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Abstract 
Juvenile Dermatomyositis (JDM) is one of several childhood-onset autoimmune disorders 
characterized by a type I interferon response and autoantibodies.  Treatment options are 
limited due to incomplete understanding of how the disease emerges from dysregulated 
cell states across the immune system. We therefore investigated the blood of JDM 
patients at different stages of disease activity using single-cell transcriptomics paired with 
surface protein expression. By immunophenotyping peripheral blood mononuclear cells, 
we observed skewing of the B cell compartment towards an immature naive state as a 
hallmark of JDM at diagnosis. Furthermore, we find that these changes in B cells are 
paralleled by T cell signatures suggestive of Th2-mediated inflammation that persist 
despite disease quiescence. We applied network analysis to reveal that hyperactivation 
of the type I interferon response in all immune populations is coordinated with previously 
masked cell states including dysfunctional protein processing in CD4+ T cells and 
regulation of cell death programming in NK, CD8+ T cells and gdT cells. Together, these 
findings unveil the coordinated immune dysregulation underpinning JDM and provide  
insight into strategies for restoring balance in immune function. 
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Introduction 
Juvenile Dermatomyositis (JDM) is part of a broad group of childhood-onset 

autoimmune conditions characterized by a type I interferon (IFN) gene signature and 
specific autoantibodies ranging from related systemic conditions such as systemic lupus 
erythematosus (SLE) to endocrine-specific disorders such as type I diabetes (1–3). 
Despite a shared IFN signature, JDM is associated with pathognomonic rashes and 
proximal muscle weakness resulting in distinct clinical phenotypes. The etiology of JDM 
is not fully understood but studies have shown that JDM is autoimmune-mediated and 
associated with a combination of genetic and environmental risk factors (4). While 
mortality is low with corticosteroid treatment, long-term patient follow-up studies have 
reported that 60-70% of patients have cumulative tissue damage with the risk of damage 
increasing almost linearly for each year after diagnosis (5–7). This finding highlights the 
importance of early disease intervention and the need for a personalized approach to 
disease management to improve upon these outcomes. 

Clinical management of JDM currently relies on compiled empirical metrics such 
as physician global visual analog scale (VAS) of disease activity and muscle strength 
quantified via the childhood myositis assessment scale (CMAS) or manual muscle testing 
(MMT) (8). However, how these clinically observable phenotypes are rooted in disease 
immunopathology remains insufficiently understood. The presence of myositis-specific 
antibodies (MSA) that correspond to distinct clinical phenotypes and recent work showing 
that MSAs may be pathogenic suggest the involvement of B cells (9–11). The expansion 
of naïve B cells in JDM has been highlighted by three independent studies using flow 
cytometry, mass cytometry, and single-cell RNA sequencing, respectively (12–14). The 
adaptive arm of the immune system is further implicated in disease pathogenesis by 
several large immunophenotyping studies that demonstrated the expansion of extra-
follicular Th2 memory cells and central memory B cells (15,16). Additionally, the innate 
immune system has emerged as a contributor in JDM with increased macrophages in 
skin and NK cell dysfunction described peripherally (13,17,18). Together, these findings 
highlight the involvement of both the adaptive and innate immune compartments in JDM 
in blood and disease-affected tissues. However, it also raises the question of whether the 
cause of JDM lies in a single cell type or is a manifestation of broadly dysregulated cellular 
interactions across the immune system.  

Systems-level studies based on single-cell measurements are required to reveal 
how dysregulated cell populations act individually or cooperatively to produce the 
observed inflammation. Accordingly, several groups have turned to next generation 
sequencing as it enables unbiased profiling of tissues at single-cell resolution. In the first 
single-cell study of peripheral blood of JDM patients, we previously described a pan-cell-
type IFN gene signature over-expressed in treatment-naive JDM that was most strongly 
correlated with disease activity in cytotoxic cell types (14). This signature has since been 
independently identified in the peripheral blood of treatment-naive patients.(19) However, 
these studies have utilized small cohorts and lack pediatric controls. Thus, it has been 
challenging to determine which of these findings are specific to JDM compared to healthy 
children, how these disease-specific dysregulated cell states are coordinated with one 
another, and which of these states cooperatively change in response to treatment. 

In this study, we addressed this challenge by profiling JDM across several stages 
of disease activity using multiplexed Cellular Indexing of Transcriptomes and Epitopes by 
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sequencing (CITEseq) of peripheral blood mononuclear cells (PBMCs) from 15 JDM 
patients, totaling 22 samples, and 5 healthy controls (HC). Compositional analysis of 
immune populations identified a disease activity-associated imbalance of naive and 
mature lymphocytes, corroborated by distinct immunophenotypes in treatment-naive 
disease. To move beyond the identification of disease-associated cell populations and 
towards an understanding of immune-scale dysregulation in JDM, we applied a recently 
developed computational method DECIPHERseq to  infer networks of coordinated cell 
states from large cohorts of single-cell data (20). Importantly, this unsupervised method 
takes advantage of the biological heterogeneity in the entire dataset, improving upon 
previous work that relied on pairwise comparisons of subsetted disease groups. Among 
other signatures previously masked by traditional single-cell analysis, this approach 
revealed co-occurring cell states in CD4+ T and B cell populations suggestive of extra-
follicular responses. A subset of these CD4+ T signatures implicate disruption of protein 
targeting and immune tolerance processes; notably, these cell states persist even in 
patients in remission off medication. Furthermore, we show that the hyperactive type I 
IFN response in disease is paralleled by impaired cell death processes in cytotoxic 
immune cells, highlighting the functional imbalance across immune compartments that 
typifies this complex autoimmune disease. Translationally, this broadened understanding 
of the underlying immune dysregulation in disease can inform precision treatment 
strategies for JDM. 
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Results 
JDM is associated with immunophenotypic differences in B and CD4+ T cell 
compartments 
To gather a dataset with appropriate controls and limited confounding, patients were 
selected according to disease activity and medication status (Figure 1A, Supplemental 
Table 1). Of the JDM patients, serial samples were collected from 5 individuals totaling 
22 samples from 15 patients. To minimize confounding by immune suppression, the study 
included 9 treatment-naive samples as well as 6 samples from patients with inactive 
disease off medication. CITEseq was performed on PBMCs to generate single-cell 
libraries (Figure 1B). Surface protein expression was measured using antibody-derived 
tags (ADT). Following pre-processing steps, we identified 29 clusters, which comprised 
21 distinct immune cell populations across 105,827 cells (Figure 2A). Clusters were 
annotated using canonical RNA (Figure 2B) and protein markers (Supplemental Figure 
1A-B) within all major mononuclear immune cell compartments. 

We first characterized global changes to cell composition across disease states 
comparing TNJDM, inactive JDM and HC (Figure 2C). Within the T cell compartment, the 
proportion of regulatory T cells (Tregs) (CD45RO+, IL2R+, FOXP3+) was increased in 
patients with TN JDM (p = 0.02) consistent with previous findings (14).  CD4+ effector T 
cells (CD45RO+) and gdT cluster 2 (TRDC,TRGC) were significantly increased in patients 
with inactive JDM and the proportion of cells from these populations negatively correlated 
with disease activity measures (p < 0.05, Spearman).  There was an overall decrease in 
innate populations in TNJDM compared to HC and inactive JDM, and the proportion of 
these cell types also correlated negatively with disease activity (p < 0.05, Spearman).  

