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ABSTRACT 

Spatial profiling of tissues promises to elucidate tumor-microenvironment interactions and 

generate prognostic and predictive biomarkers. We analyzed single-cell, spatial data from three 

multiplex imaging technologies: cyclic immunofluorescence (CycIF) data we generated from 102 

breast cancer patients with clinical follow-up, and publicly available imaging mass cytometry and 

multiplex ion-beam imaging datasets. Similar single-cell phenotyping results across imaging 

platforms enabled combined analysis of epithelial phenotypes to delineate prognostic subtypes 

among estrogen-receptor positive (ER+) patients. We utilized discovery and validation cohorts to 

identify biomarkers with prognostic value. Increased lymphocyte infiltration was independently 

associated with longer survival in triple-negative (TN) and high-proliferation ER+ breast tumors. 

An assessment of ten spatial analysis methods revealed robust spatial biomarkers. In ER+ disease, 

quiescent stromal cells close to tumor were abundant in good prognosis tumors, while tumor cell 

neighborhoods containing mixed fibroblast phenotypes were enriched in poor prognosis tumors. 

In TN disease, macrophage/tumor and B/T lymphocyte neighbors were enriched and lymphocytes 

were dispersed in good prognosis tumors, while tumor cell neighborhoods containing vimentin-

positive fibroblasts were enriched in poor prognosis tumors. In conclusion, we generated 

comparable single-cell spatial proteomic data from several clinical cohorts to enable prognostic 

spatial biomarker identification and validation.    

 

 

  



INTRODUCTION 

Recent advances in the breast cancer treatment landscape have motivated the characterization of 

the breast tumor microenvironment for deeper understanding of tumor-stroma interactions. For 

example, identifying biomarkers predicting breast cancer immunotherapy response is still an 

urgent clinical need (1). In metastatic TNBC, only a quarter of PD-L1 positive patients respond to 

single-agent immune checkpoint blockade (1). In contrast, in early-stage TNBC, response rates to 

neoadjuvant immune checkpoint plus chemotherapy were similar in PD-L1 positive and negative 

groups (2). This highlights the need for biomarker development for better patient stratification 

across disease stages and spatial characterization for improved understanding of tumor-

microenvironment interactions in resistant patients.  

 

Highly multiplex imaging methods enable quantification of dozens of biomarkers in a single tissue 

section at sub-cellular resolution while retaining spatial context (3–8). Tissue structures such as 

tertiary lymphoid structures, identified with multiplex imaging, are predictive biomarkers of 

immunotherapy response in melanoma (9,10). Spatial proximity between tumor, immune and 

stromal cell types is associated with response to neoadjuvant therapy in HER2+ breast cancer (11). 

In several breast cancer multiplex imaging studies, single-cell spatial context has prognostic 

relevance and shows correlations with transcriptomic and genomic features of tumors (12–15).  

 

However, spatial biomarkers can be difficult to reproduce due to limited numbers of patients used 

to develop them and difficulties in comparing data from different imaging platforms. Furthermore, 

overfitting is an issue in biomedical imaging data due to the number of steps in the processing 

pipeline and the number of variables and parameters involved. Overfitting can be addressed 

through use of a discovery cohort to tune analytical methods, which are then fixed and 

subsequently applied to a validation cohort (16). In theory, validation cohorts can be readily 

obtained by incorporating publicly available data from disparate imaging platforms into biomarker 

studies. In practice, integrated analysis of such data remains a challenge. Furthermore, metadata 

documentation, analysis protocols and code are essential for data reuse and reproducibility of 

findings, preferably using open-source software tools (16). We developed an open-source python 

software, mplexable (17), for multiplex image processing and analysis, which we use herein to 

process and analyze three multiplex imaging breast cancer cohorts: a cyclic immunofluorescence 

(CycIF) dataset which we generated, and publicly available imaging mass cytometry (IMC) and 

multiplex ion-beam imaging (MIBI) datasets (12,14,18). This proof-of-concept study identifies 

prognostic single-cell spatial biomarkers common across imaging platforms. As imaging datasets 

become more widely available, our tools can facilitate biomarker discovery with high accuracy, 

reliability, and efficiency.      

  



RESULTS 

Multiplex imaging datasets from different platforms produce similar single-cell phenotypes 

We generated CycIF data from two tissue microarrays (TMAs) containing surgical breast cancer 

specimens and obtained publicly available breast cancer multiplex images generated with antibody 

panels targeting similar antigens from IMC and MIBI platforms (Figure 1A-B). Image processing 

was standardized across all three datasets using our mplexable pipeline (Figure 1A). The CycIF 

data was comprised of 42 biomarkers imaged at a resolution of 0.325 µm per pixel in entire cores 

with 1.2 to 1.4 mm diameters, with 1-2 full cores imaged per patient (Figure 1C top). The IMC 

data included 35 biomarkers imaged in the largest square area contained within the TMA cores 

(from 0.6 - 0.8 mm diameter), at a resolution of 1 µm per pixel (Figure 1C middle) (14). The MIBI 

data included 36 biomarkers imaged in 0.8 x 0.8 mm square ROIs at a resolution of 0.5 µm per 

pixel (Figure 1C bottom)(12).  

 

Clinicopathological information was available for the IMC and CycIF datasets. Stage, tumor size 

and patient age at diagnosis were available for 364 patients in the CycIF and IMC datasets and 

grade was available for 275 patients in the IMC dataset (Supplemental Figure 1A). Similar 

fractions of early and advanced stage patients were analyzed by IMC and CycIF, apart from the 

CycIF TNBC group lacking stage 4 patients (Supplemental Figure 1B). Treatment information 

was available for the CycIF dataset; sixteen TNBC patients and one ER+ patient were treated with 

neoadjuvant chemotherapy (NAC). NAC-treated patients had shorter recurrence-free survival 

(RFS) with no difference in overall survival (OS, Supplemental Figure 1C). Multivariable CPH 

modeling revealed that tumor size but not NAC independently predicted RFS (Supplemental 

Figure 1C), and NAC treated patients had larger tumors (p<0.001, Supplemental Figure 1D). 

Consistent with this, NAC-treated tissues had a higher fraction of Ki67+ proliferating cells within 

the epithelial compartment as well as a lower fraction of Vimentin+ fibroblasts in the non-

epithelial stroma; but these were not significant after correcting for multiple testing (Supplemental 

Figure 1E). These results are consistent with NAC being given to downsize tumors before surgery 

in a subset of patients. 

 

We used the same analytical methods for each platform to generate single-cell phenotypes via 

unsupervised Leiden clustering followed by visual inspection and annotation. We validated this 

method on serial breast cancer TMA slides approximately 20 m apart stained with similar CycIF 

panels on different dates (17). Across five cores, the average Pearson correlation R-value between 

cell type fractions was 0.99, SD=0.02, demonstrating excellent reproducibility (Supplemental 

Figure 1F-G).  

 

In the CycIF dataset, we clustered cells using 23 markers plus nuclear area. We visualized the 

single cells using a UMAP embedding, confirming good separation of lineage specific markers: 

CD31, endothelial; E-cadherin (Ecad), epithelial; Collagen I (ColI), extracellular matrix; vimentin, 

mesenchymal cells including activated fibroblasts; and CD45, immune infiltrate (Supplemental 

Figure 2A). The UMAP visualization showed good mixing of cells from different TMA sources, 

indicating minimal batch effects, and separation of tumor cells from different breast cancer 

subtypes (Supplemental Figure 2B). Clustering resulted in 23 cell type clusters (Supplemental 



Figure 2C). The mean expression of each biomarker in each cluster was used to annotate cell types 

and lineages (i.e., endothelial, epithelial, fibroblast, immune and other stromal, Supplemental 

Figure 2D). The most common cell types included luminal and luminal ER+ tumor, CD4 T cells, 

vimentin+ fibroblasts and quiescent stroma (Supplemental Figure 2D). To confirm our clustering-

based cell typing, we performed manual gating on lineage specific markers (Supplemental Figure 

2E). Gating and clustering-based cell lineages localized to similar areas of the UMAP and had 73% 

agreement on a single cell level, as calculated using metrics.accuracy_score in scikit-learn (20) 

(Supplemental Figure 2E, F).       

