared with 
ASCC (Figure 2, A and B, and Supplemental Data 2). Conversely, Alpha-PV-9 (HPV16, 31, 33, 52, 58) and 
Alpha-PV-7 (HPV18, 39, 59, 68, 45, 70) were significantly associated with HGSIL and ASCC (Figure 2, 
A and B, and Supplemental Data 2). This trend persisted when considering the number of  positive cases 
for these species independent of  their relative abundance (Figure 2C). Although the significance was not 
established for Alpha-PV-10, it remained significant for Alpha-PV-7 and Alpha-PV-9 (Figure 2C).

The HPV DNA genotyping data highlighted a robust association between HPV16 and both HGSIL and 
ASCC, correlating with the pattern observed with Alpha-PV-9 (Figure 2C). However, HPV18 was detected 
in only 1 case of ASCC, contrasting with Alpha-PV-7 detected at the RNA level in over 20% of participants 
(Figure 2A). This discrepancy could be due to Alpha-PV-7 containing other HPV genotypes (24). HPV6 
and HPV11 were predominantly linked to LGSIL (Figure 2D). Analyzing positive and negative cases for all 
LR-HPV types and HR-HPV types identified within the cohort revealed negative (P < 0.001) and positive asso-
ciations (P < 0.05), respectively, with the diagnostic groups (Figure 2, E and F). These results verify the prom-
inence of HR- and LR-HPV types, particularly HPV6 and HPV16, in delineating the diagnostic groups (25).

Among the non-HPV species, we highlight a significant increase in the relative abundance of  the 
endogenous HERV-K in ASCC compared with HGSIL (P < 0.01; Supplemental Data 2). HERV-K over-
expression is widely associated with malignant phenotypes and is upregulated in various cancers such as 
breast lymphoma, germ-line tumors, and melanoma (26). Additionally, human betaherpesvirus 5 (HCMV), 
although with low relative abundance, demonstrated significant enrichment in ASCC compared with SILs 
(P < 0.05; Supplemental Data 2). HCMV is linked to several cancer types, including lymphoma, cervical 
cancer, Kaposi’s sarcoma, CRC, prostate cancer, skin cancer, and glioblastomas (27). However, it remains 
unclear whether HCMV actively contributes to malignant tumor progression or is reactivated under condi-
tions leading to chronic inflammation or immunosuppression (27).

Overall, these findings verify the significance of  specific viral Alpha-PV species and their association 
with SILs toward ASCC progression. Furthermore, our data reveal a potential involvement of  HERV-K and 
HCMV in ASCC tumorigenesis. Additionally, metatranscriptomics demonstrates reliability, sensitivity, and 
specificity in detecting the presence of  HPV types, even in cases where DNA genotyping results were negative.

Metabolic pathways in ASCC progression. To understand the functional implications of microbial community 
changes between SILs and ASCC, we conducted metatranscriptomics, revealing 20 MetaCyc modules as sig-
nificantly enriched pathways in ASCC compared with SILs (Table 2). These modules encompassed nucleotide, 
amino acid, and lipid biosynthesis pathways. This finding aligns with our prior observations, where pathways 
related to amino acid and de novo nucleotide biosynthesis were enriched in HIV-postive individuals with anal 
precancerous lesions (10). These pathways are vital for cell growth and proliferation, as cells require energy and 
nutrients from their environment to support these processes. Similarly, cancer cells exhibit metabolic adapta-
tions essential for their growth (28). Hence, our data suggest that certain bacteria within the evolving microen-
vironment during malignancy may exploit these pathways to thrive and proliferate, like cancer cells.

Microbial contributions to anal lesions: enriched proteins and taxonomic associations. To go further, we 
next explored the gene proteins contributed by the microbial organisms in the comparison of  SILs 
versus ASCC. MaAsLin2 analysis yielded 2,523 UniRef90 sequence proteins differentially expressed 
(Supplemental Data 3). We further employed the Kyoto Encyclopedia of  Genes and Genomes (KEGG) 

https://doi.org/10.1172/jci.insight.180907
https://insight.jci.org/articles/view/180907#sd
https://insight.jci.org/articles/view/180907#sd
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https://insight.jci.org/articles/view/180907#sd
https://insight.jci.org/articles/view/180907#sd
https://insight.jci.org/articles/view/180907#sd
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database to annotate 387 proteins, of  which 349 were significantly enriched in ASCC and 37 in SILs 
(Supplemental Data 3). Functional annotation using KEGG Mapper revealed metabolic pathways 
such as glycolysis, lipid, amino acid, and nucleotide biosynthesis, contributed by 60 bacterial proteins 
enriched in ASCC (Figure 3A). Proteins like Acca (acetyl-CoA carboxylase carboxyl transferase sub-
unit alpha), glyA (glycine hydroxymethyltransferase), glyQ (glycyl-tRNA synthetase alpha chain), eno 
(enolase), pgk (phosphoglycerate kinase), and por (pyruvate-ferredoxin/flavodoxin oxidoreductase) 
were previously identified in anal samples from individuals with precancerous anal lesions (10), under-
lining their potential roles as metabolic markers in anal cancer progression. In addition, among these 
60 proteins, we identified the enrichment of  the oncogenic FadA adhesion protein from F. nucleatum 
in ASCC, a factor widely associated with CRC; and dnaK, a protein kinase with a known involvement 
in carcinogenesis and cancer progression (29, 30). These findings align with the taxonomic abundance 
analysis, highlighting the significant role of  bacteria like B. fragilis, F. nucleatum, and C. ureolyticus, 
alongside other relevant and distinct gut microbiota taxa, in orchestrating these processes (Figure 3A).  

Figure 2. Viral composition of LGSIL, HGSIL, and ASCC. (A) Relative abundance heatmap showing the most prevalent viral species identified in the 
diagnosis groups using metatranscriptome analysis (RNA level). (B) Alpha-PV-10 was found to be linked to the SIL group, whereas Alpha-PV-9 and 
Alpha-PV-7 were associated with ASCC. Statistical significance was derived from MaAsLin2 analysis. (C) Percentage of patients with detectable viruses 
of the species Alpha-PV-10, -9, and -7 assessed by metatranscriptome analysis. (D) Heatmpa visualizing the HPV types identified through DNA genotyp-
ing across the different diagnosis groups. (E) Percentage distribution of HPV types, assessed by DNA genotyping and classified into low-risk (LR) and 
high-risk (HR) categories. (F) Percentage of patients in each diagnostic group with detectable LR- and HR-HPV types identified through DNA genotyping. 
Statistical significance was determined through application of Fisher’s exact test. **P < 0.01; ***P < 0.001.

https://doi.org/10.1172/jci.insight.180907
https://insight.jci.org/articles/view/180907#sd
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Furthermore, 4 proteins linked to the oncogene E6 from HPV16 were enriched in ASCC (Figure 3B). 
E6 oncoprotein promotes p53 degradation, contributing to keratinocyte immortalization. In SILs, 37 
enriched proteins were detected, all predominantly associated with genes from the LR-HPV genomes 
HPV6 and HPV11, underscoring their potential role as drivers or sustainers of  precancerous anal 
lesions (31) (Figure 3B).

