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Introduction
Genetic interferonopathies are a diverse group of  conditions characterized by systemic inflammation with 
variable clinical manifestations. The most common of  this family of  disorders is Aicardi Goutières Syndrome 
(AGS) (1–4), although there are other disorders including Familial Chilblain Lupus (FCL), STING-associat-
ed vasculopathy with onset in infancy (SAVI), and chronic atypical neutrophilic dermatosis with lipodystro-
phy and elevated temperatures (CANDLE) (5). Activation of  the IFN pathway can also occur with acquired 
rheumatologic disorders, including systemic lupus erythematous (SLE) and dermatomyositis (6, 7).

Direct measurement of  type I IFNs as diagnostic or prognostic biomarkers has been limited by meth-
odologic challenges with accurate quantification of  IFNs. Historically, cell toxicity assays were required to 
capture IFN activity (8), although multiplex digital ELISA approaches are a potential direction (9). To date, 
researchers have relied on surrogate markers of  IFN activity, particularly the measurement of  mRNA levels 
of  IFN-responsive genes (IFN signaling gene expression signatures) as an indirect measure of  IFN activity (1, 
10, 11). Initial reports have used individual gene expression levels by quantitative PCR (qPCR) to calculate 
disease-specific scores (10–13). More recently, groups have used larger multiplexed RNA counting approach-
es (nanoString nCounter assay) (14–16). This has led to a proliferation of  nonstandardized IFN-signaling 
gene (ISG) expression signaling scores. ISG scores reflect a calculation of  mRNA levels of  known ISGs nor-
malized to the expression of  housekeeping genes (Figure 1A). The 2 most common approaches include the 

IFN-signaling gene (ISG) expression scores are potential markers of inflammation with significance 
from cancer to genetic syndromes. In Aicardi Goutières Syndrome (AGS), a disorder of abnormal 
DNA and RNA metabolism, this score has potential as a diagnostic biomarker, although the 
approach to ISG calculation has not been standardized or validated. To optimize ISG calculation 
and validate ISG as a diagnostic biomarker, mRNA levels of 36 type I IFN response genes were 
quantified from 997 samples (including 334 AGS), and samples were randomized into training and 
test data sets. An independent validation cohort (n = 122) was also collected. ISGs were calculated 
using all potential combinations up to 6 genes. A 4-gene approach (IFI44L, IFI27, USP18, IFI6) was 
the best-performing model (AUC of 0.8872 [training data set], 0.9245 [test data set]). The majority 
of top-performing gene combinations included IFI44L. Performance of IFI44L alone was 0.8762 
(training data set) and 0.9580 (test data set) by AUC. The top approaches were able to discriminate 
individuals with genetic interferonopathy from control samples. This study validates the context 
of use for the ISG score as a diagnostic biomarker and underscores the importance of IFI44L in 
diagnosis of genetic interferonopathies.
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levels of  IFI27, IFI44, IFI44L, ISG15, and RSAD2 with either UPS18 (referred to as NIH-6 in this manuscript) 
or SIGLEC1 (referred to as AGS-6) (1, 10, 11, 14, 16, 17). While ISG scores have been used as exploratory 
pharmacoresponsive biomarkers in clinical trials (17–19), the role of  the ISG score in diagnosis and disease 
stratification is poorly defined (20–22). Challenges with utilizing the ISG score include the heterogeneity in 
gene expression levels compared with the severity of  the clinical phenotype. Additionally, in AGS, a subset 
of  patients with RNASEH2B-related disease with severe clinical AGS has been reported to have normal ISG 
scores (10), suggesting that there may be genetic heterogeneity in ISG scores.

In this report, we characterize the pattern of  type I ISG expression using a multiplex digital gene 
expression measurement approach (nanoString nCounter Analysis System) (23). This cohort includes indi-
viduals with genetic interferonopathies compared with other known leukodystrophies, healthy controls, 
and hospitalized controls. We compare common existing ISG score calculations to alternative approaches 
to optimize the identification of  individuals with genetic interferonopathy compared with nonaffected con-
trols and to maximize performance in the RNASEH2B subcohort.

Results
Model development. In total, 1,119 samples were tested across 2 institutions, the CHOP and the NIH (Fig-
ure 1B). In brief, mRNA levels of  IFN-associated genes were measured and normalized to housekeeping 
genes (Figure 1A). These mRNA levels were used for comparison across patient cohorts using different 
ISG calculation approaches.

