Table S1 Primer sequences used for qPCR

Gene	Forward	Reverse		
B-actin (mouse)	CTGAATGGCCCAGGTCTGA	CCCTGGCTGCCTCAACAC		
GLRA1 (mouse)	CTGGCCATCTCGACAGGAAA	AGCTAAGGTACCGCGGACAG		
GLRA2 (mouse)	TTGACCTGACCATGATGCCC	TAGCTGCCGGTACATTCCTG		
GLRA3 (mouse)	AACAAACAGTGCGCGATCTC	GTTGGGTCTGATTCTTGCATCA		
GLRA4 (mouse)	GGAGAGGAAAGAGCGCTCAA	AGGAAGAGGCTTGCTGGAAC		
GLRB (mouse)	ACCCCAGACTCAAGCTACCT	GACGTCTCCATCCCGAAAGA		
KCNJ11 (mouse)	TCGCCCACAAGAACATTCGA	AGGAGTGGATGCTTGTGACG		
<i>B-actin</i> (human)	GTGCTATCCCTGTACGCCTC	AGGTAGTCAGTCAGGTCCCG		
GLRA1 (human)	ACAGCAATACTCTTCGCGCT	GTTAAAGGGAGGCGGGGAAC		
GLRA2 (human)	AATGATTCACGGCTGGCGTA	TCCGTAGCAATTTGTTGTCAGT		
GLRA3 (human)	TGGAGCGACAAATGGGATACT	GGAAGCTCGTGATCCTGAACT		
GLRB (human)	CTGAATCCTGCTATGGTCACC	AGCACACTTTAAAACGAGCTGA		
KCNJ11 (human)	GCTCCTCCCAACCCAATTCA	ACTTCTTGGAGCCACAGACG		

Table S2: Donor Information

Donor#	Islet bank	Source	Sex	Age	вмі	HbA1c	Islet
	ID					(%)	Particle
							index
Donor 1	R330	ADI	Female	39	24.2	5.1	1.09
Donor 2	R338	ADI	Male	30	25.5	5.3	0.79
Donor 3	R340	ADI	Male	36	23.3	5.3	1.02
Donor 4	R341	ADI	Male	42	30.0	/	1.24
Donor 5	R356	ADI	Female	45	29.7	5.1	0.63
Donor 6	R413	ADI	Male	41	33.6	5.6	0.83
Donor 7	H2309	AIDP	Male	32	22.9	5.6	0.811
Donor 8	H2331	AIDP	Male	36	25.0	5.7	/
Donor 9	H2346	AIDP	Male	59	29.5	5.9	/
Donor 10	H2366	AIDP	Male	60	23.8	5.6	/
Donor 11	UHN210616	UHN	Female	39	34.8	/	/
Donor 12	R326	ADI	Male	26	27	5.5	1.52

ADI, Alberta Diabetes Institute IsletCore; AIDP, Alberta Islet Distribution Program; UHN, University Health Network.

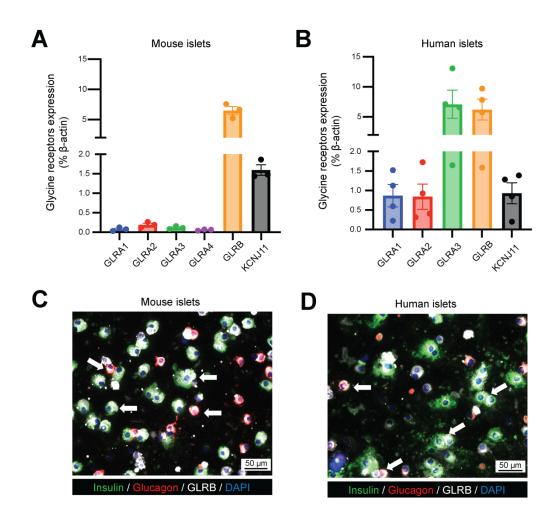


Figure S1. Glycine receptor expression in primary mouse and human islets. A) Mouse and B) human islet qPCR of glycine receptor subunits (Mouse: GLRA1-4 and GLRB; Human: GLR1-3 and GLRB). KCNJ11, a gene encoding Kir6.2 subunit of the ATP-sensitive potassium channel in the pancreatic β -cell, was used as positive control. C) and D) Representative images of GLRB positive cells in dispersed mouse and human islets. Data are depicted as mean \pm SEM.