Transcriptomic profiling and functional insights across anal lesion progression. We then explored the host tran-
scriptome of LGSIL, HGSIL, and ASCC. Like the metatranscriptome analysis, the unsupervised clustering of  
samples revealed 2 primary clusters (Figure 4A). Cluster I was predominantly composed of LGSILs, with the 
inclusion of some HGSILs. In contrast, cluster II comprised mostly anal cancer samples, alongside a subgroup 
of SILs. One plausible interpretation for this distribution is that precancerous lesions may be at varying stages 
of progression, with some nearing malignant transformation and others in a regressive or early stage (32).

Next, we applied supervised comparative analysis between LGSIL and HGSIL as well as HGSIL and 
ASCC. The analysis revealed a higher number of  differentially expressed genes (DEGs; fold-change [FC] > 
2, FDR < 0.05) in the transition from HGSIL to ASCC (544 DEGs) than in the comparison among the 2 
SIL groups (121 DEGs) (Figure 4, B and C, and Supplemental Data 4). Among the most significant genes, 
a decrease in keratins in HGSIL compared with LGSIL stands out (Figure 4B) as well as the overexpres-
sion of  members of  the MAGE gene family of  cancer/testis antigens in ASCC compared with HGSIL, 
like MAGEA4, MAGEA3, and MAGEA1 (Figure 4C). The MAGE family has gained attention as a potential 
cancer biomarker and immunotherapy (33). Notably, a phase I trial for autologous T cell therapy targeting 
MAGEA4-positive solid cancers is currently underway (34).

To comprehend the functional significance of  DEGs, we used gene set enrichment analysis (GSEA) 
on Gene Ontology (GO), Cancer Hallmarks, and Disease Ontology (DO) terms. GSEA revealed activated 
processes such as nuclear division, chromatin modification, and cell proliferation, along with suppressed 
pathways like keratinocyte differentiation and leukocyte-mediated immunity in HGSIL compared with 
LGSIL (Figure 4D and Supplemental Data 5). These processes align with the histopathological features 

Table 2. Metabolic pathways enriched in ASCC compared with SILs

PWY_ID Name Description coef pval qval
PWY-7219 adenosine_ribonucleotides_de_novo_biosynthesis Nucleotides synthesis 2.44 0.0015 0.0103
PWY-7221 guanosine_ribonucleotides_de_novo_biosynthesis Nucleotides synthesis 1.98 0.0035 0.0113

SER_GLYSYN PWY-_superpathway_of_L_serine_and_glycine_
biosynthesis_I

Amino acids synthesis 1.93 0.0141 0.0206

PWY-6122 5_aminoimidazole_ribonucleotide_biosynthesis_II Nucleotides synthesis 1.76 0.0010 0.0103
PWY-6277 superpathway_of_5_aminoimidazole_ribonucleotide_

biosynthesis
Nucleotides synthesis 1.76 0.0010 0.0103

PWY-6121 5_aminoimidazole_ribonucleotide_biosynthesis_I Nucleotides synthesis 1.72 0.0012 0.0103
VALSYN-PWY L_valine_biosynthesis Amino acids synthesis 1.65 0.0022 0.0113

PWY-7208 superpathway_of_pyrimidine_nucleobases_salvage Nucleotides synthesis 1.55 0.0034 0.0113
PWY-7228 superpathway_of_guanosine_nucleotides_de_novo_

biosynthesis_I
Nucleotides synthesis 1.54 0.0018 0.0103

COA-PWY coenzyme_A_biosynthesis_I Coenzymes synthesis 1.48 0.0046 0.0113
PWY-7220 adenosine_deoxyribonucleotides_de_novo_biosynthesis_II Nucleotides synthesis 1.47 0.0015 0.0103
PWY-7222 guanosine_deoxyribonucleotides_de_novo_biosynthesis_II Nucleotides synthesis 1.47 0.0015 0.0103
PWY-7663 gondoate_biosynthesis Fatty acid synthesis 1.46 0.0133 0.0206
PWY-5973 cis_vaccenate_biosynthesis Fatty acid synthesis 1.41 0.0126 0.0206
PWY-6151 S_adenosyl_L_methionine_salvage_I Amino acids synthesis 1.38 0.0051 0.0116

FASYN-INITIAL-PWY superpathway_of_fatty_acid_biosynhesis_initiation Fatty acid synthesis 1.31 0.0038 0.0113
UDPNAGSYN-PWY UDP_N acetyl_D_glucosamine_biosynthesis_I Nucleotides sugar 

synthesis
1.25 0.0047 0.0113

PWY-6125 superpathway_of_guanosine_nucleotides_de_novo_
biosynthesis_II

Nucleotides synthesis 1.22 0.0040 0.0113

PWY-2942 L_lysine_biosynthesis_III Amino acids synthesis 1.16 0.0148 0.0206
PWY-6124 inosine_5._phosphate_biosynthesis_II Amino acids synthesis 1.15 0.0040 0.0113

MaAsLin 2 implementation uses a log-transformed linear model on TSS-normalized quality-controlled data.

https://doi.org/10.1172/jci.insight.180907
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of  HGSIL, including a higher nuclear-to-cytoplasmic ratio, decreased organization of  cell layers, a great-
er degree of  nuclear pleomorphism, and increased mitotic index (35). Furthermore, analysis of  Cancer 
Hallmarks indicated the activation of  pathway terms associated with sustaining proliferative signaling, 
such as MYC targets, E2F targets, G2M checkpoint, or mitotic spindle (Figure 4E). Notably, there was a 
decrease in genes related to IFN-α and IFN-γ levels, potentially compromising the ability of  the immune 
system to mount an effective defense against viral infections and favoring persistent infection and pro-
gression to HGSIL (36) (Figure 4E). The activation of  DNA repair genes may be a response to potential 
damage caused by viral oncoproteins E6 or E7, which aim to integrate the host genome through DNA 
double breakpoints (35) (Figure 4E).

The network representation resulting from GSEA with GO comparing LGSIL to HGSIL provid-
ed valuable insights into the molecular landscape (Supplemental Figure 2A). Three distinct clusters 
emerged, each revealing specific functional themes: a DNA and chromosome organization cluster, 
characterized by a dense interconnection of  genes primarily related to histones and chromatin mod-
ifiers, suggesting a potential role in the epigenetic regulation and structural integrity of  the genome; 
a chromosome segregation cluster with genes predominantly linked to processes such as the mitotic 
spindle and cell division; and a skin development cluster, offering insights into the gene network gov-
erning epidermal differentiation (Supplemental Figure 2A). These findings suggest a complex interplay 
of  molecular events involving DNA organization, chromosome segregation, and skin differentiation 
in the transition from LGSIL to HGSIL. Some of  these events may be attributed to HPV E6 oncopro-
tein. The expression of  viral E6 enhances cell cycle progression and induces mitotic defects leading to 
centrosome amplification observed in keratinocytes, contributing to chromosomal instability through 
aberrant chromosome segregation (37).