In the model development phase, the expression of  IFN response gene from 997 samples was mea-
sured, and samples were randomized into training (n = 258) and test (n = 739) data sets (Figure 1B). 
The randomized division into training and validation cohorts was completed at the patient level to avoid 
samples from the same patient in both data sets. The training data set was used for model building, and 
the validation data set was used to compare the ability of  approaches to correctly classify AGS verses 
non-AGS samples. The complete data sets for the model development phase (training and test data sets) 
includes 334 samples from individuals with a molecular diagnosis of  AGS. Two groups of  controls were 
also used. Control Cohort 1 includes 166 samples with non-AGS leukodystrophies (e.g., POLR3-relat-
ed leukodystrophy, Pelizaeus Merzbacher disease, TUBB4A-associated leukodystrophies, and Alexander 
disease). Control Cohort 2 includes 497 samples from individuals with identified non-AGS medical con-
ditions collected during clinical care. Cohort 2 was from a set of  discarded clinical samples that were 
completely anonymized prior to inclusion. Detailed clinical information about treatment status or length 

Figure 1. Biomarker validation in AGS. (A) Schematic depicting the IFN signaling pathway, which is constitutively activated in Aicardi Goutières Syndrome 
and other genetic interferonopathies. Stimulation at the IFN receptor results in expression of IFN signaling genes via the JAK/STAT pathway. The STAT/IRF9 
complex binds to IFN-stimulated response elements (ISRE), leading to the transcription of IFN-signaling genes (ISG). The mRNA levels of these ISGs can be 
quantitated and combined as an “IFN-stimulated gene expression score,” a surrogate for IFN pathway activity. Various mathematical approaches have been 
used to calculate this score. AGS, Aicardi Goutières Syndrome; JAK, janus kinase; JAKi, JAK inhibitor; STAT, signal transducer and activator of transcription; 
ISRE, IFN-stimulated response elements. Made with BioRender. (B) Concert Diagram for sample ISG testing and validation.
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of  diseases in this cohort is not available. The Control Cohort 2 was included only as part of  the test 
cohort to evaluate specificity in a real-world context with non-AGS inflammatory conditions in which 
ISGs may be elevated.

In the validation phase, a second independent validation cohort (n = 122; including 36 samples from the 
NIH) was used. The CHOP validation data set included samples from individuals with genetic interferonop-
athies (n = 65) and noninflammatory leukodystrophies (n = 21). The NIH cohort included samples from 
patients affected by AGS (n = 6), CANDLE (n = 18), and SAVI (n = 12).

Generation of  ISG scores. The expression of  individual genes as well as all 2-, 3-, 4-, 5-, and 6-gene 
combinations were compared within the Test Data set (n = 739; Table 1). The AUC (with 95% CI) was 
obtained for the ROC curve for each classifier in the training and test data sets and compared by AUC (Sup-
plemental Table 4; supplemental material available online with this article; https://doi.org/10.1172/jci.
insight.178456DS1). The validation data set, using the best cut-off  points based on predicted probabilities 
from models established in the training, was used to estimate sensitivity, specificity, and the number needed 
to misdiagnose a patient (Supplemental Tables 5 and 6) for tests based on the best cut-off  values in the 
validation data set. The threshold for positive-negative for each ISG approach was determined to maximize 
sensitivity and sensitivity (Supplemental Table 13).

Overall, the single gene best able to distinguish between individuals with AGS from those without 
AGS (determined by maximal AUC) was IFI44L, which was included in the top-performing combina-
tions (Table 1). The top-performing combination in the training data set was a 4-gene median approach 

Table 1. Identification of key contributing ISGs

ISG Model AUC Gene
Training data 

set
Test data set

1 0.8762 0.9580 IFI44L
2 0.8839 0.8410 IFI44L IFI27
3 0.8855 0.9490 IFI44L IFI6 USP18
4 0.8872 0.9245 IFI44L IFI27 USP18 IFI6
5 0.8851 0.9040 IFI44L IFI27 USP18 IFI44 IFIT3
5 0.8851 0.9406 IFI44L IFI27 USP18 IFI6 HERC6
6 0.8864 0.9310 IFI44L IFI27 USP18 IFI6 HERC6 CD274

NIH-6 0.8630 0.9056 IFI44L IFI27 UPS18 IFI44 ISG15 RSAD2
AGS-6 0.8600 0.8958 IFI44L IFI27 SIGLEC1 IFI44 ISG15 RSAD2

AUC shown is calculated from the test cohort.