Compared to healthy controls and patients with inactive disease, treatment-naive 
patients had higher proportions of multiple naive B cell populations, including B_naive1 
(IgM+IgD+CD38+CD24+CD10+) corresponding to an immature naive B population, 
B_naive2 (IgM,+IgD+CD38loCD24lo), and B_naive3 (IgM+IgD+CD38+CD24+), and the 
proportion of these populations positively correlated with multiple disease activity 
measures (p < 0.05, Spearman) (Figure 2C). The proportion of B_mem cells, 
characterized by TNFRSF13B expression, negatively correlated with the muscle VAS 
score (p < 0.05, Spearman). The immature naive B population had higher expression of 
CD38 (both RNA and protein) and MZB1, two genes essential for plasma cell 
differentiation, than all other B cell clusters (21,22).   

Given the observed imbalance of lymphocytes in treatment-naive JDM, we next 
sought to immunophenotype B cell and CD4+ T cell subsets in JDM at the proteomic level 
to gain molecular insight into cell states (Figure 2D, Supplemental Table 2). Differential 
protein analysis of immature naive B cells comparing treatment-naive JDM to HC 
identified increased expression of MICA-MICB and decreased expression of CD1C, 
BAFF-R and PD-L1 (Figure 2D).  Within the CD4+ T compartment, CD4+Tregs from 
TNJDM  had higher expression of Tim-3, ICOS, CD164 and CD38 and down-regulation 
of CD101 a molecule which decreases pro-inflammatory T cell responses (23). CD4+Teff 
in patients with TNJDM had higher surface expression of CD164 and PD-1 and down 
regulation of KLRG1, an inhibitory molecule (Figure 2D). The over-expression of PD-1 on 
the cell surface suggested that peripheral T helper cells might be present in JDM (24,25). 
However, while ICOS expression was higher (Benjamini-Hochberg (BH) p < 0.05), no 
difference was found in surface expression of CXCR5 between CD45ROhiPD-1hiCD4+ T 
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cells and CD45ROloPD-1loCD4+ T cells, and these cells were not significantly expanded 
in JDM (Figure 2D).  

 
SIGLEC-1 expression is a composite measure of the IFN gene signature in JDM 

We next compared gene and protein expression between treatment-naive JDM 
and HC samples in all cell types based on the hypothesis that certain cell types may not 
be altered in composition but may be functionally altered at the molecular level. 
Monocytes displayed the highest number of differentially expressed genes and proteins 
in this analysis including CD169 (SIGLEC-1), CD107a (LAMP-1), and CD164 
(Supplemental Figure 3). SIGLEC-1 is a monocyte-restricted IFN-induced protein that 
was recently identified as a potential biomarker in JDM (26).  Both CD107a and CD164 
are cell adhesion molecules involved in trafficking of activated PBMCs and adhesion to 
vascular endothelium (27). 

A common finding across all cell types when comparing treatment-naive JDM and 
HC samples was overexpression of genes enriched in Type I IFN processes, which was 
previously reported in bulk expression data and confirmed in single-cell studies 
(Supplemental Figure 4) (14,19,28). Using an IFN gene score derived from the 
transcriptional data (Supplemental Figure 5), we plotted the per patient average score in 
each cell type (Figure 3A).  This approach did not detect IFN gene expression to persist 
beyond the treatment-naïve state and two TNJDM patients had negligible IFN gene 
signature as quantified by this method. This heterogeneity of the IFN gene signature was 
partly explained by disease activity level (Figure 3B), as a bulk IFN gene score correlated 
with disease activity (R=0.69, Spearman). However, the remaining unexplained 
heterogeneity of this IFN score exemplifies a limitation of utilizing gene scores identified 
through pairwise comparisons between subsets of the data.    

Given that SIGLEC-1 is a type I IFN-induced protein, we investigated if patterns of 
type I IFN stimulated gene expression were reflected at the protein level, as protein 
biomarkers are more amenable for clinical lab-based testing.  SIGLEC-1 expression in 
CD14+ monocytes also correlated with disease activity to a similar degree as the IFN 
gene signature (Figure 3C-D), and SIGLEC-1 expression was itself highly correlated with 
the IFN gene signature in monocytes (Figure 3E).  This suggests that SIGLEC-1 
expression in CD14+ monocytes is a representative composite measure of the IFN gene 
signature in JDM. These results underscore the potential of SIGLEC-1 as a biomarker of 
IFN responses in JDM that may be useful for tracking disease activity. 

 
Unsupervised network analysis reveals coordinated cell states shared among 
immune cells in JDM 

We next turned to a systems level approach to better understand the coordination 
of immune cell gene programs in JDM relative to healthy controls and in relation to 
disease activity level. We applied an unsupervised network inference method, 
DECIPHERseq, to the 6 major cell types annotated in the dataset: B cells, CD4T, CD8T, 
NK cells, gdT cells, and myeloid cells (Figure 4A). DECIPHERseq relies on non-negative 
matrix factorization (NMF) to first break the dataset down into gene sets that represent 
distinct states of biological activity, or ‘activity programs’, and then constructs a network 
of gene expression programs (GEPs) based on how expression of the programs covaries 
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across patient samples (Figure 4A) (29). After outlier filtering, NMF identified 76 activity 
programs (Figure 4B). 

Next, a force-directed network graph from the correlation matrix of activity 
programs was constructed where each node represents a program, and each edge 
represents a statistically significant positive correlation between two nodes (Figure 5A). 
Using DECIPHERseq’s community detection algorithm, we identified 6 hubs of inter-
connected activity programs or ‘modules.’ All modules contained multiple cell types, 
highlighting that many biological processes in JDM are coordinated across several 
immune cell types (Figures 4B, 5A). We annotated each node using gene set enrichment 
analysis of gene ontology terms (GO) on each program’s ranked marker gene list 
(Supplemental Tables 3-4, Supplemental Figures 6-11) (30,31).  

DECIPHERseq’s module enrichment analysis identified consensus biological 
themes for each module in an unsupervised manner (Figure 5B, Supplemental Table 5). 
Module 1 was enriched for Type I IFN response programs such as ‘Response to Virus’. 
Module 2 was enriched in ribosomal processes including ‘Translational Initiation’. Module 
3 included lymphocyte programs and was significantly enriched for cell adhesion and 
migration. Module 4 represented cells’ steady state processes as it was enriched for gene 
sets like ‘Circadian Rhythm’. Module 5 was annotated as a Stress Response module and 
enriched for ‘Regulation of Cell Death’ and ‘Cellular Response to Chemical Stress’. 
Module 6 contained few unique gene sets and was enriched for programs intrinsic to 
eukaryotic cells like ‘DNA Packaging.’ 
 
JDM CD4+T cells and B cells display persistent alterations in gene expression in 
both active disease and remission 

Next, we aimed to interpret the annotated network in the context of GEPs 
associated with JDM compared to healthy control patients irrespective of disease activity. 
We first focused on Module 1, which was enriched in type I IFN responses.  Many 
programs in this module were increased in TN-JDM, as expected (Figure 6A-B). All 6 
major cell types expressed an IFN gene program which were highly correlated to one 
another, as shown by the closely connected hub at the center of module 1 (Figure 6A).  
This IFN hub was associated with JDM as compared to HC patients (t-test, p<0.05) 
(Figure 6B-C).  IFN modules identified by NMF were highly expressed in all treatment-
naïve patients as well as some patients with active disease, inactive disease, and a 
healthy control patient (Figure 6B), in contrast to the signature of IFN gene expression 
previously detected by differential gene expression in Figure 3A.  This highlights the 
strength of this method to more accurately reflect the low-dimensional space of gene 
expression where measurement of many genes working together may be needed to 
detect underlying biological processes (32–34).  

