JCI insight

The HIV latency reversing agent HODHBt inhibits the phosphatases PTPN1 and PTPN2

J. Natalie Howard, ..., R. Brad Jones, Alberto Bosque

JCI Insight. 2024. https://doi.org/10.1172/jci.insight.179680.

Research In-Press Preview AIDS/HIV

Graphical abstract

	cung partiters with nobriot by	CEISA-MS	
Sample Incubation with HODHBH	Heat Challenge Pooling and Separation Protein	in groups	STRING Pathway Analysis
Banda Hilling Commission	" Salar a Contraction of Contractio	PBMC K562	
	Treasure of the second	=>(())=	
utta (1111) Company	Manager and States and		60
Second 11, Second and a state state	Temperature Schwarz New Control Schwarz New Co		
Validation of PTPN1 a	nd PTPN2 as HODHBt targets		
	CETSA	Enzymatic assay	CRISPR/Cas9
FTMI Coupe loss		TPNI (beterter)	
			••••••••••••••••••••••••••••••••••••••
		2 🧃 -	
1 10 10 10 10 10	Tenpence		
Identification of AC-4	34 as a new LRA synergizing w	ith IL-15	Immune activation
HODHBt	-2/IL-15 Reporter cell line		
CCI.	CTATE Daim		Outobings
AC-484		of latency	Cytokines
HN-S-OF H	STATS SEAP	in latency	
HDD ANY			CD4, CD8 and NK
Proposed mechanism	of action of HODHBt and AC-4	84	
Proposed mechanism	of action of HODHBt and AC-4 IL-15	84	
Proposed mechanism	of action of HODHBt and AC-4	84 •	
Proposed mechanism	of action of HODHBt and AC-4	84	
Proposed mechanism	of action of HODHBt and AC-4 IL-15	84	
Proposed mechanism	of action of HODHBt and AC-4	84	
Proposed mechanism	of action of HODHBt and AC-4	84	
Proposed mechanism	of action of HODHBt and AC-4	84	=
Proposed mechanism Phosphorylation Dephosphorylation	of action of HODHBt and AC-4	84	
Proposed mechanism Proposed mech	of action of HODHBt and AC-4	84	_
Proposed mechanism Proposed mech	of action of HODHBt and AC-4		=
Proposed mechanism Proposed mech	of action of HODHBt and AC-4		

https://jci.me/179680/pdf

Find the latest version:

1	The HIV latency reversing agent HODHBt inhibits the phosphatases PTPN1
2	and PTPN2
3	Authors: J. Natalie Howard ¹ , Thomas D. Zaikos ² , Callie Levinger ¹ , Esteban Rivera ¹ , Elyse K.
4	McMahon ¹ , Carissa S. Holmberg ¹ , Joshua Terao ¹ , Marta Sanz ¹ , Dennis C. Copertino Jr. ^{1,3} ,
5	Weisheng Wang ¹ , Natalia Soriano-Sarabia ¹ , R. Brad Jones ³ , Alberto Bosque ^{1*}
6	Affiliations:
7	¹ Department of Microbiology, Immunology, and Tropical Medicine, George Washington
8	University, Washington DC 20037, USA.
9	² Department of Pathology, Johns Hopkins Hospital, Baltimore, MD, USA.
10	³ Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
11	*Corresponding author. Email: abosque@gwu.edu
12	Abstract:
13	Nonreceptor tyrosine phosphatases (NTPs) play an important role regulating protein
14	phosphorylation and have been proposed as attractive therapeutic targets for cancer and
15	metabolic diseases. We have previously identified that 3-Hydroxy-1,2,3-benzotriazin-4(3H)-one
16	(HODHBt) enhanced STAT activation upon cytokine stimulation leading to increased
17	reactivation of latent HIV and effector functions of NK and CD8 T cells. Here, we demonstrated
18	that HODHBt interacts with and inhibits the NTPs PTPN1 and PTPN2 through a mixed
19	inhibition mechanism. We also confirmed that PTPN1 and PTPN2 specifically control the
20	phosphorylation of different STATs. The small molecule ABBV-CLS-484 (AC-484) is an active
21	site inhibitor of PTPN1 and PTPN2 currently in clinical trials for advanced solid tumors. We
22	compared AC-484 and HODHBt and found similar effects on STAT5 and immune activation
	1

albeit with different mechanisms of action leading to varying effects on latency reversal. Our
 studies provide the first specific evidence that enhancing STAT phosphorylation via inhibition of
 PTPN1 and PTPN2 is an effective tool against HIV.

26 Introduction

Despite the development and rapid advancement of antiretroviral therapy (ART) against Human Immunodeficiency virus (HIV) in the past three decades, there remains no functional cure. This is due to the presence of intact and inducible provirus that is integrated within infected cells and unseen by the immune system allowing for viral persistence despite ART (1-3). Efforts to identify small molecules that can reactivate (or shock) latent virus into active replication, allowing cells to be seen and eliminated by immune effector cells, remains at the forefront of research today.

34 We have previously described that the small molecule, 3-Hydroxy-1,2,3-benzotriazin-35 4(3H)-one (HODHBt), is able to enhance cytokine-mediated STAT signaling (4). We initially 36 identified HODHBt via a screening for compounds that could reactivate latent HIV in a primary 37 cell model of latency (5). Our previous studies demonstrated that HODHBt was able to increase 38 cytokine-induced phosphorylated STAT5 (pSTAT5), leading to enhanced binding of pSTAT5 to 39 the HIV long terminal repeat (LTR). This resulted in viral transcriptional activation and latency 40 reversal in primary CD4 T cells (4). We then described that the structural analogue 1,2,3-41 Benzotriazine-4(3H)-one (HBt) lacks biological activity, indicating the importance of the 3-42 hydroxy group in the biological activity of these compounds. Furthermore, we demonstrated that 43 HODHBt lacks acute toxicity in mice and does not promote global immune activation (6). In 44 follow-up studies, we showed that HODHBt enhanced the ability of IL-15 to 1) promote IFN- γ 45 and Granzyme B production in NK cells leading to increased cytotoxic activity against HIVinfected cells and cancer cell lines (7), and 2) enhance the cytotoxic activity of HIV-specific 46

47	CD8 T cells via increasing the expression Granzyme B in CD8T cells and MHC-I expression on
48	target cells (8). However, the direct target(s) of HODHBt remain unknown.
49	Here, to identify HODHBt target candidates, we used thermal proteomic profiling (TPP)
50	(9-11). The two top hits were the nonreceptor tyrosine phosphatases (NTPs) protein tyrosine
51	phosphatase nonreceptor type 1 (PTPN1) and type 2 (PTPN2), known for their activity in the
52	regulation of the STAT signaling pathway (12-15). Utilizing biochemical and functional assays,
53	we determined that HODHBt is a mixed inhibitor of PTPN1 and PTPN2. Recently, a small
54	molecule dual active site inhibitor of PTPN1 and PTPN2, ABBV-CLS-484 (AC-484,
55	Osunprotafib), has been characterized as a potent immune activator of anti-tumor responses (16),
56	and there is one clinical trial in progress determining the effects of AC-484 against advanced
57	solid tumors (NCT04777994). In this work, we compared the anti-HIV functions of these two
58	PTPN1/PTPN2 inhibitors, HODHBt and AC-484. We showed that HODHBt and AC-484 have
59	similar effects on STAT5 phosphorylation, induction of STAT5 transcriptional activity, immune
60	cell activation, but differ in their ability to reactivate latent HIV in primary cells. These results
61	show that PTPN1 and PTPN2 can be targeted to reverse latency, broadening current approaches
62	for HIV cure.
63	Results
64	HODHBt modulates the thermal stability of PTPN1 and PTPN2.
65	TPP couples the cellular thermal shift assay (CETSA) with quantitative mass
66	spectrometry (MS) (9-11), allowing precise identification of proteins that bind to a small
67	molecule by identifying changes in protein stabilization of thousands of proteins simultaneously
68	upon heating. TPP was performed in alive peripheral blood mononuclear cells (PBMCs) form
69	HIV-negative donors and the chronic myelogenous leukemia cell line K562 cells treated with
70	HODHBt (11, 17, 18). By performing TPP in living cells as opposed to cell lysates, we ensure

71	that the targets are 1) present at their physiological levels; 2) with their posttranslational
72	modifications; 3) in their subcellular compartments; and 4) interacting with other proteins in
73	their native conformation. We reliably quantified changes in stabilization of 7,122 and 7,829
74	proteins in PBMCs and K562 cells respectively (Supplemental File 1). HODHBt only changed
75	the thermal stability of 119 proteins in PBMCs and 173 proteins in K562 cells (p<0.01)
76	(Supplemental File 2). Among those, only 12 proteins were shared between both cell types
77	(Figure 1A, Supplemental Figure 1, Supplemental File 2). Next, STRING pathway analysis
78	identified three proteins with known interactions with STAT5: PTPN1, PTPN2, and CRKL
79	(Supplemental File 3). PTPN1 and PTPN2 are two NTPs that regulate STAT5 activation, with
80	PTPN1 being the predominant phosphatase present in the endoplasmic reticulum (ER), and
81	PTPN2 being present in both the ER and nucleus (19, 20). CRKL is a proto-oncogene adaptor
82	protein which has been shown to directly interfere with STAT5-DNA binding (21). To validate
83	the TPP, we measured changes induced by HODHBt in thermal stabilization of different proteins
84	in primary CD4 T cell lysates (10). Confirming our TPP, HODHBt specifically induced changes
85	in the thermal stability of PTPN1 and PTPN2 compared to the inactive analogue HBt (Figure 1B,
86	Supplemental Figure 2). We could not confirm changes in the thermal stability of CRKL. As
87	controls, we evaluated changes in the thermal stability of STAT5, the ribosomal protein RPL7A,
88	or the housekeeping gene β -actin, which did not show changes in thermal stability in our TPP
89	(Supplemental File 1). We did not observe changes in the thermal stability of these three proteins
90	(Figure 1B). Additionally, we measured changes in the thermal stability of purified PTPN1 and
91	PTPN2 catalytic domain proteins induced by HODHBt and HBt compared to a DMSO control.
92	For PTPN1, we observed stabilization by both HODHBt and the inactive control HBt compared
93	to DMSO, whereas for PTPN2, we observed destabilization with HODHBt but not HBt (Figure
94	1C). This data suggests that the inactive control HBt could also binds to PTPN1 but does not