Figure 3. Functional and taxonomic enrichment of microbial gene proteins associated with anal lesions. (A) Heatmap representation of metabolic path-
ways enriched in ASCC compared with SILs represented by 60 gene proteins contributed by relevant gut microbiota taxa, of which F. nucleatum, B. fragilis, 
and C. ureolyticus are predominant. (B) Viral proteins identified as differentially abundant in ASCC relative to SILs contributed by high-risk and low-risk HPV.
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Moreover, DO revealed additional clusters of  genes related to gut inflammatory processes, HIV 
disease, and B cell immunodeficiency (Supplemental Figure 2B). Together, these data unveil the impact 
on the anal transcriptome caused during transition from LGSIL to HGSIL, defining distinct driver pro-
cesses, including several genes that can be new avenues for further research.

Conversely, in comparing HGSIL and ASCC, GO analysis revealed a predominant activation of  
immune response in ASCC but a decrease in epidermal differentiation-related genes (Figure 4F). Hall-
marks analysis demonstrated activation of  IFN pathways emphasizing immune activation. Remarkably, 
suppression of  the p53 pathway may be linked to the overexpression of  HPV16 E6 protein (Figure 4G). 
The network representation of  GO revealed clusters of  genes mainly representing immune activation, leu-
kocyte migration, and cytokine and immunoglobulin production but also epidermal cell differentiation 

Figure 4. Differential gene expression analysis and functional enrichment of transcriptomic data. (A) Unsupervised hierarchical clustering of 
samples classified according to diagnosis groups. (B and C) Volcano plots representing significant DEGs (logFC > 1, adj P < 0.05) from the compar-
isons between LGSIL and HGSIL (B) and between HGSIL and ASCC (C). Upregulated genes are indicated by red arrowheads, while downregulated 
genes are indicated by blue arrowheads. The top 20 significant genes are shown. (D–G) Dot plots of GSEA obtained from the comparisons between 
LGSIL and HGSIL (D and E) and between HGSIL and ASCC (F and G). (D) Dot plot of significantly activated and suppressed GO pathways in HGSIL 
compared with LGSIL. (E) Dot plot of significantly activated and suppressed Hallmarks of Cancer in HGSIL compared with LGSIL. (F) Dot plot of 
significantly activated and suppressed GO pathways in ASCC compared with HGSIL. (G) Dot plot of significantly activated and suppressed Hallmarks 
of Cancer in ASCC compared with HGSIL.
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(Supplemental Figure 2C). Additionally, DO yielded terms related to inflammatory processes of  colon, 
HIV, and skin disease (Supplemental Figure 2D).

Therefore, unlike the comparison between LGSIL and HGSIL, the data suggest that the transition 
from HGSIL to ASCC is characterized by a predominance of  immune response activation over processes 
related to cell proliferation or DNA modifications (38).

Host transcriptome reveals 2 intrinsic signatures with varied features and prognoses. GSEA highlighted dereg-
ulated processes across anal lesion stages, emphasizing central roles for the cell cycle, immune response, 
viral infection, and epidermal differentiation. We focused on significant gene signatures obtained by GSEA 
related to these processes to visualize gene expression patterns including epidermal differentiation (30 
genes — Figure 5A and Supplemental Data 6), immune response (72 genes — Figure 5B and Supplemental 
Data 6), and cell cycle (86 genes — Figure 5C and Supplemental Data 6). Heatmaps revealed at least 2 sub-
types within each diagnosis group, one with high expression of  the gene signature and the other with low 
expression. To categorize samples, we introduced “high” and “low” scores based on the average expression 
of  each gene signature, divided by the median value (Figure 5, A–C).

Next, we incorporated these signatures along with LR- and HR-HPV and HIV status into the unsu-
pervised clustering of  samples. This allowed us to discern 2 primary clusters with distinct characteristics 
(Figure 6A). Cluster I primarily comprised SILs (P < 0.01; 24 out of  26 in cluster I) with a low immune 
signature (P < 0.001), high epidermal differentiation (P < 0.001), low cell cycle signature (P < 0.05), and 
smaller number of  samples infected with HR-HPV types detected at both RNA (P < 0.05) and DNA (P < 
0.05) levels compared with cluster II. In contrast, cluster II encompassed 91% of  anal cancer cases (P < 
0.01; 21 out of  23 ASCC) and 62% of  HGSILs (10 out of  16 HGSILs). It exhibited a higher immune sig-
nature score (P < 0.001), low epidermal differentiation (P < 0.001), greater number of  samples with a high 
cell cycle signature (P < 0.05), and higher prevalence of  HR-HPV infections (P < 0.05; Figure 6A). Of  note, 
cluster II included most of  the participants without HIV (92%; 11 out of  12 HIV-negative cases) compared 
with cluster I (P < 0.05), which was mainly integrated with PLWH (25 out of  26 cases in cluster I).

Immune infiltration and cell composition analysis. We utilized EPIC and ESTIMATE algorithms for pre-
dicting immune infiltration and cell fraction composition (Figure 6B). Cluster II exhibited a higher level of  
immune infiltration, as determined by EPIC (P < 0.001). The analysis of  cell composition revealed a signif-
icant increase in B cells (P < 0.001), CD4+ T cells (P < 0.001), CD8+ T cells (P < 0.05), and macrophages 
(P < 0.001), aligning with the high immune signature assigned to this cluster (Supplemental Data 7). A 
possible explanation for these findings could be the higher prevalence of  HIV-negative cases in cluster II, 
suggesting a potentially less compromised immune system compared with individuals in cluster I.

To explore further, we conducted a comparison of  the immune profile between HIV-positive and 
HIV-negative individuals, irrespective of  their cluster assignment. Results revealed a significant reduction 
in B cells (P < 0.01) and CD4+ T cells (P < 0.001) among PLWH in our cohort (Supplemental Data 7). This 
aligns with the asymptomatic phase of  HIV infection, characterized by ongoing viral replication leading to 
a gradual depletion of  CD4+ T cells, which can be partially restored with ART. While the impact of  HIV 
on B cell numbers is less clear, studies indicate a reduction in B cell counts in HIV-infected individuals (39). 
Dysregulation of  B cells during HIV infection is also influenced by ART. Of  note, a substantial portion of  
individuals in our HIV-infected cohort were on ART during recruitment, contributing to observed varia-
tions in B cell composition.