We next identified gene programs in Modules 1-3 expressed more highly in all JDM 
patients compared to HCs (p<0.05).  These included B cell (5 and 14) and CD4T (1, 10, 
17) programs and their expression persisted even in patients with inactive JDM who 
previously achieved remission off medication (Figure 6B, Supplemental Figure 12). JDM 
patients more highly expressed two B cell programs: B5 in Module 1 was enriched in 
mRNA metabolic processing, RNA splicing, chromatin organization and modification, and 
cell cycle regulation, and B14 in Module 3 was enriched in chromatin remodeling and 
cytoskeletal organization (Supplemental Figures 6, 8). These enriched biological 
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processes suggest that a subpopulation of B cells are more transcriptionally active and 
undergoing epigenetic regulation in JDM relative to healthy controls.   

In Module 3, correlated to B14, CD4T1 (enriched in cell migration, adhesion, 
activation, and secretion) was expressed more highly in JDM and in the region of the 
UMAP corresponding to CD4+Teff cells (Supplemental Figure 13).  This CD4T1 program 
expressed by CD4+Teff cells contained genes (GATA3, CCR4, PRDM1) that indicate 
possible skewing towards a Th2 subset while expression of PRDM1 (Blimp-1) suggests 
participation in extra-follicular reactions (Figure 6B). Th2 CD4+ T cells were previously 
found to be expanded in JDM and associated with extra-follicular B-T cell help (15,16) . 
We observed similar expression of Th2 genes (GATA3, CCR4, PRDM1) in CD4T10, a 
Treg program (FOXP3, IKZF2, IL2RA) expressed more highly in JDM (Figure 6B).  CD4T1 
and CD4T10 included genes for costimulatory molecules OX40 (TNFRSF4) and GITR 
(TNFRSF18), both of which have been described to promote survival and proliferation of 
CD4+ T effector cells and have been targets of autoimmune disease therapeutics 
(Supplemental Table 4) (35–39). Notably, CD4T17 (AIM2, ACTB, ACTG1, NCF1, ID3, 
SOX4) was negatively associated with JDM and expression was significantly decreased 
in nearly all patients (Figure 6B, Supplemental Table 4, Supplemental Figure 14A). This 
program was enriched in protein targeting to the membrane and endoplasmic reticulum 
and included several genes important in T cell regulation. NCF1 has been found to be a 
critical regulator of T cell tolerance in a collagen-induced arthritis mouse model (40) and 
co-expression of ID3 and SOX4 transcription factors has been identified as a mechanism 
of CAR-T cell exhaustion and dysfunction (41).  Together, these results suggest multiple 
mechanisms by which CD4+T cell dysfunction may occur in JDM including participation 
in extra-follicular reactions, expression of  co-stimulatory molecules, and down-regulation 
of genes important in mediating tolerance and exhaustion. 
 
Immune cell states are correlated with IFN gene expression in treatment-naive JDM 

We next wanted to identify modules and gene programs associated with stages of 
disease activity in JDM (HC, Inactive and Active JDM, and TNJDM). To do so, we 
performed a 4-group ANOVA on each program in the network and post-hoc pairwise 
analysis using the Tukey test. We identified programs in Module 1, 2 and 5 that were 
significantly associated with disease activity (ANOVA p<0.05) (Figure 7A).  We confirmed 
that these biological programs moved in the direction expected within most patients with 
longitudinal assessments (Supplemental Figure 15).  The IFN gene programs were also 
significantly overexpressed in treatment-naive JDM patients, as expected (Figure 6B).  
Notably, expression of the central Module 1 IFN hub GEPs in all six major cell types more 
strongly correlated to the clinically evaluated PGA than the pseudobulk IFN gene score 
derived from pairwise DEG analysis (Supplemental Figure 16), underscoring the utility of 
a dimensionality reduction approach in uncovering clinically relevant gene signatures. 

By isolating these IFN GEPs in each cell type, we were able to determine disease 
activity-associated programs correlated with the IFN hub, some of which corroborate 
previous findings (Figure 6A-B). This approach identified B9, an immature naive B cell 
program (CD24, CD38, MME, Supplemental Table 4), to be significantly associated with 
disease activity (Figure 7B). This gene program shared several top markers (TCL1A, 
SOX4, NEIL1) with the immature B cell population that was previously found to be 
expanded in treatment-naive JDM (15, 23) (Supplemental Table 4, Supplemental Figure 
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14B). Notably, expression of this activated immature B cell program could be attributed 
to the B_naive1 cluster that we observed to be increased in treatment-naive JDM during 
the compositional analysis (Supplemental Figure 17). Similarly correlated with the IFN 
hub, NK12 was associated with treatment-naive JDM compared to active and inactive 
disease (Figure 7B, Supplemental Figure 18A). NK12 (MKI67, HIST1H1B) was enriched 
for gene sets related to cell proliferation and epigenetic regulation, confirming findings 
that a subset of NK cells in JDM are highly activated and proliferative (Supplemental Table 
4) (13,17). 

We next focused our attention on the other disease activity-associated programs 
that DECIPHERseq identified as correlated with the Module 1 IFN hub. Importantly, these 
disease activity associations were only revealed in the lower dimensional space of gene 
sets identified by NMF rather than the noisier space of differential expression of individual 
genes. We annotated CD4T10, also significant in the case control analysis, as a 
proliferative Treg program (FOXP3, IL2RA, MKI67) which expressed genes implicated in 
extra-follicular B-T interactions (PRDM1) and genes associated with Th-2 mediated 
inflammation (GATA3, CCR4, Figure 7B, Supplemental Table 4) (42). Notably, CD4T10 
included the marker CCR4, a chemokine receptor highly expressed in Tregs that are 
preferentially recruited to skin under inflammatory conditions (43). Expression of both 
CD4T1 and CD4T10 co-localized with surface protein expression of CCR4 in the UMAP 
as well (Supplemental Figure 19), highlighting the advantage of this multi-modal 
sequencing approach in identifying functional markers of transcriptomic signatures.  

This network approach also identified the program gdT4, a cytotoxic Th1 polarized 
gdT program (GZMB, CX3CR1, TBX21) that was correlated with the central IFN hub and 
was significantly increased in treatment-naive patients compared to both active and 
inactive JDM and HC (p<0.05, Tukey, Figure 7B). High expression of TRGC1 and TBX21, 
encoding the transcription factor T-bet responsible for regulating IFNG expression, 
specifically identified cells expressing this program as Th1-like TCRVd1 gdT cells (Figure 
7B, Supplemental Table 4) (44). A similar subpopulation of gdT cells was found to be 
increased in synovial fluid and blood of juvenile idiopathic arthritis patients, which 
expressed IFNy and TNF to the same degree as CD4+ T cells (45). This suggests this 
subpopulation of gdT cells may reflect an important inflammatory cell state specific to 
treatment-naive disease correlated with IFN gene expression.  
 