 

As in the CycIF dataset, we visualized lineage marker expression, TMA batch effects, breast 

cancer subtype and clustering results on a UMAP in the IMC dataset, confirming separation of cell 

lineages and mixing of cells from separate TMAs (Supplemental Figure 3A-C). We used 21 

markers plus nuclear area for clustering, resulting in 24 cell types (Supplemental Figure 3D). Upon 

annotation, we found the most common cell types were similar to those in the CycIF samples, 

namely luminal, luminal ER+, and ER+ HER2+ tumor, vimentin or fibronectin (FN)+ fibroblasts, 

quiescent stroma, and T cells (Supplemental Figure 3D). Clustering and gating-based cell lineages 

localized similarly on a UMAP and had 77% agreement (Supplemental Figure 3E-F).  

 

The MIBI panel included more immune-specific markers than the other panels and had only 15 

markers shared with our CycIF panel (Figure 1B). To audit deeper immune contexture, we 

clustered using all 33 markers plus nuclear area and eccentricity. Again, we visualized lineage-

specific markers and clustering with a UMAP to confirm separation of cell lineages and annotated 

22 cell types of which luminal tumor, fibroblasts, T cells and quiescent stroma were the most 

common, similar to CycIF and IMC (Supplemental Figure 4A-C). Gating and clustering-based 

localized similarly on a UMAP and had 72% agreement (Supplemental Figure 4D-E).  

 

Cell type fractions are similar across platforms 

While the most common cell types were similar across platforms, for further validation we 

compared the fractions of the five main cell lineages across platforms. In all three platforms, cell 

lineage identity and spatial distribution matched the underlying imaging data (Figure 1C-D). We 

calculated the fraction of cells in each lineage for each platform and breast cancer subtype. Both 

gating and clustering cell types showed high correlation (Pearson R=0.97 gating and 0.96 

clustering) across platforms for ER+ (n=30 CycIF, 170 IMC) and TNBC (n=59 CycIF, 50 IMC, 

41 MIBI) while HER2+, which had a smaller number of samples (n=8 CycIF, 22 IMC) had more 

variability between platforms (Figure 1E, Supplemental Figure 5A). We did note some platform-

specific bias; for example, IMC showed a smaller fraction of immune cells defined by clustering 

in all three subtypes (Figure 1E). Therefore, when setting high/low cutoffs for cell abundances, we 

calculated high and low relative to each platform and subtype, as opposed to the whole dataset. 

Since different antibody clones, probes and imaging systems were used, resulting in different 

signal-to-background ratios between platforms, even for the same target, we believe this is 

necessary to account for technical variability.  

 

As an additional validation, we obtained CycIF and MIBI data collected from sections of the same 

TMA containing normal tonsil, lymph node, liver, pancreas and placenta tissues. CycIF data was 

collected from the entire TMA core, while MIBI data was collected from 500 x 500 m ROIs in 



each core (Supplemental Figure 5B). Despite the order of magnitude difference in the number of 

cells analyzed, the MIBI and CycIF data showed good concordance, with and overall Pearson 

correlation of 0.88 (p=0.008, Figure 1F). Cell types showed similar spatial localization between 

platforms and general consistency across the nine cores analyzed (mean Pearson’s r=0.89, 

SD=0.13, Supplemental Figure 5B, C). 

 

Finally, we considered whether heterogeneity across the tumor would confound observations of 

cell type abundances from TMA cores. We collected CycIF data from full tissue sections of an 

ER+ and a TNBC tumor (21), and selected ROIs from within the tumor core, on the tumor/stroma 

border, and in the adjacent normal tissue (Supplemental Figure 5D-E). As expected, we found 

significant differences in epithelial and stromal cell phenotypes between tumor and adjacent 

normal after normalizing for epithelial content (Supplemental Figure 5F). In contrast, in both 

tumor sections we found no significant difference in cell type abundance in the tumor core and at 

the tumor/stroma border after normalizing for the number of epithelial cells (Supplemental Figure 

5G-H). Without normalizing for epithelial content, border ROIs in TNBC had more CD8 T cells 

and quiescent stroma (False Discovery Rate, FDR<0.05) and trended towards more B cells and 

macrophages (FDR<0.06) while tumor ROIs had more luminal tumor (Supplemental Figure 5I). 

Intratumoral heterogeneity is a concern when analyzing TMAs, but if we normalize for epithelial 

content, variations in the location of the TMA core punch, i.e., closer to the tumor core or the 

tumor/stroma border, had no substantial impact on cell type abundance in this small sample.            

Unsupervised clustering defines prognostic tumor subtypes consistent across platforms 

First, we examined the prognostic value of epithelial cell type-based subtypes. To normalize for 

epithelial content, we calculated the fraction of each epithelial cell phenotype in the total epithelial 

cells in that sample. We then normalized across platforms by z-scoring cell fractions within each 

platform (Supplemental Figure 6A-D). For subtyping based on single-cell epithelial phenotypes, 

z-scored fractions of epithelial cell types (excluding rare cell types < 4% of total) were used to 

Leiden cluster ER+ and TNBC patients from all platforms (Figure 2A, Supplemental Figure 6E). 

The resulting seven clusters included tissues enriched for luminal, basal, luminal ER+, 

myoepithelial, cytokeratin-low, and proliferating tumor cells, as well as a heterogeneous group not 

dominated by one phenotype (Figure 2A-B, Supplemental Figure 6F). Each subtype cluster 

contained a mixture of patients from multiple platforms, with no significant relationship between 

platform and subtype (Chi-squared p=0.2 ER+, p=0.52 TNBC, Figure 2C-D). The epithelial 

subtypes present in the ER+ patients were prognostic (log-rank OS p=0.04, n=162 patients, Figure 

2E). Cox proportional hazards modelling (CPH) showed that the heterogeneous subtype 6 had a 

hazard ratio > 1, suggesting poor prognosis (p=0.079, Figure 2F). The CPH hazard ratios (HRs) 

were similarly ordered across the IMC and CycIF cohorts, with heterogeneous subtype 6 having a 

HR > 1 in both platforms (Supplemental Figure 7A, B). Investigation of the poor prognosis subtype 

6 tissues revealed expression of CD44 and EGFR in ER+ tumor cells (Supplemental Figure 7C). 

Quantification of epithelial marker expression showed increased CD44 and EGFR expression in 

subtype 6, but not more epithelial heterogeneity quantified by Shannon entropy (FDR<0.05, Figure 

2G, Supplemental Figure 7D-E). We asked whether poor prognosis subtype 6 harbored any 

distinctive stromal cell types.  Quantification showed significant enrichment of CD31+ endothelial 

cells in subtype 6 (Tukey HSD p<0.05 Figure 2H). In TNBC patients the epithelial subtypes were 

not significantly associated with prognosis (Supplemental Figure 7F-H).  



Microenvironment subtypes associate with clinical subtypes 

Next, we examined the prognostic value of stromal cell type-based subtypes. We clustered patients 

based on the stromal cell type fraction in each tissue in a similar manner to the epithelial subtyping 

above, selecting k=6 for the number of clusters (Supplemental Figure 8A-C). Since the stromal 

phenotypes differed across platforms due to different markers, we clustered patients from each 

platform separately, using the fractions of stromal cell types representing greater than 2% of the 

stromal compartment. The stromal subtypes were not prognostic, except for the MIBI platform 

(log-rank=0.003, CPH p=0.056, n=39 patients, Supplemental Figure 8D-F). However, we 

observed significant correlation between stromal subtypes and clinical subtypes ER+ and TNBC. 

In the CycIF cohort, ER+ patients had significantly more of the vimentin+ (Vim) stromal subtype 

0 and less T cell-rich stroma compared to TN (Chi-squared p=0.098, Bonferroni p-adj<0.05 for 

subtype 0, n=89 patients, Supplemental Figure 8G). Similarly, in the IMC cohort, ER+ patients 

had more Vim+/ fibronectin+ (FN) fibroblast stromal subtype 0 and significantly less T cell 

stromal subtype 4 compared to TN (Chi squared p=0.002, Bonferroni p-adj<0.05 for subtype 4, 

n=220 patients, Supplemental Figure 8H). Our characterization of stromal subtypes supports the 

observation that ER+ breast cancer is immune-poor (22) and shows significant enrichment for 

Vim+ and FN+ fibroblasts relative to TNBC.    

T cells are an independent prognostic factor in TNBC and high proliferation ER+ tumors 

To further investigate the prognostic value of multiplex imaging-defined cell types we utilized a 

discovery cohort to tune analytical methods, which were then fixed and subsequently applied to a 

validation cohort (16). The CycIF TMA1 dataset served as a discovery cohort to identify cell types 

whose fraction in the tissue were significantly associated with OS and determine cut-offs for 

prognostic high/low abundance. We tested the 0.33, 0.5 and 0.66 quantile to binarize tissues into 

low and high cell abundance (Supplemental Figure 9). For any cell type showing prognostic 

significance (log-rank p<0.05), we selected the cut-off with the lowest p-value for validation in 

the other datasets, correcting for testing of multiple cell types using the Benjamini-Hochberg 

method. Using this methodology, we found that a high abundance of T and B cells were associated 

with longer OS in TNBC in both the discovery and validation cohorts (validation FDR<0.05, 

Figure 3A-B).  