95	have the downstream effects of HODHBt. Next, to confirm the role of PTPN1 and PTPN2
96	regulating STAT5 phosphorylation (22) (23), both NTPs were individually or simultaneously
97	knocked out using CRISPR-Cas9 in K562. We confirmed that knocking out both PTPN1 and
98	PTPN2 results in enhanced STAT5 phosphorylation, suggesting that both NTPs are equally
99	important in STAT5 regulation (Supplemental Figure 3A-C). Additionally, we observed that
100	treatment of K562 cells with HODHBt resulted in a dose-dependent increase in pSTAT5
101	concomitant with a reduction on the levels of PTPN2 and to a lesser extent of PTPN1
102	(Supplemental Figure 3D), suggesting that HODHBt may promote changes in the expression of
103	these two phosphatases.

- 104
- 105

HODHBt is a mixed inhibitor of PTPN1 and PTPN2.

106 PTPN1 and PTPN2 belong to the Class I PTP family and share an overall 72% sequence 107 similarity overall and 94% similarity for the catalytic domain, including the cysteine residue 108 required for full enzymatic function (24, 25) (Supplemental Figure 4). Using recombinant PTPs 109 in vitro, we characterized HODHBt's mechanism of inhibition. HODHBt inhibited the catalytic 110 activities of both PTPN1 and PTPN2 compared to the inactive structural analogue HBt with 111 average IC50s of 601µM and 544µM, respectively (Figure 2A). To determine the mechanism of 112 inhibition, we performed a kinetic analysis using varying concentrations of both the substrate and 113 HODHBt (Figure 2B). This allowed us to perform Michaelis-Menten least square fit analysis to 114 determine the Vmax and Km for each HODHBt concentration, where Vmax is the extrapolated 115 maximum enzyme velocity and Km is the substrate concentration needed to achieve a half-116 maximum enzyme velocity (also known as the Michaelis-Menten constant) (Supplemental 117 Figure 5). Using the calculated Vmax and Km values, we fitted the data to Lineweaver-Burk 118 plots and determined that HODHBt is a mixed inhibitor. A mixed inhibitor is defined as an

119 inhibitor that can either bind to the enzyme at an allosteric site regardless of whether the 120 substrate is bound or bind at an allosteric site to the already bound enzyme-substrate complex 121 (26, 27). Both scenarios result in a decrease in the Vmax, but preferential binding of the inhibitor 122 to free enzyme increases the Km, while binding to the enzyme-substrate complex decreases the 123 Km (27). Our results suggest potential preferential binding of HODHBt to free PTPN1 and 124 PTPN2-substrate complex based on the increased and decreased Km values respectively (Figure 125 2C, Supplemental Figure 5). Together, our results demonstrate that HODHBt binds and inhibits 126 the catalytic domain of PTPN1 and PTPN2 and constitute a novel class of compounds that act as 127 dual PTPN1/PTPN2 mixed inhibitors.

128

PTPN1 and PTPN2 control the phosphorylation and transcriptional activity of STATs in a cvtokine-specific manner

131 We have reported previously that in addition to enhancing STAT5A and STAT5B 132 phosphorylation, HODHBt also enhances the phosphorylation of STAT1 and STAT3 upon IL-15 133 stimulation (6, 7). To test whether inhibiting PTPN1 and PTPN2 with HODHBt enhanced 134 phosphorylation of additional STATs, we isolated and treated primary total CD4s with four 135 different cytokines targeting activation of one or more specific STATs for 24 hours (28). As 136 previously reported, HODHBt alone did not significantly increase STAT phosphorylation (4). 137 However, stimulation with IL-15 combined with HODHBt resulted in increased phosphorylation 138 of STAT1, STAT3, STAT4, and STAT5 compared to the inactive control HBt. HODHBt also 139 enhanced IFNα-mediated STAT1 phosphorylation but not STAT2 (Figure 3A, B). We confirmed 140 that HODHBt does not enhance phosphorylation of STAT2 in both total CD4 T cells in the 141 presence of IFN- α (Figure 3C), and in 293FT cells stably transfected with V2-tagged STAT2 142 (Figure 3D). Stimulation with IL-12 in the presence of HODHBt resulted in increased

143	phosphorylation of STAT1 while HODHBt did not influence IL-4-mediated STAT6
144	phosphorylation (Figure 3A, B). Failure of HODHBt to enhance STAT2 phosphorylation
145	suggests that PTPN1 and PTPN2 might not control STAT2 transcriptional activity. STAT2, in
146	combination with STAT1, are important for regulating interferon (IFN) signaling. While type-I
147	IFN α/β requires STAT1 and STAT2 heterodimers and binding to interferon-sensitive response
148	element (ISRE), type-II IFN γ signals through STAT1 homodimers and gamma interferon
149	activation site (GAS) elements (29-31). Based on our previous work, we hypothesized that
150	inhibiting PTPN1 and PTPN2 with HODHBt would enhance IFN γ but not IFN α/β . We
151	confirmed that inhibiting PTPN1 and PTPN2 with HODHBt did not enhance IFN α or IFN β
152	activation of the ISRE promoter (Figure 3E). On the other hand, HODHBt enhanced IFN γ
153	activation of the GAS promoter in a dose-dependent manner (Figure 3F). These data suggest that
154	PTPN1 and PTPN2 regulate the phosphorylation of all STAT isoforms except STAT2 and
155	STAT6. This could be attributed to the fact that both PTPN1 and PTPN2 preferentially bind to
156	bi-phosphorylated substrates (32). All STATs, excluding STAT2 and STAT6, have a conserved
157	serine residue that can be phosphorylated in addition to the ubiquitous C-terminal tyrosine
158	residue required for SH2 partner interaction and dimerization (33). Overall, our findings confirm
159	that PTPN1 and PTPN2 control the phosphorylation and transcriptional activity of STAT-1, 3, 4
160	and 5 and that HODHBt enhances STAT transcriptional activation in a cytokine-specific manner.

162 AC-484 promotes immune activation and synergizes with IL-15 to reactivate latent HIV

AC-484 is a newly characterized active site dual inhibitor of PTPN1 and PTPN2 with potent anti-tumor effects (16) that is currently in clinical trials for patients with advanced solid tumors (NCT04777994). We sought to investigate the potential of AC-484 as an HIV LRA compared to HODHBt. Structurally, HODHBt and AC-484 share a core benzene ring but lack

167	other substantial similarities that could explain their shared inhibition of PTPN1 and PTPN2
168	(Figure 4A). First, we evaluated the effects on STAT5 transcriptional activity using HEK-Blue-
169	IL2/IL15 cells as previously described (6). Compared to HODHBt, AC-484 was about 100-fold
170	more potent at increasing STAT5 transcriptional activity, with an EC50 of $7.25\mu M$ compared to
171	$762\mu M$ of HODHBt (Figure 4B), and there was no observed toxicity with either compound
172	(Figure 4C). These initial findings suggested that perhaps AC-484 would be able to reactivate
173	latent HIV to a similar, if not greater degree, as HODHBt. Given the current clinical relevance of
174	IL-15 as an LRA (34), we next investigated the LRA efficacy of combining HODHBt and AC-
175	484 with IL-15. We observed that HODHBt alone has minimal LRA activity (8.2% of the
176	maximal stimulus α CD3/28 beads) and observed similar minor significant levels with AC-484
177	(7.8%). Treatment with IL-15 induced higher frequency of HIV p24+ cells compared to the
178	DMSO control (27.1% vs. 0%, Figure 4D). Additionally, the combination of HODHBt and IL-15
179	led to significant reactivation compared to DMSO (54.4% vs. 0%, p=0.003, Figure 4D) and
180	synergistic viral reactivation compared to IL-15 alone (Figure 4E). AC-484 with IL-15 also
181	resulted in significantly higher reactivation than the DMSO control (42.3% vs. 0% , p=0.03), and
182	was synergistic with IL-15, albeit to a lesser degree than HODHBt (Figure 4D, E). Similar
183	results were observed with IL-2 albeit the degree of reactivation was lower than with IL-15
184	(Supplemental Figure 6). These results show that AC-484 can enhance the LRA activity of IL-
185	15.
186	We have previously shown that HODHBt in the absence of exogenous cytokine is
187	sufficient to induce immune activation of multiple cell subsets in PBMCs from HIV-negative
188	individuals and aviremic people living with HIV (PWH) (6). AC-484 has also been shown to
189	increase CD69 expression on T cells in whole blood in a dose-dependent manner (16). To

190 investigate whether AC-484 induces immune activation of CD4, CD8, and NK cells, we

191	performed dose response experiments of AC-484 in PBMCs with and without low dose IL-15
192	and compared the effects to HODHBt. We used AC-484 concentrations from 500nM to $10 \mu M$
193	and compared to 100 μ M HODHBt alone and in the presence of 1ng/ml of IL-15. In the absence
194	of cytokine, AC-484 induced the expression of CD69 in CD4T, CD8T and NK cells in a dose-
195	dependent manner reaching similar levels as 100µM HODHBt at the highest concentration tested
196	$(10\mu M)$ (Figure 4F). Similar results were observed in the presence of IL-15 but the magnitude of
197	the response was increased compared to no cytokine treatment. Next, we sought to further
198	investigate the effects of AC-484 on immune activation and production of pro-inflammatory
199	cytokines, a potentially unwanted consequence of manipulating STAT signaling for HIV cure
200	approaches. We have previously shown that HODHBt does not promote the secretion of pro-
201	inflammatory cytokines (4). On the other hand, AC-484 has been shown to trigger production of
202	the pro-inflammatory cytokines IFN γ and TNF α in mouse T cells (16). Using a 10-plex cytokine
203	ELISA, we saw no significant increase after treatment with HODHBt or any of the AC-484
204	concentrations alone or with IL-15 of different pro- and anti-inflammatory cytokines (Figure
205	4G). This data shows that AC-484 is sufficient to induce immune activation in various cell
206	subsets without inducing a pro-inflammatory cytokine profile.