Regulatory cell death and protein targeting pathways are dysregulated across 
multiple immune cell populations in JDM 

The disease activity programs that were highly expressed in treatment-naive JDM 
were components of Module 1 which was enriched for Type I IFN and its associated 
immune processes. The network-wide ANOVA analysis also revealed disease activity-
associated programs in Module 2 and Module 5 (Figure 7A), which were anti-correlated 
with Module 1 (Supplemental Figure 20) and expression was decreased in treatment-
naive JDM patients compared to healthy controls and other JDM patients (Figure 7B). 
Module 2 was significantly enriched for gene ontology terms ‘ribosome assembly’ and 
‘translational initiation’ (Figure 7C) while Module 5 was enriched for terms ‘regulation of 
cell death’ and ‘cellular response to chemical stress’ (module enrichment p<0.005) 
(Figure 7D). The disease-associated programs within these modules were expressed 
significantly lower in treatment-naive JDM, suggesting dysfunction of cellular processes 
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that underpin ribosomal activity and cell death regulatory processes at disease onset 
(Figure 7B, Supplemental Figure 18B-D). 

Notably, disease activity-associated programs CD8T11, NK8 and gdT15 (FOS, 
JUN, DUSP1, NR4A2, GADD45B) in Module 5 share a common gene signature (Figure 
7B, Supplemental Table 4) and are each individually enriched in ‘regulation of cell death’ 
and ‘regulation of cell cycle’ (Figure 7D, Supplemental Figure 10). We quantified the 
overlap in gene expression between activity programs by Fisher’s exact test and 
confirmed the high gene loading similarity between programs in Stress Response Module 
5 (Figure 7D). All three of these programs were expressed at lower levels in active and 
treatment-naive JDM and negatively correlated with activated disease-associated cell 
signatures identified in Module 1 (Supplemental Figure 18B-D). The gene loading 
similarity analysis revealed that the programs CD4T9 and B10 also share top marker 
genes (FOS, JUN, DUSP1, NR4A2, GADD45B) (Figure 7D, Supplemental Table 4), 
however, these two programs were not associated with disease activity status. This 
suggests that regulatory mechanisms of cell death may be uniquely disrupted in 
circulating cytotoxic cell populations in patients with active disease.  

In Module 2, CD4T17 and NK9 were enriched in several gene sets related to 
protein processing such as protein targeting to the ER (Supplemental Figure 7A). 
Interestingly, the CD4T17 program was also characterized by high expression of several 
genes encoding members of the actin protein family (ACTB, ACTG1, Supplemental Table 
4). Given the crucial role actin filaments play in antigen recognition during the formation 
of the immune synapse, dysfunction in components of that protein machinery could have 
substantial effects on the immune system. Among other disease activity-associated 
programs, differential expression of CD4T17 between HCs and JDM patients persisted 
even in patients who achieved remission off medication (Figure 7B). Taken together, 
disease activity-associated programs in Modules 2 and 5 highlight shared cellular 
processes that may be under-active in JDM, providing what we believe to be novel 
insights into potential cellular mechanisms that accompany the known signature of 
overactive IFN-response in JDM. 
 
JDM-associated signatures identified by DECIPERseq validated in an independent 
dataset  

We next investigated whether these JDM-associated signatures could be identified 
in an independent set of samples.  Using DECIPHERseq’s marker quantification method, 
we subset the genes in each JDM-associated GEP that contributed the most to that 
program. With each gene list as input, we calculated a proxy GEP metric that quantified 
rank-based expression of each program as the enrichment of that subset of genes in each 
cell (46).  This proxy NMF GEP metric recovered signatures identified by NMF in the 
original dataset (Supplemental Figure 21).   
 Using this proxy NMF GEP method, we validated key signatures in an independent 
set of CITEseq data from 5 JDM samples and 2 HC (Figure 8A-B).  Importantly, these 
samples were obtained from patients who had active disease and 4 of 5 were being 
treated with medication.  We compared GEP expression between cases and controls (t-
test, p<0.05), which identified significantly higher expression of CD4T1 (CD4+Teff 
program, CCR4, PRDM-1, GATA3) and CD4T10 (Treg program, FOXP3, CCR4, PRDM-
1, GATA3) in JDM and lower expression of CD4T17 (AIM2, ACTB, ACTG1), replicating 
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the original results in the initial cohort (Figure 8C).  In the B cell compartment, B5 and 
B14 trended toward increased expression in patients with JDM. However, a single 
individual had low expression in both programs indicating heterogeneity of expression of 
these B cell signatures (Figure 8C). 
 To validate disease-activity associated programs, we correlated GEP expression 
of disease activity associated programs with the PGA score.  It was infeasible to validate 
gdT programs due to low cell numbers.  IFN GEPs were most strongly correlated with 
disease activity in CD4T cells, B cells and NK cells (Figure 8D) and trended toward a 
positive correlation in myeloid cells, but there was no significant association in CD8T cells 
(Supplemental Figure 22A-B).  Additionally, B9 (immature B cell signature, CD38, CD24, 
MME), CD4T10 (Treg program, FOXP3, CCR4, PRDM-1, GATA3), and NK12 
(proliferative activated NK cell program, MKI67, CENPF, HISTH1HB)  strongly correlated 
with disease activity (Figure 8E).  A subset of the key signatures identified in the original 
cohort with DECIPHERseq trended with disease activity but did not significantly correlate 
with PGA in the validation cohort (Supplemental Figure 22C-E). Together, these results 
demonstrate the robustness of many signatures quantified with a less precise method 
even in an independent dataset with fewer samples.  Cell death regulatory signatures 
previously identified to be negatively correlated with IFN signaling in cytotoxic populations 
may be more strongly associated with a treatment-naïve state or more heterogeneous 
across healthy individuals such that significant differences in expression could not be 
identified in this smaller cohort.   
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Discussion 
Multiple components of the adaptive and innate immune compartments have been 

implicated in the pathogenesis of JDM consistent with its categorization as a complex 
autoimmune condition. However, previous studies have been unable to uncover how 
multiple disease-associated cell states are coordinated to produce inflammation. Here, in 
the largest single-cell study of JDM to date, we provide an unbiased, comprehensive 
picture of immune dysregulation in peripheral blood, including  a subset of aberrant 
signatures that persist despite disease quiescence in individuals off medication.  Through 
traditional analyses, we first show that immune dysregulation in JDM manifests at the 
level of compositional imbalance of immune populations and that these compositional 
changes are correlated to clinical metrics of disease activity. Next, we identify distinct 
disease-associated molecular signatures of lymphocyte and myeloid subsets through 
multi-modal differential analysis and demonstrate that of these markers, surface 
expression of SIGLEC-1 in CD14+ monocytes is a composite metric of disease activity 
and reflects the type I IFN response in JDM (28). Using DECIPHERseq to deconvolve 
disease-associated programs beyond the broad type I IFN response, we uncover CD4+ 
T cell states that persist in JDM despite disease remission coordinated with down-
regulated cell death processes in cytotoxic immune populations. Together, these findings 
generate more nuanced hypotheses for disease etiology. 