Figure 2. The performance 
of the top AUC performers 
was compared in the test 
data set. Standardized gene 
expression scores for IFI27, 
IFI44L, IFI6, and USP18 were 
compared across 2 popula-
tions: the non-AGS control 
cohorts (–) (n = 574) and the 
AGS cohorts (+) (n = 165). 
The control cohorts include 
patients with noninflam-
matory leukodystrophies as 
well as samples collected 
during hospitalization or 
out-patient care on nonleu-
kodystrophy patients.

https://doi.org/10.1172/jci.insight.178456
https://insight.jci.org/articles/view/178456#sd
https://insight.jci.org/articles/view/178456#sd
https://doi.org/10.1172/jci.insight.178456DS1
https://doi.org/10.1172/jci.insight.178456DS1
https://insight.jci.org/articles/view/178456#sd
https://insight.jci.org/articles/view/178456#sd
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including IFI44L, IFI27, IFI6, and USP18 (AUC, 0.8872). The standardized gene expression scores for the 
top-performing single genes were compared between non-AGS control cohorts (n = 574) and the AGS 
cohorts (n = 165) (Figure 2). The expression of  these genes was higher in the AGS population compared 
with controls (Table 2).

For further comparisons of  performance, we compared the performance of  2 common scoring approach-
es AGS-6 (1, 10, 11) and NIH-6 (14) with the alternative top-performing approach (4-gene median) and 
IFI44L alone in the validation phase. The AGS-6 and NIH-6 share common genes of  IFI27, IFI44, IFI44L, 
ISG15, and RSAD2, with the addition of  either SIGLEC1 (AGS-6) or UPS18 (NIH-6) (Table 1 and Figure 3, 
A–D). This cohort included control samples and 3 interferonopathies: AGS, CANDLE, and SAVI (Supple-
mental Tables 2 and 3). These approaches were able to discriminate between individuals with interferonopa-
thy and without interferonopathy (Figure 3 and Supplemental Table 9). Of  note, the IFN score was higher in 
individuals with CANDLE and SAVI compared with those with AGS (Figure 3, C and D).

In a real-world setting, the AGS diagnosis status may be unknown at the time of testing, and other acquired 
inflammatory states may be present. To address this challenge, we next compared the performance of 4 ISG cal-
culation approaches by disease state in the test data set (382 patients, 547 samples) (Figure 4). Controls included 
samples obtained from clinical care of both hospitalized and out-patient visits. Disease state was categorized as 
sickle cell disease (SCD), hematologic abnormalities (e.g., primary anemia, primary thrombocytopenia), acute 

Table 2. Statistical comparisons for ISG validation

Comparison Test ISG Model P value
Test set AGS versus controls Two-sided Wilcoxon signed 

rank test
IFI44L < 2.2 × 10–16

IFI27 < 2.2 × 10–16

IFI6 < 2.2 × 10–16

USP18 < 2.2 × 10–16

RNASEH2- versus other AGS 
genotypes

Two sided Wilcoxon signed 
rank test

IFI44L 5.03 × 10–7

AGS-6 7.59 × 10–10

NIH-6 4.07 × 10–10

4-gene median 6.33 × 10–9

RNASEH2- indicates RNASEH2A, RNASEH2B, and RNASEH2C.

Figure 3. Comparison of performance between 4 ISG calculation approaches in the validation data set. The performance of the AGS-6, NIH-6, 
4-gene median, and IFI44L alone were compared across 4 populations. (A–D) This included a control cohort (A) and 3 interferonopathies: AGS (B), 
CANDLE (C), and SAVI (D). Boxes represent median with 25th to 75th percentiles, with whiskers spanning minimum to maximum values. The cal-
culated ISG scores for control samples were compared with the values from the AGS, CANDLE, and SAVI cohorts by Kruskal-Wallis test with Dunn’s 
correction for multiple comparisons. *Padj < 0.0001.

https://doi.org/10.1172/jci.insight.178456
https://insight.jci.org/articles/view/178456#sd
https://insight.jci.org/articles/view/178456#sd
https://insight.jci.org/articles/view/178456#sd
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illness (e.g., any sample collected during active infection), cardiac disease, solid tumor, vaccination (administra-
tion immediately preceding sample collection), inflammatory disease (e.g., chronic infection, FPIES, celiac dis-
ease), chemotherapy (concurrent with sample collection), hematologic malignancy, autoimmune disease (e.g., 
SLE, rheumatoid arthritis), other (includes any other organ-based diagnosis requiring specialist follow up, e.g., 
epilepsy, liver disease), and CART-19 administration (Supplemental Table 1). SCD was notable for increased 
ISG scores as calculated across all approaches.