 

Prognostic biomarkers significant as a single variable were combined with the clinical variables 

of stage, patient age and tumor size in a multivariate Cox-proportional hazards (CPH) model. In 

TNBC samples with clinical data, high CD3 T abundance remained significantly associated with 

longer OS in the multivariate model (CPH p=0.038, n=88, Figure 3C). High CD20 B cell 

abundance trended towards longer OS in the multivariate model (CPH p=0.073, n=89, Figure 3D).  

 

CD3 T cells were not associated with OS in the ER+ breast cancer patients (FDR=0.12, n=162), 

however, in tumors with proliferation above the median, increased CD3 T cells were associated 

with longer OS (FDR=0.0028, n=74) (Figure 3E). Multivariate CPH modelling revealed that high 

CD3 T cells were independently prognostic for longer OS in high proliferation but not low 

proliferation ER+ tumors (CPH p=0.028 high proliferation, p=0.99 low proliferation, Figure 3F). 

Separation of tumors into high and low by median proliferation and median T cell abundance 

showed that in ER+ disease high proliferation, high T cell tumors had the best prognosis, while 



high proliferation low T cell had the worse prognosis (log-rank p=0.0071, Figure 3G). In TNBC, 

both tumors with high proliferation and low proliferation (i.e., above and below the median, 

respectively), had similarly good survival if they had high-T cells (i.e., above the median), while 

low-T cell tumors had similarly poor survival regardless of proliferation status (log-rank p=0.011 

Figure 3G). Multivariate CPH modelling revealed that patients with high CD3 T cell abundance 

trended towards longer OS for high proliferation but not low proliferation TNBC tumors (CPH 

p=0.067, p=0.31, Figure 3H). Survival analysis in each platform revealed outcome stratification 

by T cell abundance and proliferation in ER+ patients from the IMC cohort but not the CycIF 

cohort (log-rank p=0.028 and 0.4), and in TNBC patients from the IMC and CycIF cohorts but not 

MIBI cohort (log-rank p=0.056, 0.012 and 0.49, Supplemental Figure 10A-B).  

 

T cells in patients deriving a survival benefit from infiltration have distinct functional states 

 

To elucidate T cell functional states present in patients deriving a survival benefit from T cell 

infiltration, we compared T cell spatial localization and marker expression in T cell infiltrated 

groups with different survival outcomes. There was no significant difference in T cell abundance 

or T cell to macrophage or endothelial ratio in high versus low proliferation ER+ tumors 

(Supplemental Figure 10C). Interestingly, high-proliferation ER+ tumors in the IMC cohort, which 

gained survival benefit from CD3 T cells, showed more clustering of CD3 T cells than low-

proliferation ER+ tumors, quantified by the mean number of T cell neighbors of each T cell (Tukey 

HSD p=0.01, Figure 3I). High proliferation ER+ tumors in the CycIF cohort, which did not gain a 

survival benefit from CD3 T cells, did not show increased T cell clustering (Kruskal-Wallis 

p=0.61, Supplemental Figure 10D). Similarly, CD3 T cells in high-proliferation ER+ tumors from 

IMC cohort had higher levels of the proliferation marker Ki67 and the memory/effector marker 

CD44 than in low proliferation ER+ tumors, indicating a more activated functional state (Tukey 

HSD p=0.04 and 0.001, Figure 3J-K). In the CycIF cohort, similar differences in Ki67 and CD44 

expression were observed between ER+ and TNBC subtypes, consistent with an activated T cell 

state correlating with a survival benefit derived from increased T cell infiltration (Supplemental 

Figure 10E). High-proliferation TNBC, in which T cells independently predicted OS, showed 

increased levels of PD-1, FoxP3, IDO and Lag3 expression in T cells, consistent with upregulation 

of negative feedback checkpoints following immune activation (Supplemental Figure 10E-F). 

Epithelial cells in high-proliferation TNBC had increased expression of the antigen presentation 

molecule HLA-Class-1 and immune checkpoint PD-L1 (Supplemental Figure 10G). 

Analysis of tumor-stromal proximity reveals robust spatial biomarkers  

Intrigued by the finding that T-cells in high-proliferation tumors had increased T cell neighbors 

and were associated with a survival benefit (Figure 3I), we leveraged our discovery and validation 

cohort analysis to systematically investigate cellular spatial relationships as prognostic biomarkers 

in breast cancer. We calculated the number of immune, stomal and tumor neighbors within 

proximity of each other to derive previously described biomarkers including mean neighbor counts 

(11,13), tumor-immune mixing score (12), immunoregulatory interactions (18), lymphocyte 

clustering and lymphocyte occupancy (15). We also used common statistical methods for 

quantification of spatial correlation (Ripley’s L, Kcross and Gcross functions) (23). Analysis of 

proximity between cells of different lineages revealed that increased stromal (i.e., non-fibroblast, 

non-immune, non-endothelial) neighbors within 40 m of epithelial cells predicted longer 



recurrence-free survival (RFS) in the discovery (log-rank p=0.018) and validation ER+ cohorts 

(FDR=0.028), and independently predicted RFS in a multivariate CPH model with clinical co-

variates (CPH p=0.02), while increased immune neighbors within 40 m of immune cells 

associated with longer OS in both TNBC cohorts (validation FDR=0.019), but not in the 

multivariable model (CPH p=0.14, Figure 4A-D). Analysis of cell type neighbors showed 

increased macrophage neighbors within 40 m of tumor and increased B cell neighbors within 40 

m of T cells trended towards longer RFS in TNBC in both cohorts (validation FDR=0.052) and 

remained significant the multivariate model (CPH p=0.047 Macrophage-tumor, p=0.017 B cell-T 

cell, Figure 4E-H). Additional spatial metrics, including Ripley’s L, Kcross and Gcross, did not 

yield any significant biomarkers in the validation cohort (Supplemental Figure 11A).  

 

Previously, Ali et al. (13) showed that heterotypic neighbors of myofibroblasts, fibroblasts, 

cytokeratin low tumor cells, and vimentin+ Slug-macrophages were associated with poor outcome 

and homotypic neighbors of fibroblasts and myofibroblasts were associate with good outcomes in 

all breast cancer subtypes. We tested the prognostic value of heterotypic and homotypic neighbors 

of fibroblast subsets, CK low tumor and macrophages but did not find the significant association 

with survival (log-rank FDR>0.3, Supplemental Figure 11B-C). Previously, Keren et al. (12) 

showed that a high tumor-immune mixing score was associated with poor survival in TNBC. We 

were able to reproduce with our cell typing the prognostic value of the mixing score in the MIBI 

cohort, where it was developed (log-rank p=0.027, Figure 4I). However, in a validation cohort 

containing CycIF and IMC patients, the mixing score was not prognostic (log-rank p=0.26, Figure 

4I), nor was it independently prognostic in samples with clinical outcome (CPH p=0.4, 

Supplemental Figure 11D).  

 

Wortman et al. developed metrics for lymphocyte isolation and spatial dispersion which were 

linked to longer RFS in TNBC (15). Like Wortman et al., we found that in our TNBC cores, the 

majority (57 percent) of lymphocytes near tumor cells (i.e. within 20 m) were isolated, defined 

as fewer than 5 lymphocytes per 20 m radius, but unlike their findings, isolated lymphocytes near 

tumor in our data were not significantly associated with RFS (Supplemental Figure 11E). OS was 

significant, with greater numbers of isolated B cells near tumor cells associated with longer 

survival (log-rank FDR=0.014), which trended in a model with clinical co-variates (p=0.058, 

Supplemental Figure 11F). For lymphocytes near tumor cells, we calculated occupancy AUC, or 

area-under-the-curve of lymphocyte quadrant counts at different length scales, and fractal 

dimension (FD) difference, determined from slope of the log-log plot of the number of squares 

with at least one tumoral lymphocyte vs. the inverse box size, as described (15). Higher values of 

both metrics are indicative of spatial dispersion while lower values are associated with clustering. 

Similar to Wortman et al. (15), higher tumoral B and T cell occupancy AUC was associated with 

longer RFS in TNBC, which remained prognostic for B cells in the multivariable model (Figure 

4J-K). While FD differences could only be calculated in tissues with lymphocytes present near 

tumor and intact tissue >200m2 sampled, higher tumoral T and B cell FD differences were 

associated as single variables with longer OS (Figure 4L), and T cell FD trended in the 

multivariable model (p=0.063, Supplemental Figure 11G).  