Within the B cell compartment, we observe skewing toward an immature state in 
treatment-naïve disease and observe the distinct transcriptomic and proteomic signature 
of immature naive B cells consistent with what we and others previously reported (14,19). 
Given that autoantibodies are thought to play a role in disease pathogenesis, this skewing 
of the B cell compartment would seem counterintuitive.  However, given recent findings 
emphasizing the importance of extra-follicular B cell differentiation pathways through 
which autoreactive “activated naive” B cells are precursors to antibody-secreting cells, we 
hypothesize that this skewing may be suggestive of extra-follicular reactions in JDM 
(24,47). In fact, the expanded immature naive population had higher expression of CD38 
and MZB1, genes important for plasma cell differentiation, than all other B cell clusters. 
The overall low expression of CD27 and CXCR5 across all B cells made it difficult for to 
conclude if this population matches the double negative B cell population associated with 
SLE (47).  However, recent immunophenotyping work in a large cohort of JDM patients 
that found simultaneous expansion of CXCR5- central memory B cells and Th2 cells 
provides support for further investigation into extra-follicular B-T cell help in JDM (15).  
Alternatively, this skewing could represent more mature B cells homing to tissues as has 
been described in antisynthetase syndrome (48,49). Functional work to support or negate 
the extrafollicular pathway in JDM will be critical to determine if this is a targetable 
pathway therapeutically. 

Accompanying these immunophenotypic changes in B cells, we observe 
complementary dysregulation in the T cell compartment that lends further support to the 
hypothesis of extra-follicular interactions in JDM. In populations of peripheral blood 
FOXP3+ Tregs and CD4+ effector T cells, we identify a shared disease associated 
signature comprised of genes suggestive of Th2 activation (GATA3, CCR4), involved in 
promotion of survival and proliferation (GITR, OX40), and associated with extra-follicular 
T cell responses (PRDM1). Notably, this signature persisted in disease remission in 
patients off medication.  Likewise, we identify a CD4+ T signature, decreased in all JDM 
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patients regardless of medication status and disease activity, containing genes crucial for 
tolerance (NFC1) and regulation (ID3, SOX4). This cell state could represent an 
inflammatory signature or a compensatory mechanism of CD4+ T cells in more long-
standing disease.  These findings are consistent with previous work, which identified 
skewing of CD4+ T cells toward a Th2 phenotype in JDM and showed in vitro that 
peripheral Th2 cells were efficient in helping B cells, including stimulating antibody 
production (16). A previous study also showed that tertiary lymphoid structures are 
present in muscle of new-onset JDM, further supporting a role for extra-follicular reactions 
in JDM (50). Future work using paired blood and tissue with spatial information to 
immunophenotype interacting cells within these structures would further justify 
investigating therapeutic strategies that prevent homing of CD4+ T and B cells to sites of 
inflammation in tissue.   

While other studies have reported that Tregs in JDM have diminished suppressive 
capacity raising the possibility of Treg exhaustion (51), the results in this study show that 
the expanded population of peripheral Tregs in blood are proliferative and activated 
(MKI67, IL2RA, IRF4), taking on an effector phenotype.  Likewise, the shared signature 
with CD4+ Teff cells suggests these Tregs are coopting the transcriptional machinery of 
effector T cells as has been described by others (52,53).  In this dataset, JDM Tregs also 
upregulate transcriptomic and proteomic expression of CCR4–paralleled by increased 
expression of CCR4 in CD4+ effector T cells–which is preferentially expressed in Tregs 
recruited to the skin (43). Thus, we speculate that this expanded population of Tregs in 
JDM could represent a peripheral response to site-specific Th2-mediated inflammation in 
disease-affected tissue.  Alternatively, these Tregs could be functioning in a reparative 
manner at sites of tissue damage. Future functional studies of peripheral blood and 
tissue-specific Tregs, particularly investigation of the influence of type I IFN on Treg 
suppressive capacity in JDM, would provide mechanistic insight on this population’s role 
in disease pathogenesis. The potential translational impact of investigating Treg 
dysfunction is corroborated by active development of multiple therapeutics targeting 
Tregs for autoimmune diseases (54).  
 More broadly, we show that unsupervised approaches such as DECIPHERseq can 
be used to consolidate disparate findings into a systems-level understanding of how 
interactions among cell states could manifest in disease. Here, our network analysis 
revealed that a module of hyper-activated IFN response across cell types is coordinated 
with dysfunction in ribosomal biogenesis, protein processing, and the regulation of cell 
death that is also shared across many cell types. This model contextualizes recent work 
that has identified ribosomal dysfunction in NK cells as a disease signature in JDM but 
also raises the possibility that defective translational machinery is not unique to that cell 
population (13,17). Given that Type I IFN directly promotes the activation and proliferation 
of NK cells (55,56), we speculate that NK cells in JDM are unable to properly translate 
cytolytic protein machinery required for effector function in response to IFN signaling, 
potentially perpetuating the IFN response. Similarly, the shared program between CD8T, 
gdT, and NK cells that describes regulation of cell death and cellular stress response 
suggests a common dysfunction across cytotoxic cell populations in JDM. Given the 
importance of cytotoxic cells in clearing cellular debris including autoantigenic neutrophil 
extracellular traps shown to be pathogenic in JDM, dysfunctional cytotoxic populations 
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could result in accumulation of such debris thereby triggering an autoimmune response 
mediated by lymphocytes (11).  