Furthermore, we explored whether there was an association between these immune profiling differences 
and HPV16 infection. Results indicated a significantly higher immune profile of macrophages in HPV16-infect-
ed cases (P < 0.01; Supplemental Data 7). Previous studies have reported that M2-like macrophages infiltrate 
HPV16-associated tumors, suppressing antitumor T cell response and facilitating tumor growth (40).

Overall, cluster II was represented by ASCC tumors and precancerous lesions with a high immune 
infiltration. The significance of  tumor-infiltrating lymphocytes (TILs) in influencing favorable outcomes 
across various tumor types, including ASCC, has been reported in the literature (41–44). Our recent study 
demonstrated the crucial role of  PD-L1 expression in influencing complete response rates and survival 
outcomes in patients with nonmetastatic ASCC undergoing standard definitive chemoradiotherapy (17). 
Motivated by the importance of  immune factors in ASCC, we used the T cell dysfunction and exclusion 
score (TIDE) in our study to predict cancer immunotherapy response.

The results yielded a compelling connection between immune-related characteristics and treatment 
response. Cluster II, characterized by a higher immune signature and immune cell infiltration, exhibited 
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a significantly higher number of  responders (P < 0.05; Figure 6C). The TIDE analysis highlighted specif-
ic immune cell changes associated with responders, including an increase in CD4+ TILs (P < 0.05) and 
macrophages (P < 0.05), and a concurrent decrease in cancer-associated fibroblasts (CAFs, P < 0.01) and 
endothelial cells (P < 0.01) (Supplemental Data 7). These findings underscore the potential predictive 
value of  immune-related parameters in discerning responders and nonresponders to cancer immunother-
apy in the context of  anal cancer progression.

Furthermore, we compared the gene expression profiles of  2 surrogate markers for HPV-related malig-
nancy, Ki67 and p16. Results showed that both markers were higher in cluster II (Figure 6D). Additionally, 
cluster I was linked to younger participants and MSM, while cluster II was associated with older patients 

Figure 5. Heatmaps illustrating the expression profiles of gene signatures across diagnostic groups: LGSIL, HGSIL, and ASCC. (A) Epidermal differen-
tiation signature. (B) Immune signature. (C) Cell cycle signature. The color coding bar at the bottom of each heatmap indicates the score (high or low) 
assigned to each sample based on the average expression of the gene signature divided by the median value.
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Figure 6. Integrative analysis of host transcriptome of LGSIL, HGSIL, and ASSC. (A) Tile plot illustrating signature scores, HPV status, and HIV status of 
samples distributed according to the unsupervised clustering analysis. Statistical significance was determined through the application of Fisher’s exact 
test. (B) Immune profiling and cell fraction composition for each sample using ESTIMATE and EPIC, respectively. (C) T cell dysfunction and exclusion (TIDE) 
score for each sample. Statistical significance was determined through the application of Fisher’s exact test. (D) Relative mRNA abundance of CDKN2A 
(p16) and MKI67 (Ki67) across samples in cluster I versus cluster II. (E) Comparative analysis of clusters for age and gender. Statistical significance was 
determined through the application of a t test for age and χ2 test for gender. *P < 0.05; **P < 0.01; ***P < 0.001.
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and enriched in TGW and CGW (Figure 6E). Coinciding with the latter, high p16 expression has been 
shown to correlate with female sex and better outcomes following chemoradiotherapy (45–47).

These findings might help to better understand the molecular landscape within and between different 
stages of  anal lesions and reveal potential biomarkers and therapeutic pathways for further research.

Immune profiling of  p16+ and CD3+/CD8+ cells and PD-L1 expression among ASCC. The immunohis-
tochemical (IHC) analysis of  p16, CD3, CD8, and PD-L1 in anal cancer not only provides valuable 
insights into the tumor microenvironment but also serves to guide treatment decisions and prediction 
of  patient outcomes (17).

In our study, we explored these markers in 10 (for p16) and 14 (for CD3, CD8, and PD-L1) out of  the 23 
ASCC samples using IHC. Ninety percent of  ASCC (9 out of  10) showed a diffusely positive pattern of  p16 
(Figure 7A). The density of  CD3+ and CD8+ TILs was moderate to high in 47% (6 out of  14) of  ASCC sam-
ples (Figure 7B). Of note, all these samples exhibited a high immune signature, correlating with increased 
immune infiltration as assessed by EPIC (Figure 7C). In this context, tumors with moderate to high CD3 
and CD8 expression were associated with lower tumor purity scores (P < 0.01) and higher cell fractions of  
CAFs (P < 0.05), macrophages (P < 0.05), and CD4+ T cells (P < 0.05) as revealed by EPIC analysis (Figure 
7D). The PD-L1 expression status was assessed in the 14 ASCC cases using the Combined Positive Score 
(CPS). Notably, 57% of  positive cases (8 out of  14) exhibited moderate to high PD-L1 expression levels (CPS 
> 5%), while the remaining samples showed low PD-L1 expression levels (CPS < 5%; 6 out of  14) (Figure 
7B). This analysis indicates a complex relationship between TILs and tumor microenvironment factors, 
shaping the immune profile of  ASCC tumors and potentially influencing treatment approaches.

Comparative transcriptome analysis of  HPV-related squamous cell carcinomas. We analyzed relevant HPV-as-
sociated cancer studies to compare the gene expression signatures identified in ASCC with head and neck 
squamous cell carcinomas (HNSCCs) and cervical squamous cell carcinomas (CSCCs). In a previous 
study, Zhang et al. conducted RNA-Seq on 36 HNSCCs (18 HPV+ and 18 HPV–), identifying 2 HPV+ 
subtypes. One subtype was enriched in “immune response” genes; the other was enriched in “keratinocyte 
differentiation” genes (48), consistent with our ASCC findings. We applied the gene signature distin-
guishing these subtypes in HNSCC across our sample cohort, sorted by immune score (Figure 8A and 
Supplemental Data 8). Additionally, we employed our gene signature, derived from the most significantly 
deregulated genes in the HGSIL versus ASCC comparison, on HNSCC samples, grouped by the subtypes 
defined by the authors (Figure 8B and Supplemental Data 8). Results indicated similar gene expression 
patterns between locations, with variations in gene composition, yet aligned with similar biological pro-
cesses. For CSCC, we utilized den Boon et al.’s study, despite being microarray based, because of  its com-
prehensive analysis of  premalignant (CIN1, CIN2, and CIN3) and CSCC specimens (49). We established 
a gene signature by comparing CIN2/CIN3 (comparable to HGSIL) versus CSCC and visualized the gene 
expression profile in our sample cohort (Figure 8C and Supplemental Data 8). This analysis and the appli-
cation of  our signature to cervical lesion samples, sorted by immune score (Figure 8D and Supplemental 
Data 8), showed an almost mutually exclusive relationship between immune and epidermal differentiation 
processes. This suggests a significant decrease in keratinocyte differentiation as the disease progresses, 
alongside a significant increase in immune response genes.