Next, the performance of 4 ISG calculation approaches was compared by AGS genotype in the test data 
set (Figure 5). Six known genotypes were represented. The patients with RNASEH2B- and RNASEH2A-related 
AGS were noted to have lower IFN activity as measured by all 4 approaches (Figure 5 and Table 2). Addition-
ally, samples were collected longitudinally from 99 patients with AGS across all data sets (9 genotypes, n = 358 
total samples) (Figure 6). These samples were collected from patients without janus kinase inhibitor or other 
immunomodulatory treatment (18). Variability of ISG performance across the samples from a patient was 
noted across all approaches, although most samples were elevated consistently above the threshold for normal.

Discussion
ISG scores have evolved as an important surrogate measure of  type I IFN activity and have been used 
in clinical trials to measure disease activity (18). Since ISG measurements are introduced into clinical 
settings, it is essential to understand their role as a biomarker in AGS. In this study, we evaluated the 
role of  ISG scores as a diagnostic biomarker in AGS and other monogenic interferonopathies. Further-
more, since ISG scores can be calculated using a range of  approaches, we evaluated the performance of  
each method for discriminating between individuals affected by AGS, monogenic interferonopathies, 
and other disorders, including systemic illnesses.

Figure 4. Comparison of performance 
of 4 ISG calculation approaches by 
disease state in the test data set. From 
382 patients, ISG were calculated from 
547 samples. Non-AGS controls were 
categorized by disease state and may be 
represented more than once. Categories 
included: sickle cell disease (SCD), hema-
tologic abnormalities (heme abn,  e.g., pri-
mary anemia, primary thrombocytopenia), 
acute illness (e.g., any sample collected 
during a period with concern for active 
infection), cardiac disease, solid tumor, 
vaccination (administration immediately 
preceding sample collection), inflamma-
tory disease (e.g., chronic infection, FPIES, 
celiac disease), chemotherapy (concurrent 
with sample collection), heme (hemato-
logic) malignancy, autoimmune disease 
(e.g. systemic lupus erythromatosis, rheu-
matoid arthritis), other (includes any other 
organ-based diagnosis requiring specialist 
follow up, e.g. epilepsy, liver disease), and 
CART-19 administration. Boxes represent 
median with 25th to 75th percentiles, with 
whiskers spanning minimum to maximum 
values. The calculated ISG scores for AGS 
samples were compared with the values 
from control cohorts by Kruskal-Wallis 
test with Dunn’s correction for multiple 
comparisons. *Padj < 0.0001, +Padj ≤ 0.001, 
#Padj ≤ 0.0055.

https://doi.org/10.1172/jci.insight.178456
https://insight.jci.org/articles/view/178456#sd
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Based on our analyses, most calculation approaches for ISG scores were capable of distinguishing AGS 
and other interferonopathies from unaffected controls. The most important variable was the inclusion of  
IFI44L. IFN-induced protein 44-like (IFI44L) plays a role in the immune response to viral infections and has 
been implicated in the pathogenesis of SLE (24, 25). Interestingly, IFI44L expression negatively modulates 
the proinflammatory state induced by IFN treatment or infection (26, 27). Because IFI44L was sufficient to 
distinguish AGS from hospitalized controls (often with concurrent infection), we hypothesize that the chronic 
inflammation associated with genetic interferonopathies may lead to a preferential upregulation of IFI44L. 
While ISG scores represent a single value, scores that include multiple genes in the calculation are a representa-
tion of expression of both positive and negative regulators of expression. It is also possible that different inflam-
matory states, such as AGS versus CANDLE versus SAVI versus infection, may have characteristic patterns 
of ISG expression. Larger cohorts of less-frequent interferonopathies will be needed to explore this question.

These approaches underscore the flexibility of  ISG calculations. While the 4-gene median was the 
best-performing approach, the differences were small among the top performers. It is also possible that, in the 
future, new additions to IFN multiplexed gene expression panels may result in improved predictive perfor-
mance. Over time, an iterative approach to model development may be helpful to exploit newly available data.