Finally, the observation that type I IFN responses increase with clinical metrics of 
disease activity adds to the growing body of work suggesting that disease activity in JDM 
correlates with this transcriptional signature (57). However, given the time and cost, it 
remains infeasible to use transcriptomic sequencing as a lab-based clinical diagnostic 
tool. This data points to surface expression of SIGLEC-1 in monocytes as a composite 
measure of the IFN gene signature in JDM and disease activity. Together with a recent 
independent study of JDM, we provide external validation that SIGLEC-1 is a suitable 
biomarker for disease monitoring to pursue in larger immunophenotyping studies given 
the lower cost and ease of implementing screening by flow cytometry (26).  Importantly, 
we show that SIGLEC-1 directly reflects the IFN gene signature using paired gene and 
protein expression measurements, strengthening support for its use as a biomarker. 
Further study of this biomarker, and the role of SIGLEC-1 in disease, is an important step 
toward precision care of JDM. 
 These findings should be interpreted in the context of the study’s limitations. First, 
despite being the largest single-cell study in JDM to date, sample numbers are still limited 
such that the study lacks statistical power to quantify the contribution of MSA status to 
disease heterogeneity.  Furthermore, a majority of patients in the treatment-naïve group 
are TIF1y+, which could introduce a bias to disease-activity related programs, though it 
remains unknown whether MSA status is associated with distinct biological mechanisms.  
Some patients in the “active” disease group had relatively low disease activity, which may 
have prevented us from identifying more associations with disease activity. Additionally, 
this study lacked data from matched JDM skin and muscle which would have enabled 
insight into how dysregulated cell states in blood might influence local microenvironments 
in disease-affected tissue. Although profiling blood limits the mechanistic insight 
compared to skin or muscle, it is a more suitable sample type for biomarker discovery, 
particularly in a pediatric disease that requires longitudinal monitoring, and future 
comparison to tissue data will enable us to identify populations in peripheral blood with 
tissue correlates.  Lastly, the DECIPHERseq algorithm relies on a k selection procedure 
to accurately decompose the data. As a dimensionality reduction technique, NMF is 
distinct from principal component analysis in that there is no single solution for the number 
of patterns or components into which the data is segmented. As such, it is necessary to 
optimize the parameter 'rank K' such that the NMF results capture the relevant biology at 
an appropriate granularity. We addressed this limitation of NMF by using the phylogenetic 
clustering-based k-selection method described by Murrow et al. where the authors 
demonstrated that saturation of this metric reflects the appropriate granularity of biological 
programs such that results are robust across multiple choices of rank K (20). 
 In summary, using CITEseq to profile compositional and functional imbalance of 
peripheral blood immune cells and the relationship to disease activity, we provide a 
comprehensive map of the coordinated immune dysregulation underlying JDM. We 
identify persistent transcriptional changes in B and CD4+ T cells associated with JDM 
that persist even in patients in remission off medication and reveal cell states associated 
with the IFN signature that generate hypotheses for the role of extra-follicular interactions 
in disease pathogenesis, drawing parallels to other autoimmune diseases. Importantly, 
we believe these findings pose a new paradigm to how we approach JDM treatment. The 
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dysregulation of processes simultaneously with hyperactivation of other cell states 
necessitates that we identify therapeutic strategies that restore balance to the dynamic 
interactions between immune populations rather than simply turning off a set of pathways. 
Taken together, our work sets the stage for improving clinical management of JDM by 
providing a foundation for systems-level inquiry into the cellular basis of this disease. 
More broadly, application of a similar analytical strategy could provide insight into the 
immunologic basis of other childhood-onset autoimmune diseases characterized by a 
type I IFN gene signature.   
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Methods 
Study Cohort & Sample Processing 
Patients were recruited to the Juvenile Myositis Precision Medicine Biorepository between 
2018 and 2023 and underwent informed consent.  The diagnosis of JDM was per clinician 
judgement, however, all patients included in this study met EULAR/ACR classification 
criteria for “definite” juvenile idiopathic inflammatory myopathy based on typical skin 
manifestations of either Gottron’s and or heliotrope rashes (58). This study was approved 
by the UCSF IRB.  Clinical data was collected by study investigators and recorded in a 
secure REDCap database.  Treatment-naive JDM was defined as a new diagnosis of 
JDM with no systemic immune suppressant use in the prior 4 weeks.  Inactive JDM was 
defined as normal CK, MMT8≥78 and Physician Global VAS score<0.5 to reflect PRINTO 
clinically inactive disease (59) definitions but with some modifications based on the data 
available.  Active disease was defined as Physician Global VAS score≥0.5, and all 
patients in this category were taking immune suppressive medications.  Longitudinal 
samples from n=6 patients with JDM were included separated by at least 4 months in 
time and accompanied by a change in disease activity.  Measures of disease activity, 
including the Cutaneous Disease Area and Severity Index (CDASI) were collected at 
study visits (60). Healthy controls were enrolled who had no prior autoimmunity, no known 
or suspected genetic disorders, immunodeficiency, active cancer, or history of organ or 
bone marrow transplantation, no infection or antibiotics in the prior 4 weeks, no chronic 
systemic immunomodulatory medication use and no vaccinations in the prior 6 weeks.  
Peripheral blood samples were collected at each study visit and processed by the 
Pediatric Clinical Research Core Sample Processing Lab. PBMCs were collected in 
SepMate tubes (n=9) using Ficoll separation or CPT tubes (n=18), isolated per 
manufacturer’s guidelines, and cryopreserved in liquid nitrogen.  
 
Sex as a biological variant 
This study contained samples from human males and females. Sex was not considered 
as a biological variable in downstream analyses. 
 
CITE-seq of human PBMCs 
The experimental protocol was previously published (14). Note these experiments were 
carried out using early access kits from BD Genomics before the implementation of 
commercially-available single-cell protein/RNA assays (e.g. Feature Barcoding, 10x 
Genomics; BD Abseq, BD Genomics, Supplemental Table 6), and researchers are 
recommended to use those newer solutions for any follow-up studies as the techniques 
and reagents have been refined. PBMCs from 27 distinct samples were gently thawed in 
a 37°C water bath and re-suspended using a pipette set to 1 mL. Cell counts and viability 
were determined using a Cellometer Vision (Nexcelcom) with AOPI staining (Nexcelcom 
cat. CS2-0106-5ML). Cells were multiplexed into four pools: one “cross pool” with all 
samples that consisted of only one time point and three pools consisting of longitudinal 
samples. Longitudinal samples from the same individual were assigned to separate pools 
to enable genetic demultiplexing.  After pooling, cells were resuspended in 90 μl of 1% 
BSA in PBS and Fc blocked with 10 μl Human Trustain FcX (Biolegend cat. 422302) for 
10 minutes on ice then stained on ice for 45 minutes with a pool of 268 antibodies in 100 
μl, for a final staining volume of 200 μl. Antibodies were pooled on ice with 2.2 μl per 
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antibody per 1x106 cells (BD Genomics). Cells were quenched with 2 ml 1% BSA in PBS 
and spun at 350xg for 5 minutes and further washed two more times with 2 ml of 1% BSA 
in PBS. After the final wash, cells were resuspended in 100 ul and strained through a 40 
μM filter (SP Bel-Art cat. H13680-0040). Each longitudinal pool was split across two 10X 
lanes while the “cross pool” was split across six 10X lanes (6 wells total, 5x105 cells/well). 
The 10x Chromium was run and post-GEM RT and cleanup were done according to 
manufacturer’s protocol (10X Genomics 3’ Kit V3). Starting at cDNA amplification, 
modifications to the protocol were made: 1 μl of 2 μM additive primer (BD Genomics, beta 
kit) specific to the antibodies tags was added to the amplification mixture. During the 0.6X 
SPRIselect (Beckman Coulter, B23318) isolation of the post-cDNA amplification reaction 
cleanup, the supernatant fraction was retained for ADT library generation. Subsequent 
library preparation of the cDNA SPRI-select pellet was done exactly according to protocol, 
using unique SI PCR Primers (10X Genomics). For the ADT supernatant fraction, a 1.8X 
SPRI was done to isolate ADTs from other non-specifically amplified sequences, followed 
by sample index PCR. Sample index PCR for the ADTs was done using the cycling 
conditions as outlined in the standard protocol (15 cycles) but using unique SI-PCR 
Primers such that all libraries could be mixed and sequenced together. Subsequent SPRI 
selection was performed, and all libraries were quantified and analyzed via Qubit 2.0 
(Fisher) and Bioanalyzer (Agilent), respectively, for quality control. We sequenced the 
libraries on 2 lanes of a NovaSeq S4 (Illumina), aligned using CellRanger (10X Genomics) 
to generate feature barcode matrices. 
 
Sequencing data pre-processing and integration  

Data was demultiplexed using genotypes with demuxlet (=(61) and doublets were 
filtered using DoubletFinder (62). Next, cells were filtered to remove RNA transcripts 
expressed in < 3 cells, cells with >60% ribosomal reads and >15% mitochondrial reads 
(mtDNA). Cells were further filtered for >5000 ADT counts to avoid antibody aggregates, 
<70 antibodies detected, and any antibody isotype control measurements >50. To remove 
background ambient RNA signal, we ran SoupX separately on each of the six RNA 
libraries before merging (63). Aggregated data was log-normalized and scaled, 
regressing out percent mtDNA, percent ribosomal DNA, and cell cycle (S, G2M) (64). 
Data was then integrated with Harmony, with 20 max iterations and 30 max iterations per 
cluster (65). 