Mutational profiling of  cancer driver genes among ASCC and other squamous cell carcinomas. We conducted 
mutational profiling on ASCC biopsies from 23 patients based on RNA-Seq data, revealing 51 somatic mis-
sense mutations in cancer driver genes among 87% of  ASCC cases (20 out of  23). We identified mutations 
in lysine methyltransferase 2C (KMT2C, also known as MLL3, 30%), phosphatidylinositol-4,5-bisphosphate 
3-kinase catalytic subunit alpha (PIK3CA, 20%), EP300 (chromatin remodeler, 20%), NOTCH1 (15%), IDH1 
(15%), PR/SET domain 1 (PRDM1, 15%), FGFR2 (15%), SETD2 (15%), FGFR3 (10%), MAP3K1 (10%), 
and MET (10%). Single cases of  mutations were found affecting TP53, TET2, ATM, TSC1, EZH2, CASP8, 
ARID1B, APC, NCOR1, SF3B1, STK11, BRCA1, KDM6A, and STAG2 (Figure 9A). Several of  these mutated 
genes are commonly found in HPV-driven squamous cancers like cervix, head and neck, vulva, and anus, 
including KMT2C, EP300, PIK3CA, NOTCH1, FGFR2, ATM, TP53, and BRCA1 (17, 50, 51).

Consistent with our results, comparable frequencies of KMT2C, PIK3CA, and EP300 have been reported at 
the genomic level through NGS or targeted sequencing among the most mutated genes in ASCC (17, 51–53).

Our data revealed KMT2C mutations at comparable rates in the early stages of  anal lesions, reach-
ing 30% in HGSIL and 42% in LGSIL (Figure 9A), suggesting a potential pivotal role for KMT2C as a 
driver gene in anal carcinogenesis progression. Additionally, increased mutation frequencies for EP300 
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(21% in ASCC, 4% in HGSIL, and 13% in LGSIL) and PI3KCA (17% in ASCC, 8% in HGSIL, 4% in 
LGSIL) were observed compared with earlier stages of  anal lesions (Figure 9A), indicating potential 
shifts in the molecular landscape during disease progression.

A higher mutation rate of  3.5 (21 mutations in 6 samples) was observed in ASCC with a low 
immune signature compared with the high–immune signature group (P < 0.01), which had a mutation 
rate of  1.76 (30 mutations in 17 samples). This implies distinct tumor subpopulations with mutations 
in cancer driver genes (Figure 9A).

Figure 7. Comprehensive analysis of p16+, CD3+, and CD8+ TILs’ density and PD-L1 expression in the tumor microenvironment of ASCC. (A) Immunohistochem-
istry (IHC) results of p16 in 10 ASCC cases. Microphotographs represent negative and diffusely positive p16 staining on ASCC (original magnification, ×10). (B) 
Representative IHC results depicting high and low expression levels of CD3, CD8, and PD-L1. (C) Tile plot illustrating ASCC samples analyzed by IHC, showcasing 
scores for immune signature; CD3, CD8, and PD-L1 IHC results; along with EPIC cell fractions. (D) Box plots comparing tumor purity, CAFs, and macrophage levels, 
as obtained by EPIC, between tumors with low (n = 8) and high (n = 6) CD3+/CD8+ TILs. Statistical significance was calculated with Wilcoxon’s signed-rank test.
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Furthermore, all mutations in KMT2C (7 mutations in 6 cases), PRDM1 (3 mutations in 3 cases), 
and FGFR2 (3 mutations in 2 cases) occurred in HPV16-infected cases, comprising 25% of  total muta-
tions (Figure 9A). PRDM1 is a master regulator of  lymphoid cell differentiation and a tumor suppressor 
gene in lymphoma (54). It has been identified as a master regulator for HPV16 E6/E7 proteins (55) 
Aberrant FGFR signaling and HPV16 E5 expression have been shown to be correlated with cervical 
cancer progression (56). Furthermore, the interaction between HPV16 E5 and FGFR2 alters keratino-
cyte differentiation and inhibits tumor-suppressive genes, suggesting a role in the early stages of  HPV 
infection and transformation (56).

Consistent with our findings, previous studies have recognized KMT2C and EP300 as the most fre-
quently mutated genes in metastatic ASCC (51). KMT2C mutations are associated with abnormal H3K4 
methylation, linked to oncogenic transformation in preclinical models (57). KMT2C plays a crucial role in 
activating TP53 gene expression, demonstrated by targeted inactivation studies in mice (58).

Regarding EP300, the oncoprotein HPV E6 mediates TP53 degradation by binding to the histone acet-
yltransferase EP300, inhibiting EP300-mediated TP53 acetylation and promoting TP53 degradation (59, 60). 

Figure 8. Comparative analysis of gene signature expression patterns and enriched pathways in HNSCC, cervical lesions, and anal lesions. (A) 
Heatmap visualization of HNSCC gene signature across our sample cohort, grouped by immune score within each diagnosis category. Additionally, the 
epidermal differentiation score is displayed. (B) Heatmap visualization of the ASCC gene signature expression profile in HNSCC samples organized 
by subtype classification according to Zhang et al., 2016 (48). (C) Heatmap visualization of CSCC gene signature across our sample cohort grouped by 
immune score within each diagnosis category. (D) Heatmap visualization of the ASCC gene signature across cervical lesions, arranged in ascending 
order based on the immune gene profile within each diagnosis category.
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Consequently, dysregulated histone/chromatin modulation within the context of  impaired DNA repair 
mechanisms emerges as a driver of  malignancy. We categorized mutated genes into Cancer Hallmarks and 
observed that genome instability predominated (Supplemental Data 9). Genes like KMT2C, EP300, IDH1, 
SETD2, TET2, BRCA1, TP53, APC, ATM, KDM6A, NCOR1, SF3B1, and STAG2 defined a gene network 
critical for ASCC, regardless of  HPV infection, aligning with TP53 association with HPV-HR negativity in 
our study, consistent with prior research (17, 51, 52).

To perform a comparative analysis of  the mutational profile identified in ASCC with other squamous 
cell carcinomas, we analyzed 2 combined cervical cancer data sets (MSK-CESC and TCGA-CESC) and 
a head and neck cancer data set (TCGA-HNSC) retrieved from cBioPortal (http://www.cbioportal.org/). 
Only drivers and putative drivers’ somatic missense or truncating mutations were considered for frequency 
estimations among cohorts. The comparative analysis showed that one-third of  the most frequent cancer 
driver mutations identified in ASCC (8 out of  25 genes) were also frequently mutated (>5% of  cases) in 
CSCC and HNSCC (KMT2C, EP300, PIK3CA, NOTCH1, TP53, CASP8, STK11, and KDM6A) (Figure 9B).