208 Effects of HODHBt and AC-484 on STAT5 activity

Although AC-484 was a more potent STAT5 activator in the HEK-Blue-IL2/IL15 cells, it had lower activity than HODHBt reactivating latent HIV in a primary cell model of HIV latency. We have previously shown that HODHBt maintains prolong STAT5 activation upon cytokine signaling, leading to increased nuclear presence (4). We then performed a pSTAT5 time course experiment in primary total CD4 T cells with and without IL-2. After 1 hour and 24 hours in the presence of IL-2, HODHBT and AC-484 induced higher pSTAT5 compared to IL-2 alone. As

215	expected, HODHBt sustained IL-2 mediated pSTAT5 up to 48 hours (Figure 5A). On the other
216	hand, AC-484 was unable to maintain levels of pSTAT5 over IL-2 treatment alone, but this
217	reduction on pSTAT5 levels was not associated with toxicity (Supplemental Figure 7A). Similar
218	results were observed with IL-15 (Figure 5B) without an effect on viability (Supplemental Figure
219	7B). We have shown that HODHBt is able to reduce the levels of PTPN1 and PTPN2 in K562
220	cells (Supplemental Figure 3D), potentially explaining the persistent pSTAT5 over time. We
221	then analyzed whether AC-484 was able to reduce PTPN1 and PTPN2 levels. We evaluated
222	changes in both NTP levels after treatment with either HODHBt or AC-484 +/- IL-2 in primary
223	CD4 T cells for 24 hours. In the absence of cytokine, we observed no significant changes in the
224	levels of either PTPN1 or PTPN2 levels after treatment with HODHBt or AC-484 compared to
225	DMSO. However, in the presence of IL-2, we observed a decrease, albeit not significant, in the
226	levels of both PTPN1 and PTPN2 after treatment with HODHBt but not AC-484 compared with
227	IL-2 alone. As expected, we observed a significant increase in pSTAT5 levels after treatment
228	with IL-2 and HODHBt and to a lesser extent with IL-2 and AC-484 compared to IL-2 alone
229	(Figure 5C), confirming the flow cytometry analysis (Figure 5A). In the presence of IL-15,
230	HODHBt treatment similarly resulted in significantly increased pSTAT5 levels and decreased
231	PTPN2 levels, whereas AC-484 again did not enhance pSTAT5 levels or significantly changed
232	the levels of PTPN1 and PTPN2 over IL-15 alone (Figure 5D). Together, this data shows that
233	AC-484 is not able to sustain pSTAT5 levels over time to the same degree as HODHBt either
234	alone or in the presence of γ c-cytokines. A potential difference between both compounds that
235	could explain these results is the lack of ability of AC-484 to alter the levels of PTPN1 and
236	PTPN2 compared with HODHBt.

Discussion:

239	In this work, we have characterized HODHBt as a PTPN1/PTPN2 inhibitor that directly
240	interacts with PTPN1 and PTPN2, inducing changes in the thermal stability of both proteins in
241	vitro, and leading to enhanced phosphorylation and transcriptional activation of different STATs.
242	Because of the relevance of our previous work showing that HODHBt enhances immune
243	functions and latency reversal, we analyzed the functions of the recently developed and clinically
244	relevant PTPN1/PTPN2 active site inhibitor AC-484. Our results demonstrated that like
245	HODHBt, AC-484 promotes STAT5 transcriptional activation, induces immune activation, and
246	synergizes with IL-15 to reactivate latency in an in vitro primary cell model of latency, albeit
247	with a different mechanism of action.
248	In the context of HIV, we have previously shown that HODHBt increases cytokine-
249	mediated HIV reactivation from latency due to enhanced STAT5 transcriptional activation and
250	binding to the HIV LTR (4). In addition, we have demonstrated that HODHBt reactivates latent
251	virus in cells isolated from ART-suppressed PLWH (6), and can also enhance NK cell killing of
252	HIV-infected cells through increased STAT activation upon IL-15 treatment (7). Our
253	identification of PTPN1 and PTPN2 as the targets of HODHBt is important and very relevant
254	given the growing body of literature highlighting both NTPs as attractive therapeutic targets for
255	cancer (22, 23, 35-38); and metabolic diseases such as diabetes and obesity (39-42). We have
256	previously shown that HODHBt enhanced STAT5 phosphorylation and this led to a reduction on
257	STAT5 SUMOylation and accumulation in the nucleus in primary CD4T cells (4). At the time,
258	we did not know the actual targets of HODHBt. Based on our current and past studies, we now
259	proposed that HODHBt and AC-484 target PTPN1 and PTPN2 and suggest that
260	dephosphorylation is a step required for SUMOylation of STAT5 and translocation back into the
261	cytoplasm (Figure 6) (4).

262	A recent study investigating a related compound of AC-484, Compound-182, exhibited
263	promise in small animal models for cancer therapeutics by demonstrating that in vivo
264	administration of Compound-182 led to augmented activation and recruitment of T cells in solid
265	tumors, resulting in a reduction in tumor growth (43). Crucially, this was achieved without
266	triggering the development of cytokine release syndrome or autoimmunity, suggesting that
267	targeting PTPN1 and PTPN2 in vivo may not be associated with toxicities caused by immune
268	system over-activation. Our work demonstrates that these targets can now be expanded to other
269	infectious diseases and in particular, to HIV.
270	The ability of AC-484 to enhance immune activation and STAT5 phosphorylation
271	through inhibition of PTPN1 and PTPN2 (16) led us to hypothesize that AC-484 functions
272	similarly to HODHBt and has the potential for use as a component of HIV cure strategies. Direct
273	comparison of HODHBt and AC-484 on STAT5 transcriptional activity with and without IL-15
274	showed that AC-484 is a much more potent transcriptional activator in the HEK-Blue-IL2/IL15
275	cell line. However, we saw lower activity of AC-484 in reversing HIV latency. We speculate that
276	the differences on transcriptional activation seen between HODHBt and AC-484 are cell type
277	and/or gene-dependent. The HEK-Blue-IL2/IL15 cell line has been optimized so that STAT5
278	binding is the only signal needed to induce transcriptional activation. The HIV LTR is a complex
279	promoter subject to epigenetic regulation such as histone acetylation and histone methylation
280	among others (44-47). Furthermore, in primary CD4 T cells, effective latency reversal must
281	overcome several blocks, including blocks in elongation, splicing, nuclear export and/or
282	translation (48-53). We have demonstrated that one of the key effects of HODHBt is sustained
283	γ c-cytokine-stimulated STAT5 phosphorylation over time which may facilitate increased HIV
284	latency reversal (4). In primary total CD4 T cells, we observed that AC-484 failed to promote
285	sustained STAT5 phosphorylation overtime. We hypothesize that the inability of AC-484 to

286	sustain STAT5 phosphorylation is why we did not see greater latency reversal in the primary cell
287	model compared to HODHBt. Mechanistically, we observe that HODHBt led to a reduction on
288	the levels of PTPN1 and PTPN2, which it was not observed with AC-484. Our previous studies
289	with HODHBt, did not observe changes in the transcription of either phosphatase (4), suggesting
290	that another mechanism such as proteasomal or lysosomal degradation may be involved in this
291	process. Further studies will be warranted to elucidate the exact mechanism by which HODHBt
292	reduces the protein levels of PTPN2 and to a lesser extent PTPN1. Despite these differences
293	between HODHBt and AC-484, we confirmed that both compounds can synergize with IL-15 to
294	reactivate latent HIV, are sufficient to induce immune activation of CD4, CD8 T and NK cells,
295	but AC-484 had activity at a 10-fold less concentration compared to HODHBt. Additionally,
296	neither compounds induce production of pro-inflammatory cytokines in PBMCs which is an
297	important factor when developing new HIV LRAs.
298	Given our findings that AC-484 is sufficient to promote immune activation despite
299	reduced latency reversal activity compared with HODHBt, future directions for this work will
300	investigate the effects of AC-484 on the anti-HIV activity of immune effector cells including
301	CD8 T cells and NK cells and its latency reversal properties in combination with other LRAs.
302	Overall, our work highlights the possible therapeutic potential of PTPN1 and PTPN2 inhibition,
303	leading to enhanced STAT activity, in the search for globally applicable and achievable HIV
304	cure strategies.
305	
306	Materials and Methods:
307	CETSA-MS
308	CETSA-MS was performed at Pelago Biosciences, Sweden.
309	Sample Matrix