Finally, samples from patients with RNASEH2B-related AGS have been previously reported to 
have lower IFN activity, irrespective of  severity (10, 28). Our data suggest that the estimated probabil-
ity of  correct classification is significantly lower for RNASEH2-related AGS for all classification meth-
ods tested. As previously reported (16, 18), there can be variability in ISG levels at the patient level, 
underscoring the value of  repeated sample collection for the diagnosis of  AGS. We hypothesize that 
patients with nongenetically driven increased IFN activity, such as in the context of  an acute infection, 
will not have sustained elevation of  ISG scores.

There are potential clinical benefits to the formal validation of  ISG scores as a diagnostic biomarker, 
specifically as this biomarker could identify children with AGS who would be eligible for therapeutic inter-
vention. This is important as treatments become available in AGS, as ISG scores may be available within a 
few days, whereas genetic testing may take weeks or longer (in the case of  noncoding or other variants not 
easily accessible by standard testing approaches).

There are inherent limitations to the use of  ISG scores as a diagnostic biomarker. Importantly, the finding 
that a subset of  patients with RNASEH2-related disease do not have elevated ISG scores limits the diagnostic 
power of  this approach in this subset of  patients; in this context, treatment should not be withheld if  patients 
with RNASEH2-related disease do not have an elevated score. This will also be important in patient selection 
for future clinical trials. Conversely, since ISG scores can be elevated in a number of  conditions, there is a risk 
for using ISG scores in isolation. To reduce this risk of  misdiagnosis, ISGs should be repeated and used in 
combination with genetic and clinical information to reach the diagnosis of  AGS. Finally, we acknowledge 
that the inability to account for intrapatient association of  measurements due to being unable to group ISG 
measurements at the patient level in the anonymized control data set was an inherent limitation.

ISG scores have additional potential for other biomarker roles. This includes as a susceptibility or risk 

Figure 5. Comparison of performance of 4 ISG calculation approaches by genotype in the test data set. (A–H) The performance of the control, AGS-6, 
NIH-6, 4-gene median, and IFI44L alone were compared across the AGS genotypes. There was a total of 739 samples from 611 unique patients. Boxes rep-
resent median with 25th to 75th percentiles, with whiskers spanning minimum to maximum values. The calculated ISG scores for AGS samples were com-
pared with the values from controls by Kruskal-Wallis test with Dunn’s correction for multiple comparisons. *Padj < 0.0001, +Padj ≤ 0.0009, #Padj = 0.0018.

https://doi.org/10.1172/jci.insight.178456
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biomarker, identifying presymptomatic individuals prior to disease onset (10, 11, 15, 17, 29). This may 
support correct patient stratification as newborn screening is developed. ISG scores have also been used 
effectively as pharmacodynamic biomarkers in the context of  clinical trials (17, 18). Future research will 
be necessary to fully understand the role of  ISG scores in the care of  individuals affected by monogenic 
interferonopathies.

This work defines the potential for ISG scores as a biomarker in AGS. AGS is a serious condition with 
no validated diagnostic biomarkers. Therefore, there is an urgent need for biomarkers for patient selection 
for imminent clinical trials. According to Biomarkers, EndpointS, and other Tools (BEST) criteria, ISG 
scores are a diagnostic biomarker, capable of  identifying individuals with monogenic interferonopathies. 
There is a strong biologic rationale for the use of  ISG scores in AGS, since it is a measurement of  the down-
stream IFN receptor activation and since scores are stably elevated in individuals with AGS. This report 
also outlines the analytical performance of  ISG scores in the AGS population. The source, RNA extracted 
from patient blood has established methodology for ISG calculation, and criteria for interpretation can 
reliably differentiate between monogenic interferonopathies and other conditions.

Methods
Sex as a biological variable. Age and sex has not been shown to affect ISGs; thus, they were not considered as 
biologic variables in analyses (14). Information on patient sex and age at collection of  samples as available 
is provided in Supplemental Tables 2 and 3.

Cohort identification and clinical characterization
Patients with leukodystrophies or interferonopathies were consented under IRB protocols at the NIH and 
CHOP (14-011236 CHOP). Hospital control samples were collected under an IRB-exemption (21-019194).