 

Formerly, Patwa et al. demonstrated in the MIBI cohort that increased spatial interaction between 

cells expressing immunoregulatory proteins PD-1, PD-L1, IDO and Lag3 were associated with 

longer RFS (18). We repeated this analysis using PD-1 in the CycIF TNBC dataset and found that 



high PD-1 interactions were associated with longer OS, but not RFS (log-rank p=0.025, 0.2), and 

this trended in a multivariate model of OS with clinical covariates (CPH p=0.05, Figure 4M-N, 

Supplemental Figure 11H). Similar to Patwa et al., we found no prognostic value of lineage marker 

interactions (Supplemental Figure 11I).  We were not able to replicate the prognostic value of 

functional protein interactions (log-rank OS p=0.06) and co-expression (log-rank OS p=0.38) that 

Patwa et al., previously reported (18) (Supplemental Figure 12A-B), although the CycIF panel’s 

functional proteins only partially overlapped (7 of 18) with those analyzed in the MIBI dataset. 

Overall, our broad evaluation of spatial metrics across datasets revealed both examples of 

biomarkers with opposite survival associations in different platforms (Supplemental Figure 11A) 

and concordance with some previously identified biomarkers (15, 18), demonstrating the 

importance of a validation cohort (Supplemental Figure 12C). 

 

To identify spatial metrics which provided additional information beyond abundance, we 

calculated the Pearson correlation between each spatial metric and cell type abundance within each 

patient’s tissue (Supplemental Figure 13). Stromal neighbors of epithelial (good prognosis in ER+) 

correlated with quiescent stroma abundance and macrophage neighbors of tumor (good prognosis 

in TNBC) correlated with macrophage abundance (Supplemental Figure 13). CD20 B cell 

neighbors of T cells, isolated lymphocytes and lymphocyte occupancy AUC (good prognosis in 

TNBC) correlated with each other and T and B cell abundance (Supplemental Figure 13). The 

tumor-immune mixing score was positively correlated with tumor abundance and negatively 

correlated with immune abundance (Supplemental Figure 13). Many of the Kcross and Ripley’s L 

function results correlated with each other and were not as strongly correlated with abundance 

(Supplemental Figure 13).   

 

Neighborhood analysis reveals multicellular spatial biomarkers 

 

Finally, we analyzed multicellular spatial neighborhoods by considering stromal cells within 100 

m radius of each tumor cell. We used spatial latent Dirichlet allocation (LDA) to model the 

neighborhood around each tumor cell as a combination of topics, utilizing a spatial parameter to 

increase the likelihood that adjacent cells share the same topics (24). LDA analysis can capture 

smoothy transitioning microenvironments (24) by assigning a probability for each topic to each 

neighborhood (Figure 5A). Each topic describes a microenvironment containing one or more cell 

type and each cell type can be in one or more topic; for example, in CycIF data, topic-0 in TNBC 

tissues was enriched in macrophages, vimentin+ fibroblasts and CD4 T cells (Figure 5B, cyan 

arrowhead), while CD4 T cells are found in topic-0, 4, 5 and 6 (Figure 5B, magenta arrowhead). 

After topic modelling, K-means clustering was run on the single-cell topic matrix to define “tumor 

neighborhood” clusters which contained one or more topics (Figure 5A-C). Clustering the topic 

matrix rather than the neighbor count matrix is believed to be less sensitive to noise (25). The 

spatial LDA neighborhood clusters were annotated based on their topics and examination of the 

images showed neighborhoods reflected the spatial distribution of the markers in the tissue (Figure 

5A, Supplemental Figure 14A-D). As expected, we observed transitioning/mixed neighborhoods 

within both TNBC and ER+ neighborhood cluster results (Figure 5B-E). A TNBC tissue in our 

CycIF cohort, for example, showed tumor cell neighborhoods with more T cells (blue) on the 

tumor margin, with macrophage-rich neighborhoods in the tumor core (purple) (Figure 5A). These 

neighborhoods transition into a mixed neighborhood (brown), and finally a vimentin+ FB 

neighborhood (green) distant from the infiltrating T cells (Figure 5A). An ER+ tissue showed 



quiescent stroma neighborhoods in the tumor core, vimentin+ FB neighborhoods on the tumor 

margin and T cell neighborhoods in tumor nests isolated in the stroma (Supplemental Figure 14A, 

D). Similar neighborhoods were identified in the IMC TNBC and ER+ cohorts (Supplemental 

Figure 14E-H) but the MIBI cohort was excluded from neighborhood analysis due to lower stromal 

cell type overlap (Figure 1B). For survival analysis, we used the CycIF TMA1 as a discovery 

cohort and CycIF TMA2 plus IMC patients as a validation cohort. Due to the small sample size, 

we used an FDR threshold of 0.1 rather than 0.05 to report findings. Increased Vimentin+ FB 

neighborhoods around tumor cells were associated with shorter OS in both TNBC cohorts 

(validation log-rank FDR=0.07, Figure 5F). Increased vimentin+ fibroblast neighborhoods were 

associated with shorter OS and RFS in the multivariate model (CPH p=0.049 OS, 0.053 RFS 

Figure 5G). Interestingly, vimentin+ fibroblast abundance alone was not prognostic in TNBC 

(Supplemental Figure 14I). In ER+ tumors, increased mixed fibroblast neighborhoods containing 

vimentin-positive and -negative fibroblasts around tumor cells were associated with shorter OS 

(validation log-rank p=0.088) and trended significant in the multivariable model (CPH p=0.087 

OS, p=0.046 RFS, Figure 5H-I). Finally, similar to other groups (25), we found that directly 

clustering the neighborhood counts using Kmeans (rather than running LDA and clustering the 

topics) did not result in robust prediction of prognosis (Supplemental Figure 15). 

Tumor phenotypes correlate with stromal cell abundance and spatial neighborhoods 

We hypothesized that there would be significant correlation between tumor cell types and the 

spatial LDA neighborhoods, correlations that could shed light on biologically and clinically 

relevant tumor-stroma crosstalk. First, we visualized a matrix of pairwise correlation between 

epithelial and stromal cell fractions and spatial LDA neighborhoods across subtypes 

(Supplemental Figure 16). Epithelial cell types were inversely correlated with each other (p<0.05 

TNBC, except basal-like; p<0.001 ER+ BC), indicating most tumors had just one main epithelial 

cell type (Supplemental Figure 16). The exception was luminal tumor, which correlated with 

cytokeratin low tumor in ER+ breast cancer, indicating mixing of these ER-negative phenotypes 

within the same tissues (Figure 5J, p<0.001).  

 

Immune cells exhibited distinct tissue-level correlations in the different subtypes. In ER+ breast 

cancer, T cells correlated with B cells (Figure 5J, p<0.001), while proliferating tumor and 

macrophages correlated with endothelial cells (p<0.01 and p<0.05, Supplemental Figure 16B) but 

not T cells (Figure 5J, p=0.35). In TNBC, T cells correlated with proliferating tumor (Figure 5K, 

p=0.01), and macrophages correlated with CD8 T cells (Figure 5K p=0.028). Vimentin+, FN+, 

and ColI+ fibroblasts, as well as quiescent stroma were inversely correlated with immune cells 

(p<0.05, Supplemental Figure 16). In both subtypes, spatial LDA neighborhoods correlated 

strongly with the abundance of their respective stromal cell types; however, neighborhoods 

showed unique correlations to other cell types present. For example, proliferating tumor cell 

abundance did not correlate with T cell abundance in ER+ breast cancer, but it did correlate with 

the fraction of T cell neighborhoods (Figure 5L, p=0.015). In TNBC, vimentin+ and fibronectin+ 

fibroblast abundances were not correlated (Supplemental Figure 16), but their respective 

neighborhoods were inversely correlated (Figure 5L, p=0.048), suggesting exclusivity for a single 

fibroblast phenotype near tumor cells in each tissue. Therefore, although spatial neighborhoods 

tend to correlate with cell abundance, they can reveal unique features of tumor-stromal 

organization in tissues.   



DISCUSSION 

Our approach of standardized processing and analysis across multiple imaging platforms shows 

the power of our methods for biomarker discovery. We incorporated analysis of two publicly 

available imaging datasets with our own CycIF data for efficient discovery of robust biomarkers.       