310	Pooled Human Peripheral Blood Mononuclear Cells (PBMCs) were purchased from 3H
311	Biomedical (Sweden). Cells where thawed the day before the experiment in RPMI 1640 medium
312	supplemented with 10% FBS and 1% pen/strep (all from Gibco) and cultured at 37°C and 5%
313	CO2. For the experiment, the cells were pelleted, washed with Hank's Balanced Salt solution
314	(HBSS, Thermo Fisher Scientific), and pelleted again. Cell viability was measured with trypan
315	blue exclusion and cells with a viability above 90% were used for the experiment.
316	K562 cells were obtained from ATCC (CCL-243). They were cultured at 37°C and 5% CO2 in
317	RPMI 1640 medium with 10% FBS and 1% pen/strep (all from Gibco). For the experiment, the
318	cells were pelleted, washed with Hank's Balanced Salt solution (HBSS, Thermo Fisher
319	Scientific), and pelleted again. Cell viability was measured with trypan blue exclusion and cells
320	with a viability above 90% were used for the experiment.
321	For both cell types, cell pellets were resuspended in CETSA buffer (20mM HEPES, 138mM
322	NaCl, 1mM MgCl ₂ , 5mM KCl, 2mM CaCl ₂ , pH 7.4) at a density of 40*10 ⁶ cells/mL and used as
323	the 2x matrix solution.
324	Compounds
325	HODHBt was purchased from Bio-techne (# 6994) and stored at -20°C.
326	Compressed CETSA-MS experiment
327	PBMCs were divided into eight aliquots each and mixed with an equal volume of either one of
328	the seven test compound concentrations or control at 2x final concentration in the experimental
329	buffer. The resulting final concentrations of the compound were 1, 3, 10, 30, 100, 300 and 1000
330	$\mu M;0.1\%$ DMSO was used as a vehicle control. For K562, 1000 μM of HODHBt or 0.1%
331	DMSO were done in quadruplicates. Incubations were performed for 60 minutes at 37°C.
331332	DMSO were done in quadruplicates. Incubations were performed for 60 minutes at 37°C. Each of the eight treated samples (8 concentration points) was divided into 24 aliquots (12

334	temperature points for each test condition were pooled to generate 8 x 2 individual (compressed)		
335	samples. In addition, non- heated samples were processed alongside the experiment in a single		
336	replicate and used to distinguish between changes in thermal stability and changes in protein		
337	abundance caused by the treatment.		
338	Precipitated proteins were pelleted by centrifugation and supernatants constituting the soluble		
339	protein fraction were kept for further analysis.		
340	Protein digestion and labeling		
341	Equal amounts of total protein from each soluble fraction were subjected to reduction and		
342	denaturation, followed by alkylation with chloroacetamide. Proteins were subsequently digested		
343	with Lys-C and trypsin.		
344	After complete digestion had been confirmed by nanoLC-MS/MS, samples were labelled with		
345	16-plex Tandem Mass Tag reagents (TMTPro, Thermo Scientific) according to the		
346	manufacturer's protocol.		
347	LC-MS/MS analysis		
348	For each TMT16-plex set, peptides were separated by multidimensional chromatography, and		
349	high- resolution MS/MS data was acquired with a Orbitrap Exploris 240 mass spectrometer		
350	coupled to a Dionex Ultimate3000 nanoLC system (both from Thermo Scientific).		
351	Protein identification and quantification		
352	Protein identification was performed by database search against 95, 607 human protein		
353	sequences in Uniprot (UP000005640, download date: 2019-02-21) using the Sequest HT		
354	algorithm as implemented in the ProteomeDiscoverer 2.5 software package. Data was re-		
355	calibrated using the recalibration function in PD2.5 and final search tolerance setting included a		
356	mass accuracy of 10 ppm and 50 mDa for precursor and fragment ions, respectively. A		
357	maximum of 2 missed cleavage sites was allowed using fully tryptic cleavage enzyme specificity		

358	(K, R, no P). Dynamic modifications were oxidation of Methionine, and deamidation of			
359	Asparagine and Glutamine. Dynamic modification of protein N-termini by acetylation was also			
360	allowed. Carbamidomethylation of Cysteine, TMTPro-modification of Lysine and peptide N-			
361	termini were set as static modifications.			
362	For protein identification, validation was done at the peptide-spectrum-match (PSM) level using			
363	the following acceptance criteria; 1 % FDR determined by Percolator scoring based on Q-value,			
364	rank 1 peptide only.			
365	For quantification, a maximum co-isolation of 50 % was allowed. Reporter ion integration was			
366	done at 20 ppm tolerance and the integration result was verified by manual inspection to ensure			
367	the tolerance setting was applicable. For individual spectra, an average reporter ion signal-to-			
368	noise of >20 was required. Further, shared peptide sequences were not used for quantification.			
369	Compressed CETSA MS data processing and ranking			
370	Protein intensities were normalized ensuring same total ion current in each quantification			
371	channel. Intensity values were then log ₂ -transformed and aligned between treatments and			
372	replicates, so as each protein has the same mean intensity in all treatments and replicates.			
373	The fold-changes of any given protein across the concentration range is quantified by using the			
374	vehicle condition as the reference (i.e., a constant value of 1). Fold-changes are also transformed			
375	to log ₂ values, to achieve a normal distribution around 0. Processed data is uploaded to Pelago's			
376	data portal.			
377	To estimate effect size (amplitude) and p-value (significance) of the protein hits, the individual			
378	protein concentration-response curve is fitted using the following formula:			

$$logI \sim A + \frac{B - A}{1 + e^{\frac{C_M - C}{scale}}}$$

380	were $log I - log_2$ -transformed protein intensity, C - log_{10} -transformed compound			
381	concentration, A, B, $C_{\rm M}$ and <i>scale</i> — curve parameters for the fit. Using the values from the			
382	model fit, the effective concentration corresponding to 50% of maximal signal is estimated:			
383	$pEC_{M}* = -C_{M}$. Apparent $pEC_{M}*$ values should be used with caution, given the short incubation			
384	time and the specific experiment design.			
385	Significance of the effect for each protein is assessed using ANOVA F-test using the model			
386	fitted with formula above. Benjamini-Hochberg correction is applied to F-test derived p-values			
387	to adjust for multiple comparison.			
388	Reagents			
389	Human recombinant interleukin-2 (rIL-2) and recombinant interleukin-15 (rIL-15) were obtained			
390	via the BRB/NCI Preclinical Repository. Human aIL-12 (500-P154G), aIL-4 (500-P24), TGF-			
391	β (100–21), rIL12 (200-12), rIL-4 (200-04), rIL-21 (200-21), rIL-7 (200-07), and rhIFN-β (300-			
392	02BC) were purchased from Peprotech. Human rIFN- α 2 (NBP2-34971) was purchased from			
393	Novus Biologicals. Human rIFN-γ (570206) was purchased from BioLegend. Raltegravir			
394	(#HRP-11680) and Nelfinavir (#ARP-4621) from NIH HIV Reagent Program. Fluorogenic			
395	PTP1B catalytic domain assay kit (#79764) and recombinant GST-tag TC-PTP (PTPN2, #30013)			
396	were purchased from BPSBioscience. CRISPR GFP-Cas9, PTPN1 and PTPN2 crRNA, and			
397	tracrRNA were purchased from IDT. ABBV-CLS-484 (HY-145923) was purchased from			
398	MedChem Express. HEK-Blue CLR selection cocktail (h-csm), Puromycin (ant-pr-1),			
399	Blasticidin (ant-bl-1), Zeocin (ant-zn-1), and QUANTI-Blue solution (rep-qbs2) purchased from			
400	Invivogen. CytoTox 96 non-radioactive cytotoxicity assay (#G1780) was purchased from			
401	Promega. CorPlex Cytokine panel kit was ordered from Quanterix (85-0329). Antibodies were			
402	purchased from BioLegend (PE α STAT5 Phospho (Y694) #936903, FITC α CD4 #300506,			

- 403 PerCPCy5.5 αCD56 #362506, APC-Cy7 αCD69 #310914), eBiosciences (eF450 fixable
- 404 viability dye), BD Horizon (BV786 αCD3 #563918, Human FC block #564220), Thermo Fisher
- 405 Scientific (PE αCD8 #12-0086-42), Beckman Coulter (FITC KC57 #6604665), Cell Signaling
- 406 Technologies (PTP1B- #5311S, TC-PTP (TC45)- 58935S, CRKL- #38710S, STAT5- #94205S,
- 407 RPL7A- #2415S, pSTAT5 (Y694)- #9359S, pSTAT1(Y701)- #7649S, STAT1- #9177S,
- 408 pSTAT3 (Y705)- #9145S, STAT3- #9139S, pSTAT2- #4441P, STAT2- #4594S, pSTAT4-
- 409 #4134S, STAT4- #2653S, pSTAT6- #9361S, STAT6- #9362S), Proteintech (PTPN2 polyclonal-
- 410 11214-1-AP), Sigma Aldrich (β-actin (AC-15)- #A5441), and Jackson ImmunoResearch
- 411 (α Rabbit 2° #111-035-046, α Mouse 2° #115-0350146).
- 412 K562 cells were a gift from Katherine Chiappinelli (George Washington University, Washington413 DC).
- 414 Methods
- 415 <u>Sex as a biological variable</u>
- 416 All experiments using primary human peripheral blood mononuclear cells use cells isolated from
- 417 both male and female donors.
- 418 <u>Cell Line Culture</u>
- 419 K562 were cultured in complete RPMI.
- 420 <u>CETSA</u>