DSB was run on all six ADT libraries individually, using default parameters except 
for more stringent quantile clipping (0.01, 0.99) (66). The background distribution of empty 
droplets was defined as suggested in the DSB vignette. Isotype controls were then 
removed from the dataset, and RPCA was used to integrate the DSB-normalized ADT 
data across libraries. Following RPCA, the data was re-scaled and cell cycle scores and 
the number of ADT counts and features were regressed out. The harmonized RNA and 
RPCA-corrected ADT were combined using Weighted Nearest Neighbors, with default 
parameters except for prune.SNN = 1/20. Leiden clustering was run on the resulting graph 
(method = igraph), at a 1.4 resolution (67). Two clusters were removed with low to no 
expression of ADT and the object was reclustered with the same parameters. The Seurat 
function ‘FindAllMarkers’ was used to identify the top 5 markers per cluster.  

We removed 3 additional clusters: 2 were small clusters with a transcriptomic 
profile consistent with doublets (original Leiden clusters 26 and 29, Supplemental Figure 
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23), and 1 diffusely expressed cluster (original Leiden cluster 19, Supplemental Figure 
23). We further sub-clustered 3 clusters that expressed genes representative of more 
than one cell type: original Leiden clusters 16, 17 and 23. Sub-clustering was performed 
using Seurat’s ‘FindSubCluster’ function using the lowest possible resolution to divide the 
population into two clusters. Based on minimal transcriptional differences between them, 
original Leiden clusters 1, 5, 9, 11 and 15 were merged into a single CD4+T naïve 
population, clusters 3 and 10 into a single naive CD8+T population, and cluster 7 and part 
of the subsetted cluster 23 CD56dim NK population. Due to interpersonal heterogeneity in 
monocytes, all CD14+ monocyte clusters were merged into one CD14+ monocyte 
population (68). 
  While annotating, we discovered that the FOXP3-signature normally attributed to 
Tregs was only present in a subset of the cluster and FindSubCluster did not appropriately 
isolate the FOXP3+ cells. We therefore subsetted the cluster and re-ran 
‘FindVariableFeatures’, ‘ScaleData’, ‘RunPCA’, ‘FindNeighbours’, ‘FindClusters’ with the 
Louvain algorithm and a resolution of 0.8, and ‘RunUMAP’. This enabled us to subset a 
smaller group of cells with a statistically significant expression of FOXP3 compared to 
other clusters using FindAllMarkers, which we hence annotated T regulatory cells. 
Annotation was performed using both canonical gene and protein markers. One B cell 
population consisted almost solely of cells from two donors. This was annotated as 
B_naive4, and was not used in downstream analysis, but included in UMAPs. 
 
Cell type proportion analysis 
Cell type proportion was calculated as the proportion of each cell type for each individual 
and was compared for: treatment-naive JDM compared to HC, treatment-naive JDM 
compared to inactive JDM and inactive JDM compared to HC using Kruskal-Wallis test 
with Dunn’s post-test.  To determine the association between cell abundance and disease 
activity, the Spearman correlation coefficient between cell type proportion and physician 
global VAS scores was calculate and p values were adjusted using BH.   
 
Differential gene and protein expression analysis 
The DGE and DPE analysis were completed using DESeq2. Size factors were set using 
the function ‘computeSumFactors’ from the scran package. We used the default settings 
for single cell data, namely test=‘LRT’, useT = T, minmu = 1e-6, fitType = ‘glmGamPoi’, 
and minReplicatesForReplace = Inf in the ‘DESeq’ function. Batch was included as a co-
variate using the ‘reduced’ argument. We filtered genes and proteins that were not 
expressed in at least 5% of cells and analyzed only cell types where there were at least 
100 cells in each group. We used cutoffs of |LFC| ≥ 1 for genes, |LFC| ≥ 0.5 for proteins, 
and BH p < 0.05. Over-representation analysis was performed on up- and downregulated 
genes per cell type using the clusterProfiler package with GOBP as reference and 
adjusted p < 0.05. For the PD1/CD45R0-subanalysis, we compared groups using 
Seurat’s FindMarkers with test.use = ‘MAST’, latent.vars = ‘well’, |LFC| ≥ 0.5, and BH  
p<0.05. 
 
Identification of global IFN signature  
We curated a list of all genes differentially expressed between treatment-naïve JDM and 
HC in at least 2 cell types. The average expression of each gene was calculated using 
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Seurat’s ‘AverageExpression’ function per sample for each cell type and visualized using 
dittoSeq’s ‘dittoHeatmap’ (69) with default, unsupervised clustering settings of both rows 
and columns. Dendrograms were ordered using the dendsort package (70). This 
identified 7 distinct modules, where Module 1 consisted exclusively of Type I IFN-
stimulated genes. Average Module 1 scores for each cell type were then calculated using 
Seurat’s ‘AddModuleScore’ with default settings. Correlations between disease activity 
and IFN score was calculated using Spearman correlation and visualized using ggplot2 
(71). 
  
Network inference from RNA data using DECIPHERseq 
We applied NMF to the raw RNA count data as implemented in the DECIPHERseq 
method with default parameters and the NMF rank, k, chosen using the weighted subtrees 
metric based on phylogenetic clustering (20). The final choices of rank for each cell type 
were kB=17, kCD4T=17, kCD8T=14, kgdT=13, kMyeloid=17, kNK=11 according to the saturation 
point in the elbow plots (Supplemental Figure 24). Network clustering was performed on 
the per-sample averaged program scores with default parameters. Marker gene scores 
were calculated on the corresponding gene loading vectors for each GEP as previously 
described (72). GSEA was performed on the resultant ranked gene lists using the fgsea 
(73) package in R with GO and Hallmark gene sets. Module themes were assigned by 
calculating module enrichment p-values using the ‘Get_enrichment_pvals’ function in 
DECIPHERseq with default parameters. Module and gene set enrichment results were 
visualized using ClusterProfiler (74). 
 
Validating signatures in independent data 
We performed CITEseq using the same protocol as described above with PBMCs from 5 
patients with JDM and 2 healthy pediatric controls.  We used the same steps for data 
processing with the exception that we used CellBender rather than SoupX for ambient 
RNA removal and clustered cells using the RNA measurements only (75).  To derive 
proxy scores for GEP in the independent dataset, we ranked the gene lists comprising 
each program by marker score, which quantifies how strongly a single gene contributes 
to that GEP. Using the top 5% of genes by marker score, that list was used as input for 
the rank-based gene subset enrichment method AUCell (76). Pseudobulk proxy GEP 
scores were calculated as the per-patient mean expression in the same way for the 
original NMF programs. Case vs control comparisons were done using t-tests between 
JDM patients and HCs. Given the patients per group (HC = 2, Active JDM = 4, TNJDM = 
1) in this validation cohort, we could not repeat the ANOVA comparisons used for disease 
activity association in the original dataset. Instead, proxy GEP scores were correlated to 
VAS global using the Spearman correlation. 
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Statistics 
All statistical analyses and visualization of results were performed using open-sourced R 
(version 4.2.3). Pairwise comparisons of cell proportions between patient groups were 
performed using a Kruskal-Wallis test with two-tailed post-hoc Dunn comparison, with p-
values adjusted for multiple comparisons by Holm correction. Significance of Pearson 
correlations between GEPs used for network construction was calculated using 
bootstrapping as implemented in DECIPHERseq. Analyses of disease association with 
GEPs was performed using two-tailed unpaired t-test or ANOVA with post-hoc Tukey test. 
False discovery rates for GSEA annotation and module enrichment across programs 
were calculated and corrected at the cutoff FDR < 0.01. Gene loading similarity was 
calculated as the Pearson correlation between gene loadings for each activity program 
and all other activity programs in the same module with p-values calculated by 
permutation testing. All data with error bars was plotted as mean ± SD. Correlation 
methods used in specific figures are described in the corresponding legends and in 
Methods, and significance for all statistical tests was set at the threshold P < 0.05. 
 