 

We utilized our validated method for CycIF staining and image processing (17) to generate 

multiplex imaging data of 42 markers in single tissue sections from two TMAs with clinical 

follow-up. Our dataset alone represents a valuable new clinical cohort that provides improved plex, 

resolution, and ROI size compared to previously published datasets (12,14). We then developed 

an analysis pipeline (https://github.com/engjen/cycIF_TMAs) to generate single-cell phenotyping 

data from our CycIF dataset and two publicly available datasets (12,14). The advantage of using 

our pipeline for image processing is the development of smoothing algorithms so that pixelated 

IMC and MIBI data can be segmented with deep-learning models trained on higher resolution 

images and an algorithm to match nuclear and cell segmentation results from separate deep-

learning segmentation models to extract features from subcellular compartments such as the 

nucleus and cytoplasm. Using our methods, we generated single-cell data that produced a high 

correlation between cell types across cohorts from the same breast cancer subtype and different 

platforms, as well as serial slides profiled with different platforms (Figure 1E-F).  

 

Additionally, we identified similar epithelial phenotypes across platforms and clustered patient 

data from all platforms to separate seven epithelial subtypes without platform-specific bias (Figure 

2). Our subtypes were consistent with the intrinsic breast cancer subtypes (26), including a luminal 

ER+ luminal A-like group with good prognosis and a cytokeratin low group previously shown to 

share features with luminal B tumors (13). Triple-negative breast cancers also fell into categories 

similar to those defined by gene expression profiling (27), including a highly proliferative, basal-

like 1 (BL1)-like group, a luminal androgen receptor (LAR)-like group with luminal epithelial 

phenotypes, and a group with a basal/myoepithelial phenotype reminiscent of the basal-like 2 

(BL2) group. We also identified a heterogeneous subtype with low cytokeratin and elevated CD44 

expression that may represent tumors with mesenchymal features. Jackson et al. identified a 

similar single-cell pathology cluster of hormone-receptor-positive mixed tumors with poor 

prognosis (14). Our analysis showed that the ER+ tumors in the heterogeneous subtype had a poor 

prognosis and increased angiogenesis. An EMT program in breast cancer cells is linked to 

increased vascular endothelial growth factor A expression, increasing angiogenesis and the 

capacity for tumor initiation (28), a mechanism that could explain these correlated tumor and 

stromal phenotypes and their association with poor outcome.  

 

Tumor-infiltrating lymphocytes have been linked to good prognosis in TNBC (29), and we 

confirmed that T and B cells are independently prognostic in TNBC in the multiplex imaging 

datasets analyzed herein. Previous gene expression profiling studies link productive anti-tumor 

immunity and tumor proliferation. Nagalla et al. found that immune signatures were prognostic 

solely in breast cancer patients with the highest proliferation gene expression (30). Subsequently, 

the same group showed that immune gene signatures were prognostic in highly proliferative basal-

like, HER2-enriched and luminal B subtypes, but not those with low proliferation (31). Similarly, 

we have shown that CD3 T cells are independently prognostic specifically in high-proliferation 

ER+ and TNBC tumors.  

https://github.com/engjen/cycIF_TMAs


 

Our analysis of immune functional states showed increased T cell proliferation, activation, 

checkpoint molecule expression and epithelial antigen presentation in high-proliferation tumors, 

consistent with IFNγ pathway activation. Consistent with our analysis, gene network analysis 

previously showed activation of TNFα/IFNγ signaling pathways in tumors with productive anti-

tumor immunity and TGF-β, an immunosuppressive cytokine, in tumors with unproductive anti-

tumor immunity (31). TGF-β also has anti-proliferative effects and is associated with good 

outcomes in ER+ breast cancer cohorts (32), suggesting that it could mechanistically link lower 

proliferation rates with immunosuppression and represent a rational drug combination with 

immune checkpoint targeting (33).  

 

Thomas et al. recently showed that immune gene signatures were prognostic exclusively in tumor-

mutation burden (TMB)-high breast cancer tumors (34). Thirty-seven percent of basal-like tumors 

had high TMB, while only 11.5% of luminal A tumors did (34), explaining the poor 

immunogenicity of the latter subtype. Together, these data point to a model of high TMB 

correlating with high proliferation and both linked to productive anti-tumor immunity. It had been 

hypothesized that oncogenes driving sustained proliferation also induce DNA replication stress, 

which generates genomic instability and presumably increase TMB (35). In summary, TMB 

provides a mechanistic link between proliferation and anti-tumor immunity and should be 

investigated in future studies. Furthermore, our analysis shows enrichment of potential immune 

checkpoint targets in high-proliferation breast cancer, including PD-1, Lag3, IDO and PD-L1 

elevation. 

 

One of the main goals of this study was to provide methods and a framework for robust 

identification of spatial biomarkers. Using external cohorts to validate biomarkers discovered in 

our CycIF data increases our confidence in biomarker identification. In ER+ breast cancer, we 

found that increased stromal neighbors of tumor correlated with better prognosis, similar to 

previous studies showing a survival benefit of high stroma in ER+ tumors (36). We found that 

macrophage proximity to tumor was associated with good prognosis in TNBC, which is 

unexpected given previous publications. Specifically, tumor-associated macrophages (TAMs) (37) 

were associated with shorter OS in a cohort of ER+ and ER- patients, but the prognostic value of 

macrophages specifically in TNBC was not investigated. Furthermore, Medrek et al. (38) found 

that CD68+ macrophages in close proximity to tumor cells were not associated with poor survival, 

but those out in the stroma were, suggesting that it may be difficult to compare our metric of 

macrophage-tumor neighbors in a 40 m radius with previous studies and further investigation is 

warranted. Finally, numerous immune-related spatial biomarkers, including immune-immune 

proximity, B cell-T cell proximity, immunoregulatory interactions, isolated lymphocyte 

abundance and lymphocyte occupancy, were associated with good prognosis in TNBC, supporting 

a model of productive anti-tumor immunity in the triple-negative subtype. Encouragingly, our 

results for the prognostic value of lymphocyte spatial metrics were similar to those of Wortman et 

al.(15) and Patwa et al. (18)   

 

We utilized spatial LDA modelling to analyze multicellular neighborhoods of stromal cells 

surrounding tumor cells. We identified a neighborhood enriched for vimentin+ fibroblasts that was 

independently associated with shorter survival in TNBC. Given the high levels of vimentin and 

low levels of alpha-SMA, these cells may have an inflammatory phenotype similar to CAFs that 



differentiate under TNFα + IL-1β stimulation (39). Interestingly, TNFα + IL-1β have been shown 

to stimulate pro-metastatic chemokine expression (CXCL8, CCL2 and CCL5) and aggressive 

characteristics in TNBC cell lines, mediated in part by direct CAF-tumor cell contact in co-cultures 

(40), consistent with proximity between putative poor-prognosis CAFs and tumor cells in spatial 

LDA neighborhoods.  

   

The limitations of our study include different antibody probes and imaging systems resulting in 

different signal-to-background ratios for biomarkers across platforms. Therefore, our integrated 

analysis relied on matching annotated clusters across platforms. This introduces uncertainty since 

our annotations may not correspond to the same cell types in each platform. Some well-defined 

phenotypes, such as T cells and proliferating tumor, are relatively straightforward, and we found 

high correlation between normal cell types on adjacent slides analyzed on MIBI and CycIF 

platforms, respectively (Figure 1F, Supplemental Figure 5B-C). However, variable performance 

of antibodies, such as anti-ER, for example, could lead to variability in the classification of 

phenotypes such as luminal ER+ versus luminal tumor across platforms. To correct for platform-

specific bias in cell types, we binarized patients into high/low expression within each subtype and 

platform for survival analysis. However, such binarization may not reflect underlying 

heterogeneity in quantitative biomarker abundance.  

 

Another limitation of our study is the use of 1-2 TMA cores per patient for analysis. It has been 

shown that a limited number of TMA cores (≤3) are needed to binarize patients into high and low 

TILs, although a larger number of cores (≥11) are needed to accurately estimate the mean TIL 

abundance of a full tissue section (41). Our survival analysis relied on binarizing patients; 

therefore, the use of TMAs may be appropriate in this context. We undertook a limited analysis of 

large tissue sections from which we selected “virtual TMA” punches from the tumor core and 

border. We found that tumor and stromal cell type abundances were not markedly different in the 

core versus border after normalizing for epithelial content (Supplemental Figure 5D, G-I). 