421 For the CETSA experiments, the protocol was adapted from Jafari et al. Naïve CD4 T cells were

- 422 isolated from donor peripheral blood mononuclear cells by negative selection and activated using
- 423 α CD3/CD28 beads (Dynal/Invitrogen) for 72 hours as previously described (5). The cells were
- 424 then expanded for a further 7 days in the presence of 30 IU/mL IL-2 in RPMI supplemented with
- 425 1% L-glutamine, 10% fetal bovine serum (FBS), and 1% penicillin-streptomycin (PS) (complete
- 426 RPMI). On day 10, the cells were washed with PBS and resuspended in PBS supplemented with

427	protease inhibitor cocktail (cOmplete, Roche), and phosphatase inhibitor cocktail (phosSTOP,		
428	Roche) at a concentration of 20x10 ⁶ cells/mL. Cell suspensions were lysed by freeze-thaw three		
429	times in liquid nitrogen and the lysate fractions were separated from debris by centrifugation at		
430	20,000g for 20 minutes at 4°C. Cell lysates were treated with 100µM HODHBt or the inactive		
431	control HBt and incubated at 25°C for 30 minutes. Samples were then separated into $7x50\mu L$		
432	aliquots and heated at increasing temperatures for 3 minutes using a thermocycler. The samples		
433	were spun down at 15,000 rpm for 10 minutes to remove precipitates and analyzed by Western		
434	blot. The following antibodies were used at the noted concentrations: STAT5 (1:1000), pSTAT5		
435	(1:1000), CRKL (1:1000), PTPN1 (1:500), PTPN2 (1:1000), and β-actin (1:5000). Band		
436	intensities were quantified and plotted as a function of temperature to generate the melting		
437	curves of each protein/treatment combination.		
438	For the purified protein CETSAs, PTPN1 catalytic domain was purified as described		
439	below. TC-PTP (PTPN2) catalytic domain protein was purchased from BPS Bioscience		
440	(#30013). Protein was diluted to equal 62.5ng in 100 μ L PBS supplemented with protease and		
441	phosphatase inhibitors (described below). The protein dilutions were treated with DMSO,		
442	$100\mu M$ HODHBt or the inactive control HBt and incubated at 25°C for 30 minutes. Samples		
443	were then split into 2x50µL aliquots and heated at 55°C for 3 minutes using a thermocycler. The		
444	samples were spun down at 15,000 rpm for 10 minutes to remove precipitates and analyzed by		
445	Western blot. The following antibodies were used at the noted concentrations: PTPN1 (1:1000)		
446	and PTPN2 (Proteintech, 1:1000). Band intensities were quantified and plotted as a function of		
447	temperature compared to the unheated control.		
448	PTPN1 protein purification		

449 PTPN1 protein was kindly provided by Heidi Schubert and Chris Hill (University of Utah). 2L of

450 His-TEV-PTP1B (catalytic domain: 1-301) (Addgene 102719) in BL21(DE3)RIL cells were

451	grown in Luria broth at 37C until they reached an OD600=0.6 and then cooled, induced to a final			
452	concentration of 0.4mM IPTG and grown overnight at 18C. The cell pellet was resuspended in			
453	80mls of lysis buffer (20mM Tris pH 7.5, 40mM Imidazole, 300mM NaCl, 10% glycerol) with			
454	protease inhibitors leupeptin, aprotinin and pepstatin. The sample was sonicated prior to a high			
455	speed spin to pellet the insoluble fraction. The soluble supernatant was incubated with 5mls			
456	equilibrated Qiagen NiNTA resin for 30" prior to washing the resin with an additional 100mls o			
457	lysis buffer. The salt concentration was reduced to 100mM prior to elution (20mM Tris pH 7.5,			
458	250 mM Imidazole, 100 mM NaCl, 10% glycerol). The protein was dialyzed against 50mM Tris			
459	pH 8.0. 500 mM NaCl, 1mM DTT and homemade TEV protease was added overnight. A s200			
460	SEC column was run in 20mM Tris pH 7.5, 50mM NaCl, 1mM DTT to finish the preparation.			
461	The protein was concentrated to 7-9mgml and stored at -80.			
462	PTPN1/PTPN2 Catalytic Domain Inhibition Assay			
463	HODHBt inhibition (IC ₅₀) of PTPN1 enzymatic activity was measured using the fluorogenic			
464	PTP1B (catalytic domain) assay kit (BPS Bioscience, #79764) following manufacturer's			
465	instructions. It is designed to measure inhibition of enzyme catalyzation of dephosphorylation of			
466	fluorogenic substrate. For PTPN2, the catalytic domain of TC-PTP (PTPN2) was used instead of			
467	PTP1B (PTPN1).			
468	The mode of inhibition of HODHBt was determined by adding a final concentration of			
469	0.4 pg/mL of each enzyme to varying concentrations of PTP substrate and HODHBt. The			
470	fluorescence signal was measured every 15 seconds for 30 minutes by spectrophotometer using			
471	an excitation wavelength of 360 nm and an emission wavelength of 460 nm. Data was analyzed			
472	using GraphPad 9.0 software and Michaelis-Mention equation fit.			
473	Genome Editing via CRISPR/Cas9			

474	Pre-designed guide RNAs for PTPN1 (ACCACAACGGGCCCGTGCTC) and PTPN2
475	(GCACTACAGTGGATCACCGC) were obtained from IDT. Protocol for transfection by
476	electroporation with the Neon from IDT was followed. Briefly, RNP_S for PTPN1 and PTPN2
477	were prepared by first incubating 200µM Alt-R-CRISPR-Cas9 crRNA (IDT) and Alt-R-
478	CRISPR-Cas9 tracrRNA (IDT) (final duplex concentration of 44μ M) at 95°C for 5 minutes. The
479	guide RNA duplexes were then combined with Alt-R Cas9 GFP (final concentrations 22pmol
480	and 18pmol respectively) and incubated at room temperature for 10-20 minutes as per the
481	manufacturer's instructions. The RNPs were then transfected into K562 cells $(0.25 \times 10^6 \text{ per})$
482	reaction) by electroporation. For the PTPN1+PTPN2 dual condition, equal volumes of PTPN1
483	and PTPN2 RNP were transfected into the cells via electroporation (Neon). 48 hours later,
484	0.5×10^6 K562 cells were collected and stained for phospho-STAT5. The rest were collected for
485	gDNA isolation and knockout efficiency determination (described below).
486	Knockout Efficiency Analysis of CRISPR/Cas9-edited K562 cells:
487	Genomic DNA (gDNA) was obtained from cell pellets by resuspending in 50μ L Quick Extract
488	DNA Extraction Solution (Lucigen, #QE0905T) and following the extraction program as per the
489	manufacturer's instructions. Genomic DNA (2 μ L) was then PCR amplified (50 μ L total reaction
490	volume) using the following primers: PTPN1 Forward (5'-CTATACCACATGGCCTGACTTT-
491	3'), PTPN1 Reverse (5'-GAGTCTCAGGTACGCCTTTATTAG-3'), PTPN2 Forward (5'-
492	ACTGCCAGTGGAAGCAAT-3'), PTPN2 Reverse (5'-TTTGGAGTCCCTGAATCACC-3').
493	Knockout efficiency was measured using the T7endonuclease I from NEB (#M0302S) and
494	following manufacturer's instructions. Analysis was performed using the GelAnalyzer 19.1
495	software and T7EI beta tool from Horizon Discovery.
496	Primary cell model of latency:

497	Naïve CD4+ T cells were isolated via negative selection from PBMCs obtained from HIV		
498	negative donors. Cultured T_{CM} were generated and infected as previously described (5, 54, 55).		
499	Naïve CD4 T cells were isolated from PBMCs from HIV-negative donors by negative selection		
500	(Stemcell #19555) and activated at 0.5×10^6 cells/mL with α CD3/CD28 Dynabeads (1:1 bead-to-		
501	cell ratio) in the presence of 1µg/mL α IL-4, 2µg/mL α IL-12, and 10ng/mL TGF- β for 72 hours.		
502	Dynabeads were removed on day 3 and cells were subsequently expanded in RPMI		
503	supplemented with 1% L-Glutamine, 10% Fetal Bovine Serum, and 1% penicillin/streptomycin		
504	(complete RPMI) with 30 IU/ml IL-2 before being infected on day 7 via spinoculation with the		
505	X4-tropic virus NL4-3. Levels of intracellular p24 were assessed 72 hours later (day 10) by flow		
506	cytometry prior to the infected cells being crowded in 96-well round bottom plates to facilitate		
507	spread of infection (100,000 cells/well). On day 13, the cells were uncrowded and plated in the		
508	presence of an ART cocktail (1 μ M Raltegravir + 0.5 μ M Nelfinavir) and 30IU/ml IL-2, and p24		
509	levels were again measured by flow cytometry. 96 hours later (day 17), the CD4 positive cells		
510	were sorted from the infected cultures by positive selection (Dynabeads CD4 positive Isolation		
511	kit, Thermo Fisher Scientific #11331D), and p24 levels were measured pre- and post- sort. The		
512	CD4 positive cells were then resuspended at 1×10^6 cells/mL and plated with reactivation		
513	conditions for a further 48 hours and reactivation was measured by p24 stain on day 19.		
514	Flow cytometry:		
515	Flow cytometry was used to measure the levels of STAT5 phosphorylation in the CRISPR/Cas9-		
516	edited K562 cells and total CD4+ T cells, as well as immune activation in PBMCs. Between 0.3-		
517	0.5×10^6 cells for each condition were collected and washed with PBS before resuspension in		
518	100 μ L FACS buffer (PBS+2% FBS) with 0.1 μ L viability dye (eBioscience Fixable Viability		
519	Dye eFluor 450, Thermo Fisher Scientific cat#: 65-0863-18). For immune activation flow		
520	cytometry, PBMCs were incubated with Fc block (564220, BD Biosciences) prior to staining		