Disease samples and controls were collected under a leukodystrophy-associated biorepository protocol, 
the Myelin Disorders Biorepository and Natural History Study, approved by CHOP IRB (IRB 14-011236). 

Figure 6. Patient-level change in 
the ISG score. Across 81 patients 
with AGS, 301 total samples were 
collected, and ISG scores were calcu-
lated by 4 approaches: AGS-6, NIH-6, 
4-gene median, and IFI44L single 
gene expression. The fold change 
over approach-specific threshold is 
shown in the heatmap. Patient have 
between 1 and 10 additional samples 
after the initial sample.

https://doi.org/10.1172/jci.insight.178456
https://insight.jci.org/articles/view/178456#sd
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Individuals were identified as having either AGS (Disease Cohort) based on molecular identification of  
1 of  the AGS-related genes (TREX1, RNASEH2A RNASEH2B, RNASEH2C, SAMHD1, ADAR1, IFIH1, 
RNU7-1, PNPT1, with no patients with LSM11) or as having a non–AGS-related leukodystrophy (Con-
trol Cohort 1) (Supplemental Table 1). An additional cohort of  children with similar age distribution is 
evaluated under an IRB exemption from the pathology lab at CHOP and includes children with identified 
nonexclusive medical categories as varied as recent vaccinations, acute systemic illness, solid tumor, hema-
tologic malignancy, SCD, and other hematologic abnormalities such as anemia, chemotherapy regimens, 
cardiac disease, autoimmune conditions, inflammatory disease, and other organ-based disease (Control 
Cohort 2; Supplemental Table 1). Categories included SCD, hematologic abnormalities (e.g., primary ane-
mia, primary thrombocytopenia), acute illness (e.g., any sample collected during a period with concern for 
active infection), cardiac disease (e.g., dilated cardiomyopathy and other structural defects), solid tumor, 
vaccination (administration immediately preceding sample collection), inflammatory disease (e.g., chronic 
infection, solid organ transplant, and tumors), chemotherapy (concurrent with sample collection), hema-
tologic malignancy, autoimmune disease (e.g., systemic lupus erythromatosis, rheumatoid arthritis), other 
(includes any other organ-based diagnosis requiring specialist follow up, e.g., epilepsy, liver disease), and 
CART-19 administration (Supplemental Table 1). A subset of  these children has had no identifiable medi-
cal disorder and had blood drawn during well-child visits. Samples have been anonymized after collection, 
and no further clinical information is available for these samples.

Sample collection
In the Disease Cohort and Control Cohort 1, samples have been drawn during a venipuncture immediately 
into PAXgene RNA blood tubes (BD Biosciences). In Control Cohort 2, samples have been drawn into 
EDTA tubes and used for clinical purposes. Residual samples are kept at room temperature for 24 hours and 
at 4°C for another 24 hours, before being transferred to a PAXgene RNA blood tube. All samples collected 
into PAXgene RNA blood tubes and extracted RNA are stored at –80°C until processing for gene expression 
measures. After the RNA extraction using PAXgene RNA extraction kit (PreAnalytiX), an RNA integrity 
number (RIN) above 8, as measured by TapeStation (Agilent), is required for processing via nanoString.

ISG expression measures
NanoString nCounter assay (nanoString Technologies) approaches have been previously described for the mea-
surement of ISG expression (14). This approach uses complementary DNA synthetic oligos to provide direct 
measurement of gene expression counts without reverse transcription or amplification (Supplemental Table 12). 
The Elements system requires Capture (probe A) and tag (probe B) probe DNA oligos were designed by nanoS-
tring and synthesized by Integrated DNA Technologies (IDT). Probe A and B each contain the gene-specific 
sequences; probe A also has a gene-specific sequence that binds the reporter tag, whereas probe B binds to a uni-
versal capture tag. Nucleotide sequences for probes A and B are listed in Supplemental Tables 10 and 11, respec-
tively. After hybridization at 65°C for 16 hours, RNA counts were immediately obtained by using nCounter 
Sprint Profiler (nanoString) or FLEX Prep Station/Digital Analyzer (nanoString) at “High Sensitivity” mode 
with maximum Fields of View of 256 and 555, respectively. Data were processed with nSolver software (nanoS-
tring), which included assessment of quality of the runs. Data were then exported to Excel (Microsoft Corpora-
tion), and the raw RNA counts were used to create Z scores using Stata 18 (Stata Corp.).