Sampling larger tissue areas could potentially improve spatial biomarker performance, although 

increased heterogeneity in large sections could introduce noise, especially if they include adjacent 

normal, which we found to have significantly different epithelial and stromal phenotypes 

compared to the tumor (Supplemental Figure 5E-F). The optimal balance between the area 

analyzed in each tissue and number of patients included for estimation of prognostic tumor 

microenvironment composition and spatial architecture remains an open and important question 

in the field.     

 

Overall, our spatial analysis supports the utility of spatial information in uncovering novel 

biomarkers of patient outcome in breast cancer. The tools developed in this study can be used to 

analyze additional cohorts further to characterize biomarkers in breast cancer and other tumor 

types.   

  



METHODS 

Patient samples 

Two breast cancer tissue microarrays were provided by Dr. Jennifer Pietenpol (Vanderbilt 

University Medical Center [VUMC], Nashville, TN). All samples were collected at time of 

surgical resection (mastectomy or breast-conserving surgery) at VUMC with the same fixation 

protocol. JP-TMA1 had 131 cores of approximately 1.2 mm diameter, with duplicate cores from 

19 TNBC, 8 HER2+ and 36 ER+ patients. Four of the TMA1 TNBC patients received neoadjuvant 

chemotherapy. JP-TMA2 contained a single, slightly larger (~1.4 mm diameter) core from 39 

triple-negative tumors and 1 ER+/HER2+ core. Thirteen of the patients in TMA2 received 

neoadjuvant therapy. Clinical outcome and clinicopathological information were available for 

TMA1 and TMA2. 

Sex as a biological variable  

Only female patients were included, as females account for more than 99% of breast cancer (42).  

Imaging data generation and sources 

CycIF staining of tumor tissue was completed on JP-TMA1 and TMA2 using our protocol: 

dx.doi.org/10.17504/protocols.io.23vggn6. Antibodies used for staining are available in the source 

data. The whole tissue core was imaged using fluorescence microscopy as described (17). MIBI 

imaging data was previously published by Keren et al. (12) and the images were downloaded from 

https://mibi-share.ionpath.com/tracker/imageset under the name “Keren et al., Triple Negative 

Breast Cancer.” Survival and recurrence data were obtained from a second publication by the same 

group (18), and were downloaded from https://github.com/aalokpatwa/rasp-mibi. IMC imaging 

data were previously published by Jackson et al. (14) and images and clinical data were 

downloaded from https://doi.org/10.5281/zenodo.3518284.  

Image Processing 

CycIF tiff images were registered, segmented and single-cell intensity as well as nuclear size and 

shape features were extracted as described (17). Nuclear and cell segmentation were run using the 

Cellpose algorithm (43), which showed visually superior performance on CycIF data compared to 

a watershed algorithm (Supplemental Figure 17A). Nuclear and cell segmentation masks were 

matched using mplexable, enabling subtraction of nuclear mask from cell mask to obtain 

segmentation of the cytoplasm (Supplemental Figure 17B). 

 

MIBI and IMC images were downloaded as multipage OMEtiffs. Hot pixels (13) were detected 

by identifying pixels that were 10 standard deviations above a median filtered image with a 2x2 

pixel kernel size. Hot pixels were set to the median filter values and resulting images were saved 

as tiffs for downstream feature extraction. For nuclear segmentation preprocessing, DNA images 

were rescaled between the 3rd and one and a half times the 99.999 quantile. The gamma value was 

http://dx.doi.org/10.17504/protocols.io.23vggn6


adjusted by 0.6 in MIBI data and 0.4 in IMC data to enhance dimly stained nuclei. A two-channel 

nuclear plus cytoplasm image was generated for cell segmentation. For MIBI cytoplasm 

segmentation preprocessing, the β-catenin, vimentin, CD45 and CD31 channels were combined 

into a maximum intensity projection image and the gamma value was adjusted by 0.6. For IMC 

cytoplasm segmentation preprocessing, E-cadherin, vimentin, CD44 and CD45 were combined 

into a maximum intensity projection image and gamma adjusted by 0.4. Chamboelle total variation 

denoising, implemented in scipy (44), was used to smooth out pixelated nuclear and cytoplasmic 

projection images (weight=0.1, except weight=0.05 for IMC cytoplasm). All parameters were 

selected by testing segmentation results at https://www.deepcell.org/predict and cellpose.org 

(Supplemental Figure 17C-D). Skipping either nuclear or cytoplasmic Chamboelle total-variation 

de-noising resulted in failure of deep learning-based algorithms on the IMC data (Supplemental 

Figure 17E). Mesmer segmentation (45) performed better than Cellpose (43) in IMC data due to 

improved detection of dim nuclei, likely due to the incorporation of cytoplasmic staining in the 

nuclear segmentation model (Supplemental Figure 17D, yellow box). Cellpose was successful in 

CycIF images, which had brighter DNA staining. For IMC and MIBI data, nuclear and cellular 

segmentation were performed on preprocessed segmentation images using Mesmer (45). Matching 

of cell IDs in the nuclear and cell masks was done with mplexable (17), with cell masks relabeled 

to match the ID of the nucleus to which they had most overlap. Cytoplasm masks were calculated 

by subtracting the nuclear mask from the matching cell mask. Nuclear and cytoplasmic mean 

intensity, nuclear size and shape features, and nuclear centroid coordinates were extracted with 

mplexable (17).  

 

Mesmer segmentation was compared to the watershed-based segmentation originally published by 

Jackson et al. (14). The cell counts across the two methods had a Pearson correlation of 0.98 

(Supplemental Figure 18A). Visual examination of ROIs with discordant cell numbers revealed 

that Mesmer segmentation performed better in tissues with necrosis and high background noise in 

the DNA channel (Supplemental Figure 18B-D). 

Image Quality Control 

In IMC data, artifacts include non-specific background staining, necrotic regions, and bright 

antibody aggregates. IMC data were collected from small ROIs (~6002 µm) within TMA cores and 

some samples annotated as estrogen-receptor (ER)+ tissues did not show any ER+ staining in the 

ROI. Therefore, quality control (QC) was performed on ER-stained images, a marker noted to 

exhibit non-specific background staining on the IMC platform (46). QC images of ER staining 

were generated and sorted in a blinded fashion into negative and positive for nuclear-specific 

staining (Supplemental Figure 19A). Only ROIs from clinically annotated ER+ patients that were 

classified as ER+ during QC or ROIs that came from ER- patients and classified as ER- were used 

for analysis (Supplemental Figure 19B). Samples that passed ER QC did not have significantly 

different grade, PR status, TMA block, age of specimen, age of patient or tumor size compared to 

those that failed QC (Supplemental Figure 19C-D). There were no significant survival differences 

between QC passed versus failed tumors from ER+, TNBC or ER+HER2+ patients (Supplemental 

Figure 19E). Additional QC steps included: necrotic regions were manually circled using the napari 

(47) image viewer and excluded and bright aggregates in the CD3 channel were excluded by 

removing cells above a threshold set at the intensity of CD3+ cells showing an appropriate 

membranous staining pattern. 



 

In the CycIF data, imaging artifacts included autofluorescence (AF), non-specific background, 

floating tissue and tissue loss. Background AF images were obtained halfway through CycIF data 

collection, and these images were scaled by exposure time in each round of staining and subtracted 

from the AF488, AF55 and AF647 channels using mplexable (17). Feature extraction was 

performed on AF subtracted images. Areas of floating tissue, air bubbles or necrotic regions were 

manually circled using the napari (47) image viewer and excluded. Non-specific background 

staining was removed by setting intensity thresholds for selected markers and subtracting those 

values from extracted data. The PD1 antibody had bright aggregates that were excluded with an 

upper threshold. Tissue loss was detected by cells that lacked DAPI staining in the last round of 

imaging, and these cells were excluded.  

 

In all three platforms, additional artifacts caused by floating tissue or imaging problems (e.g., dark 

or bright bands across IMC and MIBI images, perhaps caused by problems with the rastering 

process) were detected through unsupervised clustering and visual inspection of clusters on the 

images. Clusters comprised of artifacts showed atypical, very bright or dim staining in many 

channels, formed distinct artifact clusters and were removed.  

Single-cell phenotyping 

Cell types were defined in two ways: manual gating and unsupervised clustering. Unsupervised 

clustering was conducted using the scanpy (19) software. Single-cell mean intensity values were 

selected from either the nucleus or cytoplasm masks for each marker, depending on expected 

subcellular distribution. Since the CycIF and IMC platforms had more marker- and breast cancer 

subtype-overlap than the MIBI panel (Figure 1B, Supplemental Figure 20) twenty matching 

markers were selected for clustering in these datasets, plus selected markers for immune, epithelial 

and fibroblast subsets (collagen I [ColI], CD4, CD8 in CycIF, and fibronectin [FN], pan-

cytokeratin [panCK] in IMC). For MIBI data, all available markers were used for clustering. 