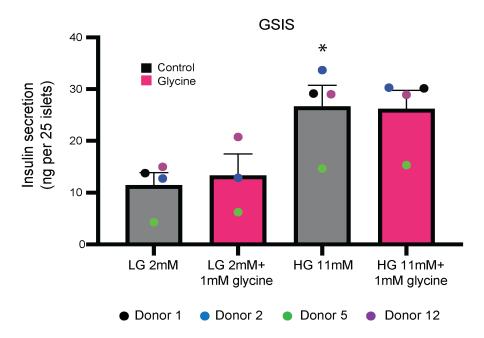


Figure S2. Glycine had no effect on glucose-stimulated insulin secretion (GSIS) in human islets. Vehicle or 1mM glycine was added during a GSIS assay performed on human islets. Insulin secretion under the treatment of low glucose (2mM), high glucose (11mM) with or without 1mM glycine was measured. Data are depicted as mean ± SEM. Statistical significance was determined by using unpaired t-test, with Holm-Bonferroni correction applied for multiple comparisons. *p-value<0.05compared to the LG control group. LG, low glucose; HG, high glucose.

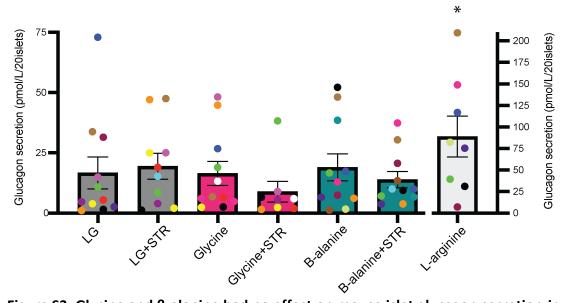


Figure S3. Glycine and $\beta\text{-alanine}$ had no effect on mouse islet glucagon secretion in

vitro. Mouse islets were treated in low glucose condition (2mM) with 1 mM glycine or 1 mM β -alanine, in the presence or absence of strychnine. A 5 mM L-arginine treatment served as a positive control. Data are expressed as mean ± SEM, with N = 8–12 per group. Each solid-colored circle represents the same islet preparation under different treatment conditions.

Statistical significance was determined by using Mann-Whitney test or unpaired t-test dependent on dataset normality test, with Holm-Bonferroni correction applied for multiple comparisons. *p-value<005,compared to the LG control group. LG, low glucose; STR, strychnine.

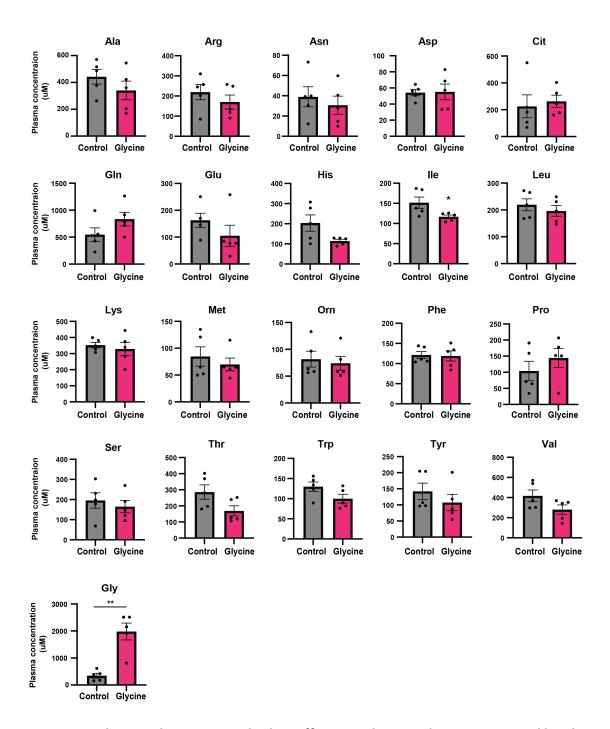


Figure S4. Glycine administration had no effect on other circulating amino acid levels

in vivo. Mice were treated with 2% glycine or normal drinking water for 12 weeks and circulating amino acid levels were assessed using targeted metabolomics. Data are presented as mean ± SEM, with N=5 per group. Statistical significance was determined by using Mann-Whitney test or unpaired t-test dependent on dataset normality test. *P<0.05, **P<0.01, compared to the control group.