Study approval  
This study was approved by the UCSF IRB #17-24003. Written informed consent to 
participate in this study was provided by the participant or the participants’ legal guardian 
depending on the age of the participant.  Assent was obtained when appropriate. 
 
Data availability 
The datasets presented in this study are deposited in the CZ CELLxGENE Discover 
resource as ‘CITEseq of JDM PBMCs’  
(https://cellxgene.cziscience.com/collections/c672834e-c3e3-49cb-81a5-
4c844be4a975). The code used for this analysis will be made publicly available on Github 
at “grabadam-cal/jdm_crosslong” upon manuscript acceptance. Values for all data points 
in graphs are reported in the Supporting Data Values file. 
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Figure 1: Study design and analysis strategy for profiling PBMCs from 27 samples (n=22 

JDM, n=5 HC)  

(A) Overview of clinical characteristics of study cohort. Individuals are labelled by the donor ID 
used throughout the paper (JDM 1-15, HC 16-20). Longitudinal samples were collected from the 
following donors: JDM1, JDM2, JDM4, JDM8, JDM13, and JDM15. Icon shapes denote disease 
activity group and shades of blue denote medication regimen.  
(B) Analysis strategy for CITEseq data from PBMCs. 
 
Figure 2: Cell types associated with JDM in peripheral blood.  

(A) UMAP constructed using weighted-nearest neighbors (wnn) clustering colored by cell type.  
pDCs=plasmacytoid dendritic cells, cDCs=classical dendritic cells, PBs=plasmablasts. B_mem 
= memory B cells.   
(B) Heatmap with top 2 markers per cluster.  
(C) Boxplot shows cell type proportion by disease group, using Kruskal-Wallis test with Dunn’s 
post hoc test comparing TNJDM to HC, TNJDM to inactive JDM, and inactive to HC (Holm p.adj 
< 0.05, *p.adj < 0.05, **p.adj < 0.01). The dotplot above shows the Spearman correlation 
between corresponding cell type proportion in boxplot and Physician Global VAS, where the 
size of the dot indicates the correlation, the color indicates the direction of the correlation, and 
the border weight indicates significance (p.adj < 0.05).  
(D) Heatmap with selected ADT protein markers. Asterisks mark significant comparisons 
between TNJDM and HC per cell type with an absolute LFC>0.5 and p.adj < 0.05. 
 
Figure 3: Type I IFN-induced gene and protein expression is associated with disease 

activity in JDM in CD14+ monocytes.  

(A) Heatmap of average IFN score per cell type and sample. Hierarchical  clustering was 
performed using Euclidean distance and the complete clustering method. IFN score was 
calculated based on average expression of IFN module across all cells per sample.  
(B) Spearman correlation between IFN score and Physician Global VAS colored by disease 
group.  
(C) Scatter plot showing Spearman correlation between CD169 (SIGLEC-1) expression in 
CD14+ monocytes and Physician Global VAS.  
(D) Scatter plot showing Spearman correlation between IFN score and Physician Global VAS. 
(E) Scatter plot showing Spearman correlation between CD169 expression and IFN score  in 
CD14+ monocytes. 
 
Figure 4. DECIPHERseq extracts gene expression programs from scRNAseq data in JDM.  

(A) Overview of the DECIPHERseq workflow.  
(B) Heatmap showing 6 major clusters of GEPs identified by DECIPHERseq (Pearson). GEPs 
are clustered into modules, with isolated GEPs filtered out (greyscale).  
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Figure 5. Network of coordinated biological activity inferred from GEPs in peripheral 

blood. 
(A) Network constructed from correlated GEPs in PBMCs from JDM patients and healthy 
controls. Nodes represent programs in the given cell types and edges represent positive 
significant correlations (Pearson, p<0.05).  
(B) Dotplot showing selected gene sets found to be enriched within specific modules compared 
to the rest of the network. Color corresponds to module enrichment p value and size 
corresponds to a set’s rank in list of significantly enriched gene sets for that given module 
ordered by ascending module enrichment p-value (Network permutations, GSEA FDR<0.01). All 
gene sets shown fall in the top 10 terms for their respective modules (total gene sets: 626). 
 
Figure 6. JDM is associated with a central IFN hub and cell specific gene programs in the 

B and CD4T compartments.  
(A) Zoomed in graph of Module 1. GSEA results for Response to Type I IFN GO term shown 
with each node colored according to FDR.  Adjusted p-value of module enrichment is also 
shown.  
(B) Heatmap showing significant differences in expression of selected programs between HC 
(n=5) and JDM patients (n=22), with columns annotated by p-values (p<0.05) of case-control (t-
test) and disease activity association (4-group ANOVA).  
(C) Network graph showing case-control analysis of each program’s expression, with node size 
scaled according to p-value and colored according to strength of the association between 
disease status and program expression (t-test). 
 
Figure 7. Disease activity in JDM is associated with central hub of IFN response in 

network, correlated with dysregulated immune cell states.  

(A) Network graph showing results of 4-group ANOVA of each program’s expression, with node 
size scaled according to p-value and colored according to strength of the association between 
disease status and program expression.  
(B) Heatmap showing significant differences in expression of selected disease activity 
associated programs between HC (n=5), Inactive JDM (n=6), Active JDM (n=7), and TNJDM 
patients (n=9). Columns are annotated by p-values of case-control t-test and disease activity 
association (4-group ANOVA).  
(C-D) Selected network modules colored by FDR of enrichment for indicated gene ontology set 
(FDR<0.01) or gene loading similarity within Modules 2 (C) and 5 (D).   
 
Figure 8. JDM-associated signatures identified by DECIPHERseq can be validated in 

independent samples.  
(A) Clinical characteristics of validation cohort (n=7). HC18 was included in original cohort but 
an independent sample was collected and analyzed for this dataset. Individuals are labelled by 
the donor ID used throughout the paper. Immunosuppressants denoted as ‘+’ for patients 
JDM22-25 were as follows: (JDM22 - methotrexate), (JDM23 - IVIG, cytoxan), (JDM24 - 
hydroxychloroquine, MMF, IVIG, tofacitinib), (JDM25 - methotrexate, IVIG).  
(B) UMAP of scRNAseq data from validation cohort PBMC samples, colored by six major cell 
types corresponding to labels used in original cohort.  
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(C) Boxplots of case-control comparisons (HC=2, JDM=5) for selected programs queried in 
validation dataset using AUCell (t-test, *p<0.05, **p<0.01).  
(D-E) Scatterplots correlating disease activity (PGA) with AUCell scores for selected IFN 
programs (D) and selected disease activity programs (E) in validation dataset (Spearman, 
p<0.05). 


