Our mutational profiling of  ASCC biopsies from 23 patients offered valuable insights into the somatic 
mutation landscape of  cancer driver genes, particularly given their derivation from transcriptomic data. 
However, we recognize the significance of  the limited sample size when drawing definitive conclusions.

Discussion
ASCC represents only 2% of  all gastrointestinal tumors but is characterized by high morbidity and mortal-
ity. Unfortunately, treatment options for ASCC have not evolved in the past 20 years; concurrent chemora-
diotherapy continues to be the standard care strategy for nonmetastatic cases. For patients with metastasis 
at diagnosis or those who develop metastatic recurrences after chemoradiation therapy, the 5-year survival 
rate is below 20% (61). To date, platinum-based chemotherapy doublets are the most commonly used anti-
cancer drugs for palliative chemotherapy, and no targeted agents have been approved. In clinical practice, 
prognostic factors of  survival in ASCC are the T and N stage, sex, differentiation, tumor location, HR-HPV 

Figure 9. Mutational profiles among squamous cell carcinomas. (A) Tile plot of the most prevalent somatic cancer driver mutations identified in 23 ASCC 
cases through transcriptome-based sequencing. The upper color-coded bars provide an indication of the immune signature score and HR-HPV status for 
each respective sample. On the left bar plot, the proportions of somatic mutations within each group are presented, relative to the total number of cases 
in that specific group. TSG, tumor suppressor gene. (B) Comparative frequency of the mutations identified in the ASCC cohort with respect to CSCC and 
HNSCC retrieved from the TCGA cohorts.

https://doi.org/10.1172/jci.insight.180907
https://insight.jci.org/articles/view/180907#sd
http://www.cbioportal.org/


1 7

R E S E A R C H  A R T I C L E

JCI Insight 2024;9(16):e180907  https://doi.org/10.1172/jci.insight.180907

infection, and occurrence of  a complete response after chemoradiation therapy (17). These clinical param-
eters related to survival cannot be used to personalize therapy or predict treatment response in individual 
patients. Less is known regarding early-stage prognostic biomarkers of  ASCC.

Comprehensive characterization of  anal squamous precancerous and cancerous lesions at metatran-
scriptome and transcriptome levels allowed us to identify the most relevant changes in the cell host and 
their associated microenvironment — the immune infiltrate and the microbiome — during progression 
from preinvasive to invasive stages. Unsupervised analyses allowed us to identify 2 patient clusters (clus-
ter I and cluster II) based on histological diagnosis, microbial composition, cell cycle, immune infiltrate, 
immune response, viral infection (HIV and HPV), epidermal differentiation, and activity of  specific met-
abolic and signaling pathways. Cluster I was mainly composed of  LGSIL and HGSIL differentiated and 
lowly proliferative cases with low immune infiltrate and almost all infected by LR-HPV types. Meanwhile 
cluster II was significantly enriched in ASCC and HGSIL cases with higher immune signature score, low 
epidermal differentiation, a greater number of  samples with a high cell cycle signature, and a higher prev-
alence of  HR-HPV. In this sense, cluster II was associated with higher expression of  Ki67 and p16, older 
patients, TGW, and CGW. These findings align with previous studies that have implicated specific viral 
infections, immune responses, and molecular pathways in the progression of  anal lesions (4, 10, 17). The 
observed distinctions between cluster I and cluster II provide valuable insights into potential prognostic and 
therapeutic considerations in the management of  anal squamous lesions (62).

Microbiome changes in preinvasive and invasive stages of  anal cancer. A comparison of  the microbiota com-
position at phylum and species levels revealed expected differences between SILs and ASCC regarding 
the prevalence of  HR-HPV subtypes but also identified several viruses and bacteria species significant-
ly associated with anal cancer not previously reported to our knowledge. In this sense, F. nucleatum, F. 
gonidiaformans, and B. fragilis, previously associated with CRC progression at early stages (17), were sig-
nificantly enriched in ASCC compared with premalignant lesions. More importantly, these taxa together 
with HPV16 contributed to gene-encoding enzymes (e.g., Acca, glyQ, eno, pgk, and por) and oncoproteins 
(FadA and dnaK) and a distinctive ASCC metabolic profile characterized by the enrichment of  pathways 
related to oxidative, energetics, or biosynthetic processes, including glycolysis, lipid, amino acid, and nucle-
otide biosynthesis, that could facilitate and promote the survival and proliferation of  cancerous cells (10, 
29, 30). Among these enzymes and proteins, Acca, glyA, glyQ, eno, pgk, and por were identified in our pre-
vious study as associated with precancerous anal lesions, highlighting their roles as metabolic markers in 
cancer progression (10). In line with our results, Serrano and Villar also found pgk and eno overexpressed 
in the microbiome of  HGSIL, while they proposed succinyl-CoA and cobalamin as markers associated 
with HGSIL (8). This reinforces the idea that HPV-infected cells can modify metabolism by regulating 
genes involved in cellular growth and metabolism, which is crucial to oncogenesis (63). Considering and 
validating these microbial proteins as markers could offer alternative tools in cancer prevention.

Cell signaling pathways affected in preinvasive and invasive stages of  anal cancer. Our integrative analysis of  
the host transcriptome provided valuable insights into the molecular landscape underlying anal cancer 
development. The transition from HGSIL to ASCC was characterized by a statistically significant number 
of  DEGs, with notable alterations in keratin expression and overexpression of  members of  the MAGE gene 
family in ASCC. Functional analysis revealed key biological processes and pathways associated with each 
stage. In HGSIL compared with LGSIL, activated processes included nuclear division, chromatin modifi-
cation, and cell proliferation, aligning with histopathological features indicative of  high-grade lesions (35). 
Conversely, the transition from HGSIL to ASCC revealed immune response activation, marked by upreg-
ulation of  IFN pathways, highlighting the role of  the immune system in the progression to anal squamous 
cell carcinoma (38). Indeed, patients of  cluster II were characterized by a higher immune signature and 
immune cell infiltration, as assessed by gene expression profiling of  immune cell fractions, IHC of  CD3+ 
and CD8+ TILs, as well as PD-L1 expression.

Therefore, in comparing HGSIL and ASCC, the data underscored the predominance of  immune 
response activation in ASCC, contrasting with the cell proliferation and DNA modification processes 
observed in the transition from LGSIL to HGSIL. Noteworthy findings included the suppression of  the p53 
pathway potentially linked to the overexpression of  HPV16 E6 protein, highlighting the intricate interplay 
between viral oncoproteins and host cellular processes in the progression to ASCC (64).

