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Introduction
Renal cell carcinoma (RCC) with sarcomatoid mesenchymal change is associated with poor prognosis (1). 
Sarcomatoid RCC (RCCsar) is no longer considered a separate pathological entity and can develop from 
multiple RCC histologic subtypes (2). However, RCCsar remains a clinically relevant diagnosis due to its 
increased aggressiveness, difficulty in subtyping when a more differentiated component is absent, resistance 
to targeted therapies, and increased sensitivity to immune checkpoint inhibitors (ICIs).

The association of  poor prognosis with sarcomatoid change is particularly pronounced in chromo-
phobe RCC (ChRCC) (3–5). Though traditionally considered an indolent subtype, ChRCC behaves aggres-
sively when sarcomatoid features are present (3, 4, 6, 7). The World Health Organization /International 
Society of  Urologic Pathology (WHO/ISUP) defines sarcomatoid histology as grade 4 (8). Nevertheless, 
unlike in other RCC subtypes, histologic grading of  ChRCC has not proven prognostic (8).

Based on its microscopic appearance, specifically the presence of cytoplasmic eosinophilia, ChRCC is sub-
divided into classic (ChRCCclassic) and eosinophilic (ChRCCeo) subtypes. Molecularly, ChRCC, especially the 
classic variant, is characterized by frequent loss of 1 copy of particular chromosomes (1, 2, 6, 10, 13, and 17) (9, 
10). In addition, in one of the first integrated genomic analyses performed, we previously reported that ChRCC 
is associated with TP53 and PTEN mutations (10). Similar findings were published by The Cancer Genome 
Atlas (TCGA) (9), which also identified mutations in the TERT promoter as well as in mitochondrial DNA.

Sarcomatoid dedifferentiation is common to multiple renal cell carcinoma (RCC) subtypes, 
including chromophobe RCC (ChRCC), and is associated with increased aggressiveness, 
resistance to targeted therapies, and heightened sensitivity to immunotherapy. To study ChRCC 
dedifferentiation, we performed multiregion integrated paired pathological and genomic analyses. 
Interestingly, ChRCC dedifferentiates not only into sarcomatoid but also into anaplastic and 
glandular subtypes, which are similarly associated with increased aggressiveness and metastases. 
Dedifferentiated ChRCC shows loss of epithelial markers, convergent gene expression, and whole 
genome duplication from a hypodiploid state characteristic of classic ChRCC. We identified 
an intermediate state with atypia and increased mitosis but preserved epithelial markers. Our 
data suggest that dedifferentiation is initiated by hemizygous mutation of TP53, which can 
be observed in differentiated areas, as well as mutation of PTEN. Notably, these mutations 
become homozygous with duplication of preexisting monosomes (i.e., chromosomes 17 and 10), 
which characterizes the transition to dedifferentiated ChRCC. Serving as potential biomarkers, 
dedifferentiated areas become accentuated by mTORC1 activation (phospho-S6) and p53 
stabilization. Notably, dedifferentiated ChRCC share gene enrichment and pathway activation 
features with other sarcomatoid RCC, suggesting convergent evolutionary trajectories. This study 
expands our understanding of aggressive ChRCC, provides insight into molecular mechanisms of 
tumor progression, and informs pathologic classification and diagnostics.
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Recently, 2 manuscripts explored the mutation landscape of  metastatic ChRCC. Using a combina-
tion of  whole genome and targeted region sequencing of  metastatic ChRCC cases, Casuscelli et al. found 
enrichment of  TP53 (58%) and PTEN (24%) mutations and duplication of  > 3 chromosomes (25%) (11). 
Roldan-Romero et al. reported mechanistic target of  rapamycin (mTOR) pathway gene (MTOR, TSC1, 
TSC2) mutations and their association with shorter disease-free survival (12).

While both sarcomatoid dedifferentiation and particular mutations have been associated with metas-
tases, how these 2 processes are linked remains unclear. Furthermore, the process whereby a differentiated 
tumor becomes sarcomatoid remains unknown. To gain insight, we evaluated paired ChRCC samples (epi-
thelial and dedifferentiated) using a comprehensive platform involving whole-exome sequencing (WES) 
and DNA copy number analyses (CNA), RNA-Seq, and detailed pathological and immunohistochemical 
studies. This integrated genomic/pathological analysis enabled us to chart a genotype-phenotype evolu-
tion of  ChRCC. We found that aggressive ChRCC frequently dedifferentiates prior to metastasis along 3 
phenotypic paths (sarcomatoid, anaplastic, or glandular dedifferentiation). We identified an intermediate 
state characterized by the coexistence of  epithelial markers with increased mitosis and atypia. Our working 
model suggests that dedifferentiation is initiated by TP53 mutation and is followed by whole genome dou-
bling (WGD) of  preexisting monosomes and mTOR complex1 (mTORC1) activation.

Results
Patient characteristics of  aggressive chromophobe RCC. We interrogated our institutional kidney cancer data-
base for pathologic diagnosis of  ChRCC. Between 1998 and 2020, ChRCC was diagnosed in 204 patients 
from a total of  3,964 consecutive nephrectomies. We identified patients who developed local and/or dis-
tant metastasis (henceforth referred to as aggressive ChRCC). At a median duration follow-up of  2.3 years 
(interquartile range, 0.4–4.8 years), 15 patients developed metastases (7.4%). The patient demographics 
and baseline tumor characteristics are summarized in Table 1. Demographics (age of  nephrectomy, sex, 
ethnicity, and race) were similar in both cohorts. Tumors that developed metastases were significantly 
larger (13 cm versus 4.5 cm; P < 0.001) and had higher rates of  lymphovascular invasion (77% versus 8%; 
P < 0.001) (Table 1).