Additionally, the nuclear area feature was used for clustering. Each marker was divided by its 

standard deviation, without zero-centering, and clipped above twenty standard deviations. A 

Uniform Manifold Approximation and Projection (UMAP) embedding was generated using 30 k-

nearest neighbors and clustered using the Leiden community detection algorithm (48). The Leiden 

resolution parameter was selected that resulted in 20 - 25 clusters. Each cluster was annotated and 

categorized as epithelial, endothelial, fibroblast, immune or stromal. Some clusters were 

comprised of multiple expected cell types, and these were manually split, for example, the CD44+ 

cluster was split into CD44+ tumor and CD44+ stroma based on manual gating results (described 

below).   

 

We then performed manual gating to verify our annotated-cluster cell type. A threshold was set 

for each gating marker based on the expected pattern of positive staining in images. Fibroblasts 

were defined as positive for one or more of vimentin, fibronectin (FN) or collagen I (ColI). 

Epithelial cells were defined as positive for one or more of Ecad, cytokeratins, or β-catenin. 

Endothelial cells were defined as CD31+. Immune cells were defined as CD45+. Stromal cells 

were defined as all non-fibroblast, non-endothelial, non-epithelial, non-immune segmented nuclei.  



Patient Subtyping  

Epithelial and stromal subtypes were determined by unsupervised clustering of patients based on 

the fraction of epithelial or stromal cell types within each compartment, respectively. Cell types 

representing greater than 2-4% of the total cell population in the respective tissue compartment 

were used for clustering. This cutoff was chosen to ignore rare cell types that may represent 

method-specific artifacts. Cell fractions were normalized across platform using standard scaling. 

Unsupervised clustering of patients was performed using the Leiden algorithm implemented in 

scanpy (19). For epithelial subtypes, the resolution of clustering was selected to minimize 

differences between the platforms (Figure 2). For stromal subtypes, we selected the minimum 

number of clusters needed to separate T cells from other clusters (k=6).  

Survival Analysis 

The CycIF TMA1 dataset was used as a discovery dataset to determine the quantile separating 

high and low abundance of each cell type or spatial metric that was most predictive of survival. 

Three quantiles were tested: 0.33 (e.g., split patients into 1/3 low and 2/3 high), 0.5 and 0.66. The 

most prognostic cutoff value was selected for each cell type and for cell types having prognostic 

value (alpha<0.05), these cutoffs were applied in the validation dataset, which included CycIF 

TMA2, MIBI and IMC samples. Since overall cell type fractions differed between platforms and 

subtypes (Figure 1), high and low values were determined relative to other samples from the same 

platform and subtype, using cutoffs from the discovery cohort. In the validation cohort, the log-

rank test p-values were corrected for multiple testing using the Benjamini–Hochberg method. For 

biomarkers with FDR < 0.1, multivariate Cox proportional hazards (CPH) modelling was used to 

combine imaging biomarkers with patient age, tumor size and clinical stage to test if they were 

independently prognostic. Collectively, 89 TNBC and 160 ER+ patients had these additional 

clinical parameters (not available in the MIBI dataset). 

Spatial Analysis 

Spatial distributions of cells were calculated as follows. For analysis of cellular neighbors (11) and 

homotypic/heterotypic interactions (13), each cell’s neighbors within a 40 µm radius were counted. 

For tumor-immune mixing score a 25 µm radius was selected to replicate Keren et al. (12) For 

lymphocyte clusters, a 20 µm radius was used and for lymphocyte occupancy a 10-300 µm grid 

squares were used, at 10 µm steps, both selected to replicate Wortman et al. (15) Voronoi 

tessellation was used to replicate spatial interactions as defined in Patwa et al. (18). Ripley’s L (a 

density-normalized measure of clustering) and the multitype K function (Kcross; a density-

normalized measure of two cell types co-localization) and G function (Gcross, a measure of two 

cell types co-localization) were calculated using spatsat (23) with a radius of 50 µm. Spatial latent 

Dirichlet allocation (LDA) analysis was done using spatialLDA (24), using the default radius of 

100 µm and 8 topics. Shorter distances of ~25 µm may be interpreted as cells nearly or directly 

touching, while 100 µm represents a distance at which oxygen, nutrients and potentially other 

molecules diffuse in tissues (49). Survival analysis was done as described above, using the CycIF 

TMA1 dataset as a discovery cohort and the other datasets as the validation cohort. For previously 

published biomarkers, the validation cohort included patients not used in developing those 

biomarkers. Specifically, the tumor-immune mixing score, developed using the MIBI cohort, was 



validated with the CycIF and IMC cohorts. Immunoregulatory interactions, also developed using 

the MIBI dataset, were validated in the CycIF cohort only, since the IMC panel lacked 

immunoregulatory markers. Lymphocyte clustering, lymphocyte occupancy and heterotypic 

neighbor biomarkers were initially developed in external cohorts, so all samples were included in 

the validation cohort (and no discovery cohort was used).  

 

Statistics 

 

For comparison of continuous variables, two-sided Pearson correlation was used. For categorical 

correlations, two-sided Mann-Whitney U test (two groups) or Kruskal-Wallis H-test (three or more 

groups) were used, with Tukey HSD correction for pairwise comparisons between groups. Two-

way Chi-squared analysis was used for categorical data, with Bonferroni correction for pairwise 

comparisons between groups.  Survival curves were estimated with Kaplan-Meier analysis and the 

log-rank test was used to calculate significance. Cox proportional hazard modeling was used to 

estimate hazard ratios and p-values in multivariate survival models. All p-values < 0.05 were 

considered significant. When multiple variables were tested for survival, Benjamini-Hochberg 

correction was applied in the validation cohort. False-discover rate (FDR) <0.05 was considered 

significant, except with spatial LDA neighborhoods, where FDR <0.1 was considered significant. 

 

Study approval 

 

Samples were obtained with written informed consent; sample collection complied with all 

relevant ethical regulations and was approved under Vanderbilt IRB protocol VICC BRE03103. 

Use of human samples for our study at Oregon Health and Science University was approved under 

IRB protocol STUDY00016712.  

 

Data availability 

 

Spatial and survival analysis code; CycIF, MIBI and IMC processing pipelines, single-cell 

phenotyping pipelines and precomputed data are available here: 

https://github.com/engjen/cycIF_TMAs. Supporting data values and antibody information is 

available in our Source_Data.xlsx file. Images and data files larger than 10 MB are available here: 

https://www.synapse.org/#!Synapse:syn50134757/   

  

https://github.com/engjen/cycIF_TMAs
https://www.synapse.org/#!Synapse:syn50134757/
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FIGURE LEGENDS   

Figure 1. Concordant cell phenotypes in multiplex imaging data from different platforms. 
A. Three multiplex imaging datasets from breast cancer tissue microarrays were processed through single cell 

segmentation and feature extraction using the mplexable pipeline. The single cell datasets were separately clustered 

using the unsupervised Leiden algorithm resulting in cell types which were annotated with similar names across 

platforms. We generated a suite of spatial statistics for each tissue and the resulting cellular and spatial features were 

used for discovery and validation of prognostic cell abundance and spatial biomarkers across datasets. CycIF, cyclic 

immunofluorescence; IMC, imaging mass cytometry; MIBI, multiplex ion beam imaging. B. Overlap of markers 

(left) and annotated cell types (right) in each multiplex imaging dataset. C. Representative images from the three 

multiplex imaging platforms showing epithelial (orange), immune (red) and fibroblast (green) markers. Scale bar = 

100 μm. Total of 413 patient tissues imaged. D. Cell lineage types showing cell location and lineages: epithelial 

(orange), immune (red), fibroblast (green), endothelial (blue) and other stromal (purple) CycIF, top; IMC, middle; 

MIBI, bottom. E. Correlation between platforms of fraction of each cell lineage per total cells per subtype, per 

platform, using unsupervised clustering and annotation to determine lineage. N number of patients for each subtype 

and platform shown in panel title. F. Correlation between cell types on adjacent sections of a TMA stained with 

MIBI and CycIF. N=9 tissues. E-F. Pearson’s correlation r (two-sided) between platforms and p-value shown in 

panel title.  