Generation of calibration standards
Synthetic DNA oligonucleotides of  each of  the 36 ISG target genes included in the score and the 4 house-
keeping genes were designed by nanoString and synthesized by IDT (Supplemental Table 12). These syn-
thetic DNA oligonucleotides were used as a calibration standard to check run and reagent lot consistency.

Statistics
Creation of  training, validation analytic data sets. First, 2 analytic data sets were generated to create distinct 
cohorts (Figure 1B and Supplemental Tables 2 and 3). One of  the analytic data sets contains confirmed 
AGS (Disease Cohort) and non-AGS samples (Control Cohort 1); this was randomly split at the patient 
level (when patient IDs were available), into a training and validation data set. The second analytic data 
set (Control Cohort 2) only contains non-AGS samples and was reserved for evaluation of  specificity (the 
probability that a non-AGS sample is classified as non-AGS).
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Characteristics of  the data sets. The following number of  unique individuals is included in each data 
set: training, n = 119; test, n = 611; and validation, n = 83. Information on the sex and age distribution of  
cohort 2 and the normative control data set was limited as per the IRB study exempt approval.

Creation of  Z-scores on which all analyses are based. In order to calculate Z scores from each set of  gene 
expression counts, normalization approaches are applied. First, we standardize the genes expression counts 
by multiplying by a conversion factor based on the geometric mean (gmean) of  the housekeeping genes 
(HK) (ALAS1, HPRT1, TBP, and TUBB) (ConvFactor), where ConvFactor = 1000/gmean_HK and gmean_
HK = the geometric mean of  the 4 housekeeping genes. For each standardized gene, we then generate a 
gene specific Z score, where Z score = (gene count – Cmean_gene)/Csd_gene) where Cmean_gene and 
Csd_gene are the mean and SD of  that gene count from a standard data set, respectively, of  47 control 
individuals with non-AGS leukodystrophies or family members without evidence of  ongoing illness as 
previously described (15, 18, 30–32).

ISG score comparisons. Z-scores by group are visually displayed with box plots. Patient-level changes in ISG 
score are evaluated with a heatmap. The ISG scores between cohorts were compared by Kruskal-Wallis test with 
Dunn’s correction for multiple comparisons, resulting in an adjusted P value (Figure 3, Figure 4, and Figure 5).

Evaluation of  the performance of  the classification variables. Accuracy was estimated as the percentage of  
samples that were correctly classified out of  the total cohorts. The potential classifiers for AGS (described 
in Supplemental Table 4 and Supplemental Table 13) were compared by first constructing receiver oper-
ator characteristic (ROC) curves, which display the estimated sensitivity versus 1-specificity for tests that 
consider each observed value of  the classifier as a cut-point (AGS is predicted if  ≥ the cut-point). Empir-
ical (nonparametric) ROC curves were obtained using the roccurve command in Stata 18 AUC (33). The 
AUC was obtained in the training and validation data sets (with 95% CI) and was compared with the 
AUC for the median of  NIH 6 genes (reference approach for our analyses, with previously published 
cut-point of  1.97) in the validation data set, with the test implemented in the comproc command in Stata 
18 (33). To account for correlation within samples from the same patient, the 95% CI for AUCs were 
estimated using bootstrap resampling at the patient level (for samples with available patient identification 
variable). Higher values of  the AUC are suggestive of  better performance because higher values occur 
when the estimated sensitivity and specificity values are larger across all observed values of  a classifier.

Calculation of  optimal cut-point by ISG calculation approach. In addition to estimated AUC, which is a 
summary measure across all potential cut-points for a classifier, we obtained optimal cut-points on the 
ROC curves using several criteria (34). See Supplemental Table 13 for a description of  the criteria for selec-
tion of  optimal cut-points. The threshold for each best-performing approach was, therefore, determined by 
the point on the ROC curve at which Youden’s index (sensitivity + specificity – 1) was maximal (35).