521	with viability dye. Cells were incubated for 10min at 4°C before being washed with $500\mu L$		
522	FACS buffer. Cells were then resuspended in 100 μ L pre-warmed Fix Buffer I (BD Bioscience		
523	cat#:557870) and incubated at 37°C for 10 minutes. Cells were washed with 500µL FACS		
524	buffer, resuspended in pre-cooled Perm Buffer III (BD Bioscience cat#:558050), and incubated		
525	on ice for 30min. Cells were washed with 500 μ L FACS buffer, resuspended with 100 μ L FACS		
526	buffer +2.5µL pSTAT5(Y694)-PE (Biolegend cat#:936903), and incubated for 1 hour at RT in		
527	the dark. Cells were washed with 500 μ L FACS buffer and resuspended in 200 μ L PBS/2% PFA		
528	and kept in the dark prior to analysis on a BD LSR Fortessa X20 flow cytometer with FACSDiva		
529	software (Becton Dickinson, Mountain View CA). Data was analyzed using FlowJo (TreeStar,		
530	Inc., Ashland, OR).		
531	To analyze reactivated cells, cells were stained for CD4, viability, and intracellular p24-		
532	Gag as previously described (54).		
533	SEAP and Cytotoxicity Assays		
534	HEK-Blue IL-2/15 cells, HEK-Blue IFN- α/β cells and HEK-Blue IFN- γ cells were purchased		
535	from Invivogen. Cells were maintained in Dulbecco modified Eagle medium (DMEM)		
536	supplemented with 10% (v/v) heat inactivated FBS, 1% penicillin, and 1% streptomycin		
537	(complete DMEM). Cells were selected with complete DMEM + 30μ g/mL blasticidin, and		
538	100µg/mL Zeocin. Cells were maintained in complete DMEM with 1x HEK-Blue CLR selection		
539	cocktail, and 1 µg/mL puromycin.		
540	To evaluate the ability of HODHBt to enhance transcriptional activity of STAT1 and		
541	STAT2, HEK-Blue IFN- α/β cells and HEK-Blue IFN- γ cells were plated at 50,000 cells/well in		
542	a 96-well flat bottom plate for 24 hr prior to treatment to facilitate adherence. Cells were treated		
543	in sextuplet for each HODHBt and interferon concentration for 24 hours. After 24 hours of		

544	treatment, plates were spun down at 15,000 x g for 5 minutes before 20μ L of each well was			
545	transferred to a fresh 96-well flat-bottom plate. Then, $180\mu L$ of prepared fresh Quanti-Blue			
546	solution was added to each well and plates were incubated at 37°C for 2 hours. SEAP levels			
547	were measured using a spectrophotometer at 640nm. For toxicity evaluation, 50μ L of each well			
548	was transferred to a fresh 96-well flat-bottom plate. Next, 50µL of prepared CytoTox 96 reagent			
549	was added to each well, and the plates were incubated at room temperature in the dark for 30			
550	minutes. Finally, 50μ L of stop solution was added to each well and the absorbance was measured			
551	using a spectrophotometer at 490nm.			
552	To evaluate the transcriptional activity of AC-484 and HODHBt, HEK-Blue IL-2/15 cells			
553	were used following the same protocol as detailed above. Cells were treated in sextuplet for each			
554	compound and IL-15 concentration for 24 hours.			
555	Western blotting			
556	K562 cells were treated with the indicated conditions for 24 hours. Primary total CD4 T cells			
557	were isolated from PBMCs by negative selection and treated with indicated conditions for 24			
558	hours. Cells were then washed with PBS and lysed with NETN extract buffer comprised of			
559	100mM NaCl, 20mM Tris-Cl (pH 8), 0.5mM EDTA, 0.5% Nonidet P-40, protease inhibitor			
560	cocktail (cOmplete, Roche), and phosphatase inhibitor cocktail (phosSTOP, Roche) for 30			
561	minutes on ice. Lysates were purified by centrifugation at 12,000 rpm for 10 minutes at 4°C and			
562	proteins were visualized on SDS-PAGE. All primary antibodies used at 1:1000 concentrations			
563	except for β -actin (1:10,000). Secondary anti-rabbit and anti-mouse antibodies were used at a			
564	1:10,000 dilution.			
565	Primary Cell pSTAT2 Assay			

566	Naïve CD4 T cells were isolated from PBMCs from HIV-negative donors by negative selection		
567	(Stemcell #19555) and activated at 0.5×10^6 cells/mL with α CD3/CD28 Dynabeads (1:1 bead-to-		
568	cell ratio) in the presence of 1µg/mL α IL-4, 2µg/mL α IL-12, and 10ng/mL for 72 hours. Cells		
569	were expanded in the presence of 30IU/mL IL-2 for 48 additional hours before being treated		
570	with 100 μ M HODHBt, 10ng/mL IFN- α , or HODHBt + IFN- α for 24 hours. pSTAT2 levels		
571	were measured by flow cytometry (Cell Signaling Technologies 1° antibody).		
572	Primary Cell pSTAT5 time course		
573	Total CD4+ T cells were isolated via negative isolation from PBMCs from HIV negative donors.		
574	Cells were then pre-treated with 100 μ M HODHBt, 10 μ M AC-484, and 5 μ M AC-484 for 2 hours		
575	prior to the addition of 30IU/mL IL-2. The 1-hour timepoint sample was taken and stained for		
576	pSTAT5 1 hour after the addition of IL-2. The 24-hour and 48-hour timepoints were stained at		
577	the respective time post-IL-2 addition. For the IL-15 samples, cells were pre-treated with $100 \mu M$		
578	HODHBt or10µM AC-484 for 2 hours prior to the addition of 100ng/mL IL-15. Samples were		
579	stained for pSTAT5 48 hours after the addition of IL-15 and flow cytometry analysis was		
580	performed as described above.		
581	PBMC Immune Activation and Cytokine Analysis		
582	PBMCs from HIV-negative donors were pre-treated at $3x10^6/mL$ for 2 hours with $100\mu M$		
583	HODHBt, 10 μ M AC-484, 1 μ M AC-484, and 500nM AC-484; then IL-15 was added at 1ng/mL		
584	and incubated for 48 hours. Cells were collected and stained for flow cytometry analysis and		
585	supernatants were frozen at -20°C.		

Frozen supernatants were thawed, and assay was performed according to manufacturer
protocol. Ten cytokines were measured using Quanterix SP-X Corplex Cytokine Panel (IFN-γ, IL1β, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12P70, IL-22, TNFα).

589	Statistics			
590	Statistical analyses were performed using GraphPad Prism 9.0 software. The statistical analysis			
591	used is indicated in each figure legend.			
592	Study	Study approval		
593	Volunt	teers 17 years and older at the Gulf Coast Regional Blood Center served as blood		
594	partici	pants. White blood cell concentrates (buffy coat) prepared from a single unit of whole		
595	blood	by centrifugation were purchased.		
596	Data a	vailability		
597	Values for data points shown in graphs are provided in the Supporting data values file. All			
598	additional data is provided in the supplemental files.			
599				
600	Refere	ences and Notes		
601	1.	Chun TW, Stuyver L, Mizell SB, Ehler LA, Mican JA, Baseler M, et al. Presence of an		
602		inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc Natl		
603		<i>Acad Sci U S A</i> . 1997;94(24):13193-7.		
604	2.	Finzi D, Hermankova M, Pierson T, Carruth LM, Buck C, Chaisson RE, et al.		
605		Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy.		
606		Science. 1997;278(5341):1295-300.		
607	3.	Wong JK, Hezareh M, Günthard HF, Havlir DV, Ignacio CC, Spina CA, et al. Recovery		
608		of replication-competent HIV despite prolonged suppression of plasma viremia. Science.		
609		1997;278(5341):1291-5.		
610	4.	Bosque A, Nilson KA, Macedo AB, Spivak AM, Archin NM, Van Wagoner RM, et al.		
611		Benzotriazoles Reactivate Latent HIV-1 through Inactivation of STAT5 SUMOylation.		
612		Cell Rep. 2017;18(5):1324-34.		