 

Figure 2. Prognostic ER+ breast cancer subtypes in multiplatform multiplex imaging data. 
A. Hierarchical clustering of all ER+ and TNBC patients (n=350) based on the z-scored fraction in each patient’s 

tissue of the six most common epithelial cell types. Heatmap annotation row colors show the Leiden clustering 

resulting in seven epithelial (Epithel.) subtype clusters (left), clinical subtype (center) and platform (right). B. Mean 

cell frequency of epithelial cell types per subtype cluster. C. UMAP embedding of patients by fraction of epithelial 

cell types in all tumor cells, colored by Leiden epithelial subtype cluster (top) and platform (bottom). N=350 

patients. D. Two-sided Chi-squared analysis of epithelial subtypes versus platform, p-values in panel title. E. 

Kaplan-Meier curves (p-value from log-rank test) comparing overall survival (OS) in the seven epithelial subtypes 

present in ER+ tumors. F. Cox proportional hazard (CPH) model estimating hazard ratios for epithelial subtypes of 

ER+ tumors. The hazard ratio estimates marked by boxes and error bars are the 95% confidence intervals.  G. CD44 

intensity in epithelial cells from poor prognosis epithelial subtype 6 compared to other ER+ patients. FDR corrected 

for multiple cell markers given in panel title; p-values from Mann-Whitney U rank test. H. Fraction of endothelial 

cells in tissue stromal cells of patient tissues from each epithelial subtype cluster. Kruskal-Wallis H-test P-value 

given in panel title. Post-hoc Tukey HSD p-values for pairwise comparisons between groups. D-H. N number of 

patients given in panel title. G-H. Boxplots show the median and interquartile range (IQR) and whiskers 1.5x the 

IQR. 

 

Figure 3. T cell infiltrate has prognostic value and distinct states in TN and high proliferation 

ER+ breast cancer.  
A. Kaplan-Meier analysis of abundance of CD3 T cells versus overall survival (OS) in TNBC discovery (left) and 

validation cohort (right). B. Kaplan-Meier analysis of abundance of CD20 B cells versus OS in TNBC discovery 

(left) and validation cohort (right) C. Multivariate CPH modeling adding patient age, tumor size and stage to CD3 T 

cell high variable defined in (A). D. Multivariate CPH modeling adding patient age, tumor size and stage to CD20 B 

cell high variable defined in (B). E. Kaplan-Meier analysis of abundance of CD3 T cell versus OS in all ER+ 

patients (left) and ER+ patients with high (above the median) tumor proliferation (right). F. CPH modeling of CD3 

T cell abundance plus clinical variables in high and low proliferation ER+ tumors. G. Kaplan-Meier analysis of all 

ER+ and TNBC patients stratified into four groups by median tumor proliferation and median T cell abundance. H. 

CPH modeling of CD3 T cell abundance plus clinical variables in high and low proliferation TNBC tumors. I. Mean 

number of T cell neighbors (within 25 m) of T cells in tissues from high and low proliferation ER+ or TNBC 

tumors in IMC cohort. J. Ki67 intensity indicating proliferation levels of T cells in tissues from high and low 

proliferation ER+ or TNBC tumors in IMC cohort. K. CD44 intensity in T cells, indicating memory/effector 

phenotypes in IMC tissues. A-H. All Kaplan-Meier p-values obtained from the log-rank test, validation cohort 

corrected for testing multiple cell types with Benjamini-Hochberg method. CPH modelling p-values for cell type 

variable given in panel titles; the hazard ratio estimates marked by boxes and error bars are the 95% confidence 

intervals. N number of patients given in panel titles. I-K. Kruskal-Wallis H-test P-value and N number of patients 



given in panel title. Post-hoc Tukey HSD used for pairwise comparisons between groups. Boxplots show the median 

and interquartile range (IQR) and whiskers 1.5x the IQR. 

 

Figure 4. Reproducible prognostic spatial metrics in breast cancer cohorts. 
A. Spatial locations of cells in a TMA core with each cell colored by number of CD3 T cell neighbors in a 40 μm 

radius. Tumor cells shown in orange. B-C. Kaplan-Meier (K-M) estimates of B) recurrence free survival (RFS) of 

ER+ patients with high versus low stromal neighbors of epithelial cells or C) overall survival (OS) of TNBC patients 

with high versus low immune neighbors of immune cells in a 40 μm radius in the discovery (left) and validation 

(right) cohorts. D. Multivariate CPH modeling of the effect of patient age, tumor size and stage with (left) ER+ 

patient stromal neighbors of epithelial cells from (B) on RFS or (right) TNBC patient immune neighbors of immune 

cells (from C) on OS. E & G. K-M estimate of RFS of TNBC patients with high versus low macrophage neighbors 

of tumor (E) or B cell neighbors of T cells (G) in a 40 μm radius in the discovery (left) and validation (right) 

cohorts. F & H. Multivariate CPH modeling of TNBC patient RFS versus macrophage neighbors of tumor (F) or 

CD20 B cell neighbors of CD3 T cells (H). I. K-M estimate of TNBC OS stratified by tumor immune mixing score 

developed by Keren et al. in the MIBI cohort (top) and validation cohort (i.e. CycIF and IMC; bottom). J. K-M 

estimate of TNBC OS stratified by occupancy AUC of lymphocytes in quadrants with length 10 – 300 m of T (left) 

or B lymphocytes (right) within 20 m of a tumor cell. K. Multivariable CPH modeling of T (left) and B 

lymphocyte (right) occupancy AUC with clinical co-variates. L. K-M estimate of OS in TNBC stratified by fractal 

dimension slope difference of large (<100 m) minus small (10-40 m) quadrants for T (top) or B lymphocytes 

(bottom) within 20 m of a tumor cell. M. Top: Representative image of CycIF core showing DAPI-stained nuclei 

(blue) and PD-1 staining (red), scale bar = 130 μm. Bottom: Voronoi tessellation of tissue from top, with all cells 

(blue), PD1+ cells (red) and interactions (black line). N. Top: K-M estimate of high (>1 interaction in tissue) versus 

low PD1 interactions in CycIF TNBC cohort. Bottom: CPH modeling of PD-1 interaction metric (originally 

developed by Patwa et al. in the MIBI cohort). A-N. All Kaplan-Meier p-values from log-rank test; validation cohort 

FDR corrected for multiple metrics tested with the Benjamini-Hochberg method. CPH modelling p-values for spatial 

variable given in panel titles; the hazard ratio estimates marked by boxes and error bars are the 95% confidence 

intervals. N number of patients given in panel titles. I-L. Metrics developed by Wortman et al. and higher values 

indicate spatial dispersion. 

  

Figure 5. Prognostic multicellular neighborhoods surrounding tumor cells modeled with spatial 

latent Dirichlet allocation.  
A. Top: CycIF staining of TNBC tissue showing tumor (panCK), T cell (CD4 and CD8), macrophage (CD68), 

fibroblast (vimentin), and endothelial (CD31) markers. Middle: Tumor cells colored by topic weights of select 

topics. Bottom: Tumor cells colored by their spatial latent Dirichlet allocation (LDA) neighborhood cluster. Tumor 

cells colored by T cell- (blue), macrophage- (purple), mixed fibroblast- (brown) and vimentin+ fibroblast-

neighborhoods (green). N=308 patients analyzed with spatial LDA. B, D. Heatmap of stromal cell enrichment in 

spatial LDA topics in a 100 μm radius of tumor cells in CycIF B) TNBC tissues (n=59) and D) ER+ tissues (n=30). 

C, E. Heatmap of fraction of each topic in each neighborhood cluster resulting from K-means clustering (k=8) of 

spatial LDA topics from C) TNBS and E) ER+ tissues. F. Kaplan-Meier (K-M) estimate of overall survival (OS) for 

high and low vimentin+ fibroblast tumor neighborhoods in TNBC tissues in discovery (left) and validation cohorts 

(right). G. CPH modelling of OS and recurrence-free survival (RFS) with clinical variables plus spatial LDA 

neighborhood from (F). H. K-M analysis of OS for high and low mixed fibroblast tumor neighborhoods in ER+ 

tissues in the discovery (left) and validation cohorts (right). I. CPH modeling of OS and RFS for mixed fibroblast 

neighborhoods in ER+ tumors. J-K. Pearson correlation of cell types within J) ER+ and K) TNBC tissues from all 

cohorts, colored by cohort (legend in L). Pearson correlation of neighborhood/cell type abundances, subtype in panel 

title, colored by cohort. F, H. p-values obtained from the log-rank test. G, I. CPH modelling p-values for spatial 

variable in panel title; the hazard ratio estimates marked by boxes and error bars are the 95% confidence intervals. J-

L. Cell types, cohort, and two-sided Pearson correlation (r) and p-values given in panel titles. F-L. N number of 

patients given in panel titles. 
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