Sensitivity and specificity. Next, we estimated the sensitivity and specificity of  tests that classify a sample 
as AGS if  the classifier is ≥ the cut-point (Supplemental Tables 5 and 6). Sensitivity was estimated as the 
percentage (with 95% CI) of  AGS samples with a classifier value ≥ the cut-point — i.e., sensitivity was 
estimated as the percentage of  AGS samples that are correctly classified. Specificity was estimated as the 
percentage (with 95% CI) of  non-AGS samples with a classifier value < the cut-point — i.e., specificity was 
estimated as the percentage of  non-AGS samples that are correctly classified. We estimated both sensitivity 
and specificity (with 95% CI) in the training and validation data sets. In the non-AGS data set (Control 
Cohort 2), we only estimated specificity (with 95% CI) because no AGS samples were available in this data 
set. To account for correlation within samples from the same patient, logistic generalized estimating equa-
tion (GEE) models for the binary classifier were fit with no covariates (only a constant) and an exchange-
able correlation structure that assumes equal correlation between any 2 samples on the same patient. The 
estimated correlation from this model was then used to adjust the 95% CI for sensitivity or specificity, using 
the prtest command in Stata 18; on a few occasions, the GEE estimates fail to converge due to estimated 
correlations > 1. If  this happens, the assumed correlation is set to 0.99.

Positive and negative predictive value. Positive predictive values (PPV) and negative predictive values 
(NPV) are provided in Supplemental Tables 7 and 8 that correspond to the respective sensitivity (sens) and 
specificity (spec) values in Supplemental Tables 5 and 6. PPV and NPV values are provided for assumed 
prevalence (prev) of  AGS = 5%, 10%, and 15%.

  
The PPV value = 
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The NPV value = 

Number needed to misdiagnose. When we identified the best cut point with respect to the number needed 
to misdiagnose (Supplemental Tables 5 and 6), we assumed the prev of  AGS was 5%, 10%, and 15% and 
that the harm of  a false-negative result (C to C) was twice that of  a false-positive result (Supplemental 
Tables 7 and 8). With these assumptions, we estimated the number of  samples that will need to be tested 
before a sample is misdiagnosed using the following formula that is also provided in Supplemental Tables 
5 and 6: 1/(C to C × prev × [1 – sens] + [1 – prev] × [1 – spec]).

Genotype and correct classification. To determine if  the likelihood of  correct classification varied accord-
ing to genotype, we fit the first-order Markov conditional linear expectation approach (MARK1ML) with 
a logit link function for the outcome of  correct classification in AGS validation samples by approach. This 
classifies a sample as AGS if  the estimated probability of  AGS was ≥ the Youden cut-point of  0.65, and 
the Youden AGS-6 gene classifier classifies a sample as AGS if  the median of  the AGS-6 genes was ≥ the 
Youden cut-point of  5.69. The MARKLML logistic model includes an indicator variable for RNASEH2 
genotype (versus other genotypes). To account for the correlation of  measurements within the repeated 
measurements on a patient, we assume a first-order autoregressive AR(1) correlation structure, for which 
the correlation between adjacent measurements on a patient is α.

Genotype and longitudinal stability. The MARK1ML model also involves a model for the conditional 
expectation, which can be used to evaluate longitudinal stability of  classification. According to Equation 
2 in ref. 36, the probability of  correct classification given the prior observation on a patient is correctly 
classified is

where  is the estimated probability of  correct classification and  is the estimated correlation parameter.

This approach provides an estimated conditional probability for RNASEH2-related genotypes and other 
genotypes (combined).

Genotype and cross-sectional agreement. We obtained the percentage of AGS samples in the validation data set 
by ability to correctly classify by approach. We then obtained the percentage of samples for which there was dis-
agreement between approaches for the RNASEH2-related samples and non–RNASEH2-related samples. We then 
compared the odds of disagreement between RNASEH2 related and non–RNASEH2-related samples by fitting a 
logistic model of disagreement on an indicator variable for RNASEH2-related samples (versus non–RNASEH2-re-
lated samples), with adjusted standard errors to account for clustering within patients.

Study approval
Written informed consent was received prior to participation, with the exception of  the hospital control 
cohort, which was collected under an IRB-exemption excluding the need for consent (IRB 21-019194). 
Patients with leukodystrophies or interferonopathies were consented under IRB protocols at the NIH and 
CHOP (14-011236 CHOP). Disease samples and controls were collected under a leukodystrophy-associ-
ated biorepository protocol, the Myelin Disorders Biorepository and Natural History Study, approved by 
CHOP IRB (IRB 14-011236).

Data availability
Anonymized data not published as part of  this article will be made available by request from qualified 
investigators. Additional control cohort data are not available as per the IRB-exemption. Values for all data 
points in graphs are reported in the Supporting Data Values file.
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