Shared and unique immune and molecular changes across squamous cell carcinomas. Through the inte-
gration of  transcriptomic studies on HNSCC and CSCC with our ASCC transcriptome, we found 
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shared gene expression patterns across tumor sites indicating a shift toward immune response genes 
and a decrease in keratinocyte differentiation genes during disease progression from preinvasive to 
invasive stages. These patterns align with the known biology of  HPV carcinogenesis, where HPV E6 
oncoprotein downregulates keratinocyte differentiation genes and upregulates mesenchymal lineage 
genes (65). Regarding the immune response, the elevated immune score and the high frequency of  TIL 
cell fraction observed in cluster II samples from our analysis are also in line with a higher prevalence 
of  HR-HPV. HPV-positive tumors may have increased numbers of  TILs, myeloid dendritic cells, and 
proinflammatory chemokines, which are thought to improve treatment response in patients with head 
and neck and cervical cancers (66, 67). Our results showed that a strong immune response is associated 
with better treatment outcomes, as indicated by TIDE score analysis. Studies have shown that TILs 
may improve treatment responses or outcomes in patients with CSCC undergoing chemotherapy or 
radiotherapy (68, 69). TIL-based immunotherapy has shown promise as an alternative treatment for 
advanced cervical cancer, with positive results (70). In advanced ASCC, immunotherapy trials primar-
ily focus on targeting PD-1/PD-L1 and E6/E7 proteins (71). Therefore, combining TIL therapy with 
checkpoint blockade and HPV E6/E7 vaccination offers a potent antitumor therapy with the potential 
to eradicate malignancy in ASCC completely.

Furthermore, ASCC exhibited somatic missense mutations in cancer driver genes, with KMT2C, PIK-
3CA, and EP300 being the most mutated genes, in agreement with previous reports. The prevalence of  these 
mutations varied at different stages of  anal precancerous lesions, suggesting their involvement in early 
stages of  anal cancer development. Additionally, there were distinct tumor subpopulations with different 
mutation rates and immune signatures. Mutations in KMT2C, PRDM1, and FGFR2 were predominantly 
found in HPV16-infected cases, indicating their association with HPV-related carcinogenesis (51, 52). The 
comparative analysis of  mutational profiles across different squamous cell carcinomas, including ASCC, 
HNSCC, and CSCC, revealed substantial overlaps in the mutation landscape. By examining data sets from 
cBioPortal, encompassing a substantial number of  cases, we identified common mutations in several cancer 
driver genes among these carcinomas. Approximately one-third of  the frequently mutated genes in ASCC 
were also prevalent in HNSCC and CSCC, suggesting potential shared molecular mechanisms underlying 
these cancers. Key drivers such as KMT2C, EP300, PIK3CA, NOTCH1, TP53, CASP8, STK11, and KDM6A 
emerged as recurrently altered across these cohorts. However, the remaining two-thirds of  the mutated 
genes appeared to be specific to ASCC, indicating distinct genetic alterations driving the development and 
progression of  anal cancer.

Our study has a number of  limitations given its cross-sectional nature and the low sample size utilized 
for data collection because of  the rarity of  anal cancer. The small sample size might not fully represent 
the biological diversity and variability within the population under investigation, potentially limiting the 
generalization of  the findings. Furthermore, the high risk of  false discovery poses a considerable concern, 
especially in exploratory analyses or when multiple comparisons are conducted. Due to the cross-sectional 
design adopted in this study, establishing causal associations becomes challenging. However, we believe 
this is the first cross-sectional study that identifies metatranscriptomic and transcriptomic changes among 
premalignant and malignant stages of  anal cancer. Furthermore, these findings provide valuable insights 
into novel prognostic biomarkers that may help stratify patients with precancerous lesions in low- versus 
high-risk groups of  progression to the malignant stage. Future research employing larger sample sizes and 
longitudinal designs would be needed to address these limitations and corroborate our findings.

Methods
Sex as a biological variable. Sex at birth (male or female) and gender identity (CGM, TGW, and CGW) were 
incorporated into our study design as biological variables.

Sample collection and RNA-Seq. We collected 70 anal biopsies from patients with different stages of  anal 
lesions: 31 LGSIL, 16 HGSIL, and 23 ASCC, stored in RNAlater (Thermo Fisher Scientific). Clinical data 
including age, HPV status, ART treatment, and HIV status were recorded at enrollment. RNA was extract-
ed using miRNeasy Tissue/Cells Advanced Kits (QIAGEN), and its quality was assessed on an Agilent 
2100 Bioanalyzer. Samples with RNA integrity number greater than 7 were chosen for RNA-Seq. Direc-
tional RNA-Seq libraries were prepared using Illumina Total RNA Prep with Ribo-Zero Plus kit. Sequenc-
ing was performed on an Illumina NovaSeq 6000 platform, yielding approximately 80 million clusters per 
sample with >92% >Q30 quality scores.
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DNA purification and HPV detection and genotyping. Samples were collected using QIAGEN speci-
men collection devices by qualified staff  at Fundación Huésped and Hospital Udaondo. DNA puri-
fication utilized QIAamp DNA Kits (QIAGEN). DNA integrity and concentration were assessed by 
NanoDrop spectrophotometry (Thermo Fisher Scientific). HPV detection was performed at Institute 
Malbrán via PCR using biotinylated Broad-Spectrum General Primers BSGP5+/GP6, designed to 
amplify a 140 bp fragment of  the HPV-L1 gene. Genotyping was conducted using reverse line blot 
hybridization for 36 HPV genotypes (validated by Global HPV LabNet) (72). Biotinylated amplicons 
were denatured and hybridized with genotype-specific oligonucleotide probes immobilized as parallel 
lines on membrane strips.

Metatranscriptomic data analysis. For metatranscriptomics, the obtained RNA-Seq data were processed 
using the bioBakery suite of  tools: KneadData was used to separate the human and the nonhuman reads; 
taxonomic profiling was performed using MetaPhlAn to identify and quantify microbial taxa at species 
level present in the anal samples (73).

Species richness and diversity were calculated using the R function estimate_richness from R package 
phyloseq (74). We considered the observed species and Chao1 indices for richness and the Shannon and 
Simpson indices for diversity. We measured β-diversity by Bray-Curtis, weighted UniFrac, and unweighted 
UniFrac. For PCoA, the Aitchison distance was used as the distance metric to analyze the compositional 
data. To test whether the samples cluster beyond that expected by sampling variability, we applied PER-
MANOVA. Differences in richness and diversity indices between groups were determined using the Wil-
coxon rank-sum test with a significance level of  0.05. For relative abundance analysis and visualization, we 
used R phyloseq packages.

Differential abundance analysis. For determining the relative differential abundance and the multivariable 
association between participants’ metadata and microbial features, we used the MaAsLin2 package from 
the bioBakery suite in R/Bioconductor (75). We used default parameters for normalization (total sum scal-
ing method), transformation (log), analysis method (linear models), correction method (Benjamini-Hoch-
berg), and significance threshold (q value < 0.25). The minimum abundance for each feature was set to 
0.001 (0.1%) while the minimum percentage of  samples for which a feature was detected (prevalence) at 
minimum abundance was used as follows: 0.05 (5%) for viruses, 0.1 (10%) for bacteria and pathways, and 
0.2 (20%) for gene families.