613	5.	Bosque A, and Planelles V. Induction of HIV-1 latency and reactivation in primary
614		memory CD4+ T cells. <i>Blood</i> . 2009;113(1):58-65.
615	6.	Sorensen ES, Macedo AB, Resop RS, Howard JN, Nell R, Sarabia I, et al. Structure-
616		Activity Relationship Analysis of Benzotriazine Analogues as HIV-1 Latency-Reversing
617		Agents. Antimicrob Agents Chemother. 2020;64(8).
618	7.	Macedo AB, Levinger C, Nguyen BN, Richard J, Gupta M, Cruz CRY, et al. The HIV
619		Latency Reversal Agent HODHBt Enhances NK Cell Effector and Memory-Like
620		Functions by Increasing Interleukin-15-Mediated STAT Activation. J Virol.
621		2022;96(15):e0037222.
622	8.	Copertino DC, Jr., Holmberg CS, Weiler J, Ward AR, Howard JN, Levinger C, et al. The
623		latency reversing agent HODHBt synergizes with IL-15 to enhance cytotoxic function of
624		HIV-specific CD8+ T-cells. JCI Insight. 2023.
625	9.	Martinez Molina D, and Nordlund P. The Cellular Thermal Shift Assay: A Novel
626		Biophysical Assay for In Situ Drug Target Engagement and Mechanistic Biomarker
627		Studies. Annu Rev Pharmacol Toxicol. 2016;56:141-61.
628	10.	Jafari R, Almqvist H, Axelsson H, Ignatushchenko M, Lundback T, Nordlund P, et al.
629		The cellular thermal shift assay for evaluating drug target interactions in cells. Nat
630		<i>Protoc.</i> 2014;9(9):2100-22.
631	11.	Savitski MM, Reinhard FB, Franken H, Werner T, Savitski MF, Eberhard D, et al.
632		Tracking cancer drugs in living cells by thermal profiling of the proteome. Science.
633		2014;346(6205):1255784.
634	12.	ten Hoeve J, de Jesus Ibarra-Sanchez M, Fu Y, Zhu W, Tremblay M, David M, et al.
635		Identification of a nuclear Stat1 protein tyrosine phosphatase. Mol Cell Biol.
636		2002;22(16):5662-8.

637	13.	Yamamoto T, Sekine Y, Kashima K, Kubota A, Sato N, Aoki N, et al. The nuclear
638		isoform of protein-tyrosine phosphatase TC-PTP regulates interleukin-6-mediated
639		signaling pathway through STAT3 dephosphorylation. Biochem Biophys Res Commun.
640		2002;297(4):811-7.
641	14.	Fukushima A, Loh K, Galic S, Fam B, Shields B, Wiede F, et al. T-cell protein tyrosine
642		phosphatase attenuates STAT3 and insulin signaling in the liver to regulate
643		gluconeogenesis. Diabetes. 2010;59(8):1906-14.
644	15.	Tiganis T. PTP1B and TCPTPnonredundant phosphatases in insulin signaling and
645		glucose homeostasis. FEBS J. 2013;280(2):445-58.
646	16.	Baumgartner CK, Ebrahimi-Nik H, Iracheta-Vellve A, Hamel KM, Olander KE, Davis
647		TGR, et al. The PTPN2/PTPN1 inhibitor ABBV-CLS-484 unleashes potent anti-tumour
648		immunity. Nature. 2023;622(7984):850-62.
649	17.	Klein E, Ben-Bassat H, Neumann H, Ralph P, Zeuthen J, Polliack A, et al. Properties of
650		the K562 cell line, derived from a patient with chronic myeloid leukemia. Int J Cancer.
651		1976;18(4):421-31.
652	18.	de Groot RP, Raaijmakers JA, Lammers JW, Jove R, and Koenderman L. STAT5
653		activation by BCR-Abl contributes to transformation of K562 leukemia cells. Blood.
654		1999;94(3):1108-12.
655	19.	Frangioni JV, Beahm PH, Shifrin V, Jost CA, and Neel BG. The nontransmembrane
656		tyrosine phosphatase PTP-1B localizes to the endoplasmic reticulum via its 35 amino
657		acid C-terminal sequence. Cell. 1992;68(3):545-60.
658	20.	Lorenzen JA, Dadabay CY, and Fischer EH. COOH-terminal sequence motifs target the
659		T cell protein tyrosine phosphatase to the ER and nucleus. J Cell Biol. 1995;131(3):631-
660		43.

661	21.	Ota J, Kimura F, Sato K, Wakimoto N, Nakamura Y, Nagata N, et al. Association of
662		CrkL with STAT5 in hematopoietic cells stimulated by granulocyte-macrophage colony-
663		stimulating factor or erythropoietin. Biochem Biophys Res Commun. 1998;252(3):779-86.
664	22.	Wiede F, Lu KH, Du X, Zeissig MN, Xu R, Goh PK, et al. PTP1B Is an Intracellular
665		Checkpoint that Limits T-cell and CAR T-cell Antitumor Immunity. Cancer Discov.
666		2022;12(3):752-73.
667	23.	Wiede F, Lu KH, Du X, Liang S, Hochheiser K, Dodd GT, et al. PTPN2 phosphatase
668		deletion in T cells promotes anti-tumour immunity and CAR T-cell efficacy in solid
669		tumours. EMBO J. 2020;39(2):e103637.
670	24.	Tautz L, Critton DA, and Grotegut S. Protein tyrosine phosphatases: structure, function,
671		and implication in human disease. Methods Mol Biol. 2013;1053:179-221.
672	25.	Bourdeau A, Dube N, and Tremblay ML. Cytoplasmic protein tyrosine phosphatases,
673		regulation and function: the roles of PTP1B and TC-PTP. Curr Opin Cell Biol.
674		2005;17(2):203-9.
675	26.	Nelson DL. Lehninger principles of biochemistry. Fourth edition. New York : W.H.
676		Freeman, 2005.; 2005.
677	27.	Ramsay RR, and Tipton KF. Assessment of Enzyme Inhibition: A Review with Examples
678		from the Development of Monoamine Oxidase and Cholinesterase Inhibitory Drugs.
679		Molecules. 2017;22(7).
680	28.	Ivashkiv LB, and Hu X. Signaling by STATs. Arthritis Res Ther. 2004;6(4):159-68.
681	29.	Darnell JE, Jr. STATs and gene regulation. Science. 1997;277(5332):1630-5.
682	30.	Nelson N, Marks MS, Driggers PH, and Ozato K. Interferon consensus sequence-binding
683		protein, a member of the interferon regulatory factor family, suppresses interferon-
684		induced gene transcription. Mol Cell Biol. 1993;13(1):588-99.

685	31.	Weisz A, Kirchhoff S, and Levi BZ. IFN consensus sequence binding protein (ICSBP) is
686		a conditional repressor of IFN inducible promoters. Int Immunol. 1994;6(8):1125-31.
687	32.	Tiganis T, and Bennett AM. Protein tyrosine phosphatase function: the substrate
688		perspective. Biochem J. 2007;402(1):1-15.
689	33.	Lim CP, and Cao X. Structure, function, and regulation of STAT proteins. Mol Biosyst.
690		2006;2(11):536-50.
691	34.	Miller JS, Davis ZB, Helgeson E, Reilly C, Thorkelson A, Anderson J, et al. Safety and
692		virologic impact of the IL-15 superagonist N-803 in people living with HIV: a phase 1
693		trial. Nat Med. 2022;28(2):392-400.
694	35.	Bentires-Alj M, and Neel BG. Protein-tyrosine phosphatase 1B is required for
695		HER2/Neu-induced breast cancer. Cancer Res. 2007;67(6):2420-4.
696	36.	Manguso RT, Pope HW, Zimmer MD, Brown FD, Yates KB, Miller BC, et al. In vivo
697		CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature.
698		2017;547(7664):413-8.
699	37.	Song J, Lan J, Tang J, and Luo N. PTPN2 in the Immunity and Tumor Immunotherapy:
700		A Concise Review. Int J Mol Sci. 2022;23(17).
701	38.	Flosbach M, Oberle SG, Scherer S, Zecha J, von Hoesslin M, Wiede F, et al. PTPN2
702		Deficiency Enhances Programmed T Cell Expansion and Survival Capacity of Activated
703		T Cells. Cell Rep. 2020;32(4):107957.
704	39.	Zhang ZY, and Lee SY. PTP1B inhibitors as potential therapeutics in the treatment of
705		type 2 diabetes and obesity. Expert Opin Investig Drugs. 2003;12(2):223-33.
706	40.	Lantz KA, Hart SG, Planey SL, Roitman MF, Ruiz-White IA, Wolfe HR, et al. Inhibition
707		of PTP1B by trodusquemine (MSI-1436) causes fat-specific weight loss in diet-induced
708		obese mice. Obesity (Silver Spring). 2010;18(8):1516-23.

709	41.	Thareja S, Aggarwal S, Bhardwaj TR, and Kumar M. Protein tyrosine phosphatase 1B
710		inhibitors: a molecular level legitimate approach for the management of diabetes mellitus.
711		Med Res Rev. 2012;32(3):459-517.
712	42.	Dodd GT, Xirouchaki CE, Eramo M, Mitchell CA, Andrews ZB, Henry BA, et al.
713		Intranasal Targeting of Hypothalamic PTP1B and TCPTP Reinstates Leptin and Insulin
714		Sensitivity and Promotes Weight Loss in Obesity. Cell Rep. 2019;28(11):2905-22 e5.
715	43.	Liang S, Tran E, Du X, Dong J, Sudholz H, Chen H, et al. A small molecule inhibitor of
716		PTP1B and PTPN2 enhances T cell anti-tumor immunity. Nat Commun.
717		2023;14(1):4524.
718	44.	Kiernan RE, Vanhulle C, Schiltz L, Adam E, Xiao H, Maudoux F, et al. HIV-1 tat
719		transcriptional activity is regulated by acetylation. EMBO J. 1999;18(21):6106-18.
720	45.	Lusic M, Marcello A, Cereseto A, and Giacca M. Regulation of HIV-1 gene expression
721		by histone acetylation and factor recruitment at the LTR promoter. EMBO J.
722		2003;22(24):6550-61.
723	46.	du Chene I, Basyuk E, Lin YL, Triboulet R, Knezevich A, Chable-Bessia C, et al.
724		Suv39H1 and HP1gamma are responsible for chromatin-mediated HIV-1 transcriptional
725		silencing and post-integration latency. EMBO J. 2007;26(2):424-35.
726	47.	Imai K, Togami H, and Okamoto T. Involvement of histone H3 lysine 9 (H3K9)
727		methyltransferase G9a in the maintenance of HIV-1 latency and its reactivation by
728		BIX01294. J Biol Chem. 2010;285(22):16538-45.
729	48.	Kao SY, Calman AF, Luciw PA, and Peterlin BM. Anti-termination of transcription
730		within the long terminal repeat of HIV-1 by tat gene product. Nature.
731		1987;330(6147):489-93.