Pathways and gene family analysis. Metatranscriptomic pathway analysis was conducted using the HMP 
Unified Metabolic Analysis Network 3 (HUMAnN3) pipeline to investigate potential variations in meta-
bolic pathways. HUMAnN3 employs a multifaceted approach, extracting species profiles from KneadData 
output, aligning reads to pan-genomes, executing translated searches on unclassified reads, and quantifying 
gene families and pathways. By default, gene families are UniRef90 annotated and metabolic pathways are 
annotated using MetaCyc database (76, 77). The UniRef90 gene family abundance from HUMAnN3 was 
then regrouped to KEGG orthology (KO) (78). We used the KEGGREST package in R/Bioconductor for 
KO identifiers and KEGG Mapper reconstruct tool for KEGG pathway maps (79, 80).

Data visualization. We used the R package phyloseq to create a heatmap representation of  taxa abundanc-
es. For the unsupervised ordination of  samples, we applied the nonmetric multidimensional scaling method 
and Bray distance in the plot_heatmap function. Heatmap visualization of  differentially represented gene 
proteins was done with R/Bioconductor and the MultiExperiment Viewer software (MeV v4.9).

Transcriptomic, functional enrichment, and immune infiltrate analysis. The raw short-read sequences were 
preprocessed using Rfastp from the R/Bioconductor package Rsubread. Quality checks, adapter removal, 
and trimming of  low-quality bases were conducted with Rfastp. Reads were aligned to the human genome 
reference GRCh38 using the Subread aligner algorithm from Rsubread. Gene expression abundance at 
the whole-genome level was calculated using featureCounts from Rsubread. Differential gene expression 
analysis between anal lesion stages (LGSIL vs. HGSIL and HGSIL vs. ASCC) utilized edgeR, with FCs 
and adjusted P values computed based on normalized log2 count per million values. Genes with a log-FC > 
1 and adjusted P < 0.05 were considered differentially expressed.

Functional enrichment analysis of  DEGs employed the clusterProfiler package for GSEA (81). 
Functional enrichment results were visualized using enrichplot for GO, Hallmark of  Cancers, and DO 
terms. Heatmaps were generated using MeV 4.9.0.

Tumor purity, immune cell infiltration, and T cell dysfunction/exclusion scores were estimated using 
ESTIMATE, EPIC, and TIDE algorithms, respectively, on normalized count matrices.
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For comparative transcriptomics analysis, the NCBI Gene Expression Omnibus GSE74927 data set 
for HNSCC and GSE63514 for CSCC were utilized. Raw data were imported into R using GEOquery 
to obtain normalized matrices for each study. Differential gene expression analysis employed DESeq2 for 
GSE74927 and limma for GSE63514. To visualize gene expression patterns, we defined the following gene 
signatures: for ASCC, we used the gene signature obtained from our comparison of  HGSIL versus ASCC; 
for HNSCC, we used the gene signature provided in the study by Zhang et al., derived from the differential 
expression analysis between 2 HPV+ subgroups of  HNSCC (48); for CSCC, we obtained a gene signature 
from the comparison between CIN2/CIN3 samples (comparable to HGSIL) and CSCC. Gene expression 
profiles across ASCC, HNSCC, and CSCC matrices were visualized after filtering out genes with less than 
50% variance within each signature. Functional enrichment analysis of  resulting genes used the clusterPro-
filer package. Heatmaps were generated in MeV 4.9.0 based on immune scores.

Mutational analysis based on RNA-Seq data. The preprocessed reads previously used for the transcrip-
tomic analysis were aligned and mapped to the human genome reference GRCh38 using the Subjunc 
aligner algorithm provided by Rsubread R/Bioconductor package. Subjunc aligner was developed for 
aligning RNA-Seq reads and for the detection of  exon-exon junctions at the same time. The Subjunc 
mapping results (BAM files) were used for genomic variant detection using the exactSNP variant caller 
algorithm provided by Rsubread package. The VariantAnnotation R/Bioconductor package was sub-
sequently used for SNP and indel filtering of  the obtained VCF files based on quality (–log10[P value] 
> 20) and coverage (read depth > 10) metrics. Identified variants were annotated, filtered, and inter-
preted using OpenCRAVAT and their aggregated variant databases and resources (gnomAD, Cancer 
Genome Interpreter, Cancer Hotspots, CIVIC, Cosmic, SIFT, PolyPhen2) for the prediction of  somat-
ic mutations in cancer driver genes.

In addition, to perform a comparative analysis of  the mutational profile identified in ASCC with other 
squamous cell carcinomas, we analyzed HNSCC and CSCC data sets obtained from cBioPortal (http://
www.cbioportal.org/). Briefly, the mutational profiles of  the 25 cancer driver genes mutated in ASCC were 
retrieved from 2 combined cervical cancer data sets (MSK-CESC and TCGA-CESC, n = 468) and a head 
and neck cancer data set (TCGA-HNSC, n = 510). Only drivers and putative drivers’ somatic missense or 
truncating mutations were considered for frequency estimations among cohorts.

Immunohistochemistry analysis of  ASCC. Immunostaining utilized a Roche Benchmark XT system with 
anti-CD3 (clone 2GV6, Ventana, Roche), anti-CD8 (clone SP57, Ventana, Roche), anti–PD-L1 (clone 
SP263, Ventana, Roche), and anti-p16 (clone 6H12, Leica Biosystems) antibodies. Evaluation involved 
2 independent pathologists, with discrepancies resolved by a senior pathologist in 4 cases. CD3 and CD8 
expression levels were averaged across intra- and peritumoral areas and categorized as low (0%–34%), 
moderate (35%–64%), or high (65%–100%) based on total tumor-related lymphocyte staining. PD-L1 
expression was assessed using the CPS for gastric/gastroesophageal junction adenocarcinoma.

Statistics. We used R/Bioconductor for different statistical comparisons outside of  MaAsLin’s analysis. 
To analyze continuous variables, we utilized either 2-tailed t tests or Wilcoxon’s tests as appropriate. For 
categorical data, we employed χ2 and Fisher’s tests. Box plots were created in R using the ggplot package. 
Box plots in figures show the interquartile range, median (line), and minimum and maximum (whiskers). P 
< 0.05 was considered statistically significant.

Study approval. This study was approved by the institutional review boards of  Fundación Huésped and 
Hospital de Gastroenterología “Dr. Carlos Bonorino Udaondo,” both in Buenos Aires, Argentina. All par-
ticipants included in this study gave written informed consent before being involved in the project.

Data availability. The raw data have been submitted to NCBI GEO database with accession number 
GSE253560. Supporting Data Values of  figures and Table 1 are available as supplemental files. All codes 
and scripts used for data preprocessing and analysis are available at the following GitHub repository: 
https://github.com/mabba777/ASCC-transcriptomics; commit ID d90a47c.
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