732	49.	Lassen KG, Bailey JR, and Siliciano RF. Analysis of human immunodeficiency virus
733		type 1 transcriptional elongation in resting CD4+ T cells in vivo. J Virol.
734		2004;78(17):9105-14.
735	50.	Karn J, and Stoltzfus CM. Transcriptional and posttranscriptional regulation of HIV-1
736		gene expression. Cold Spring Harb Perspect Med. 2012;2(2):a006916.
737	51.	Lassen KG, Ramyar KX, Bailey JR, Zhou Y, and Siliciano RF. Nuclear retention of
738		multiply spliced HIV-1 RNA in resting CD4+ T cells. <i>PLoS Pathog.</i> 2006;2(7):e68.
739	52.	Mangeat B, Turelli P, Caron G, Friedli M, Perrin L, and Trono D. Broad antiretroviral
740		defence by human APOBEC3G through lethal editing of nascent reverse transcripts.
741		Nature. 2003;424(6944):99-103.
742	53.	Yukl SA, Kaiser P, Kim P, Telwatte S, Joshi SK, Vu M, et al. HIV latency in isolated
743		patient CD4(+) T cells may be due to blocks in HIV transcriptional elongation,
744		completion, and splicing. Sci Transl Med. 2018;10(430).
745	54.	Martins LJ, Bonczkowski P, Spivak AM, De Spiegelaere W, Novis CL, DePaula-Silva
746		AB, et al. Modeling HIV-1 Latency in Primary T Cells Using a Replication-Competent
747		Virus. AIDS Res Hum Retroviruses. 2016;32(2):187-93.
748	55.	Sarabia I, Huang SH, Ward AR, Jones RB, and Bosque A. The Intact Non-Inducible
749		Latent HIV-1 Reservoir is Established In an In Vitro Primary T(CM) Cell Model of
750		Latency. J Virol. 2021;95(7).
751		
752	Ackno	wledgments: We would like to thank Xabier Arias-Moreno for his insightful comments
753	while	preparing this manuscript. Additionally, we would like to thank Heidi Schubert for her
754	consul	tation and expert advice while preparing this manuscript.
755	Fu	nding:

756	National Institutes of Health grant R21/R33 AI116212 (AB)
757	National Institutes of Health grant R56 AI145683 (AB)
758	This research has been facilitated by the services and resources provided by District of
759	Columbia, Center for AIDS research, an NIH funded program (AI117970), which is
760	supported by the following NIH co-funding and participating institutes and centers:
761	NIAID, NCI, NICJD, NHLBI, NIDA, NINH, NIA, FIC, NIGGIS and NDDK and OAR.
762	The content is solely the responsibility of the authors and does not necessarily represent
763	the official views of the NIH.
764	Author contributions:
765	AB, JNH conceptualized the work. JNH, TDZ, CL, MS, DCC, and AB designed
766	methodology and experiments were carried out by JNH, TDZ, WW, DCC, MS, CL, ER,
767	and EKM. AB acquired funding and performed project administration. AB, RBJ, and NSS
768	supervised experimental output and manuscript preparation. JNH and AB wrote original
769	manuscript and JNH, NSS, TDZ, and AB reviewed and edited the final manuscript.
770	Competing interests: AB has a patent application on the use of HODHBt and other
771	benzotriazine derivatives to enhance immune responses and patent on the use of HODHBt
772	and other benzotriazine derivatives as latency reversing agents. The rest of the authors
773	declare no conflict of interest.
774	Supplementary Materials
775	Supplemental Figures 1-7

776Supplementary Files 1-3

778 Figure 1. HODHBt modulates the thermal stability of PTPN1 and PTPN2 in vitro

(A) Compressed CETSA-MS results indicating changes in thermal stability of protein in both
 PBMCs and K562. X-axis represents amplitude (log₂ fold-change), and y-axis represents effect
 significance (-log₁₀(p-value)). Statistically significant (p<0.01) proteins in common between

- 782 PBMCs and K562 cells are indicated. (**B**) Thermal melting curves for PTPN1, PTPN2, CRKL,
- STAT5, RPL7A and β-actin in CD4 T cell lysates after treatment with 100µM HODHBt vs
 100µM HBt (n=2-4). (C) Purified PTPN1 catalytic domain and purified commercial PTPN2
- 785 catalytic domain CETSA after treatment with DMSO, 100µM HODHBt, or 100µM HBt (n=2-3).

788 Figure 2. HODHBt is a mixed inhibitor of PTPN1 and PTPN2

(A) HODHBt directly inhibits the catalytic activity of the catalytic domain of PTPN1and the
 catalytic domain of PTPN2 using a fluorogenic assay (n=2). Error bars indicate SD. IC₅₀ values
 calculated for 2 independent experiments. (B) Effect of HODHBt on PTPN1- and PTPN2 catalyzed fluorogenic PTPN1 substrate. (C) Lineweaver-Burk plots.

Figure 3. Inhibiting PTPN1 and PTPN2 with HODHBt enhances activation of different STATs in a cytokine-dependent manner.

- Analysis of phosphorylation levels of STAT-1, 3, and 5 (A) or STAT-2, 4, and 6 (B) in primary 807 808 total CD4 T cells after treatment with DMSO, 100ng/mL IL-15, 1ng/mL IFN-α, 2ng/mL IL-12, 809 and 2ng/mL IL-4 in the presence of 100µM HODHBt or HBt for 24 hours. (C) Levels of pSTAT2+ cells in naïve CD4 T cells treated with 100uM HODHBt +/- 10 ng/mL IFN- α for 24 810 hours (n=3). (D) Levels of STAT2 phosphorylation after transfection of V5-STAT2 into 293FT 811 cells and treatment with DMSO or 100µM HODHBt. (E) Dose response of STAT1/2 812 transcriptional activity mediated by IFN- α (left) and IFN- β (right) in the presence of 1, 10, or 813 100µM HODHBt in HEK-Blue IFN α/β cells. The data represent the mean ± the SD of an 814 815 experiment performed in triplicate. (F) Dose response of STAT1 transcriptional activity
- mediated by IFN- γ in the presence of 1, 10, or 100 μ M HODHBt in HEK-Blue IFN γ cells. The
- 817 data represent the mean \pm the SD of an experiment performed in triplicate.
- 818

Figure 4. AC-484 promotes immune activation and synergizes with IL-15 to reactivate latent HIV.

823 (A) Structure comparison of HODHBt and AC-484. Measurement of STAT5 transcriptional 824 activity (B) and toxicity (C) after treatment with dose response of HODHBt and AC-484 in HEK-Blue- IL2/IL15 cells. The data represent the mean \pm the SD of an experiment performed in 825 duplicate. (D) Reactivation of latent HIV in T_{CM} measured by flow cytometry after treatment 826 with 100 μ M HODHBt or 10 μ M AC-484 +/- 100ng/mL IL-15, or α CD3/CD28 (n=10). Dunnett's 827 multiple comparisons test was used to calculate p-values (*p < 0.05; **p<0.01; ****p<0.0001). 828 829 (E) Bliss independence synergy calculations for reactivation. Wilcoxon matched-pairs signed rank test was used to calculate p values (*p < 0.05; **p < 0.01). (F) PBMCs were treated with 830 831 100µM HODHBt and a dose response of AC-484 +/- 1ng/mL IL-15 for 48 hours and CD69 induction was analyzed by flow cytometry in CD4 T cells, CD8 T cells, and NK cells (n=4-8). 832 833 Data are the average effect from 4-8 donors. Tukey's multiple comparisons test was used to calculate p values (*p < 0.05; ***p<0.001; ****p<0.0001). (G) Secretion of pro- and anti-834 835 inflammatory cytokine were measured using a 10-plex cytokine ELISA in supernatants from (F). 836

- 837
- 838

Figure 5. HODHBt and AC-484 have differing effects on STAT5 phosphorylation.

(A) Total CD4s were pre-treated with 100µM HODHBt, 10µM AC-484, and 5µM AC-484 for 2 hours prior to the addition of IL-2. pSTAT5 levels were measured by flow cytometry 1hr, 24h and 48h after stimulation with IL-2 (n=6). Wilcoxon matched-pairs signed rank test was used to calculate p values (*p < 0.05; **p < 0.01). (**B**) Total CD4s were pre-treated with 100 μ M HODHBt or 10µM AC-484 for 2 hours prior to the addition of IL-15. pSTAT5 levels were measured by flow cytometry 48h after stimulation with IL-2 (n=3). Paired t-test was used to calculate p values (*p < 0.05; **p < 0.01). Protein levels of PTPN1, PTPN2, pSTAT5, and STAT5 were measured by western blot in CD4s pre-treated with 100µM HODHBt or 20µM AC-484 for 2 hours before the addition of IL-2 (C) and IL-15 (D) for 24 hours (n=3). Paired t-test was used to calculate p values (*p < 0.05).

Figure 6. Proposed mechanism of action of HODHBt and AC-484. Created with Biorender.com