The clinicopathologic characteristics of  12 aggressive ChRCC with available samples (3 patients under-
went resection at outside institutions) are summarized in Supplemental Table 1 (supplemental material 
available online with this article; https://doi.org/10.1172/jci.insight.176743DS1). Samples from metasta-
sis were available for 9 patients (Supplemental Table 2). None of  the patients had documented history of  an 
RCC-associated syndrome, and previously tested patients (n = 3) did not have a pathogenic/likely patho-
genic germline variant identified. At the time of  resection, most aggressive ChRCC were locally advanced. 
Seven patients had distant metastasis at presentation or within 3 months of  diagnosis (M1). Lymph nodes, 
both regional and distant, were common sites for metastases. At the time of  these analyses, 8 patients 
were deceased due to their disease (information unavailable for 1 patient). Interestingly, all tumors that 
metastasized had necrosis (100%), and sarcomatoid changes were found in 46% (P < 0.001). Overall, these 
findings suggest that ChRCC metastases develop infrequently but are consistently associated with adverse 
pathologic features.

Dedifferentiation occurs frequently in aggressive chromophobe RCC. We next performed detailed morpho-
logical analyses of  the 12 aggressive ChRCC with available tissue (all treatment naive samples except for 
OS03074). Notably, all tumors were of  classic subtype. Focal (subclonal) dedifferentiation (ChRCCdediff) 
was observed in 7 (58%) patients. We observed 3 morphologic patterns of  dedifferentiation — sarcoma-
toid, anaplastic, and glandular dedifferentiation (Figure 1A) — and often with more than 1 pattern in 
the same patient (Supplemental Table 2). The percentage of  the sarcomatoid component (spindle cells 
reminiscent of  sarcoma; ref. 2) varied between 5% and 90% and did not show an obvious association 
with time to recurrence. Anaplastic change comprised sheets of  large epithelioid cells with abnormally 
contoured, pleomorphic, hyperchromatic nuclei; prominent nucleoli; and dense eosinophilic cytoplasm. 
In 1 case (KC02826), anaplastic dedifferentiation was the only pattern of  dedifferentiation (Supplemen-
tal Table 2). We report glandular dedifferentiation composed of  cuboidal cells in tubules and micropapil-
lae (Figure 1A and Supplemental Figure 1A). Glandular dedifferentiation was the dominant pattern in 
2 cases (KC02543 and OS03661), comprising approximately 80% and 60% of  the tumor, respectively. 
CD117 (c-KIT), a marker routinely used for diagnosis of  ChRCC shared with the putative cell of  origin, 
was lost in ChRCCdediff. Epithelial markers such as cytokeratin 7 (CK7), which are strongly expressed in 
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ChRCCclassic, were markedly decreased or lost in most ChRCCdediff except for glandular dedifferentiation 
(Figure 1B, Supplemental Figure 1A, and Supplemental Table 2). Provocatively, in all cases, the transi-
tion from classic to dedifferentiation was markedly abrupt.

Tumor samples from 5 patients lacked frank dedifferentiation. On closer evaluation, 3 patients exhib-
ited prominent but focal nuclear atypia (ChRCCatyp), which we defined by the presence of  prominent 
nuclear pleomorphism, hyperchromasia, and atypical mitosis. Atypia was particularly striking in the met-
astatic samples but focally detectable in primary tumors as well (Supplemental Table 2; Group 2 and Sup-
plemental Figure 1A). Taken together, dedifferentiation/atypia was present in all but 2 patients (Supple-
mental Table 2). Two patients had only classic ChRCC, without readily visible dedifferentiation or atypia 
in the limited samples available for review, which in 1 case (KC02530) included only regional lymph nodes 
(Supplemental Table 2; Group 3).

We performed analyses comparing the differentiation state of primary tumors and metastatic samples. 
Among 9 patients with metastatic samples available for review (Supplemental Table 2), 7 had only dediffer-
entiated/atypical components in all of  their metastatic samples. ChRCCclassic histology was observed in only 2 
metastatic samples. Given that the dedifferentiation component in primary tumors accounted for approximate-
ly 25% (on average), there was substantial overrepresentation of dedifferentiated regions at metastatic sites (P = 
0.0003). Overall, these data suggest that the dedifferentiated component is more likely to metastasize.

Table 1. Baseline characteristics of patients with chromophobe renal cell carcinoma stratified by development of metastases 
(locoregional or distant).

 Developed 
metastasis

Free of metastasis Fisher’s P

Total number (%)A 15 (7.4) 189 (92.6)
Age at nephrectomy Median (IQR) 58.0 (50.0 to 63.0) 58.0 (48.0 to 69.0) 0.661

Sex Female 5 (33.3) 79 (41.8) 0.595
 Male 10 (66.7) 110 (58.2)

Ethnicity Hispanic 3 (20.0) 21 (11.3) 0.397
 Non-Hispanic 12 (80.0) 165 (88.7)

Race Black 1 (6.7) 26 (14.3) 0.462
 White 13 (86.7) 150 (82.4)
 Other 1 (6.7) 6 (3.3)

Laterality Bilateral 0 (0.0) 1 (0.5) 0.811
 Left 8 (53.3) 92 (49.2)
 Right 7 (46.7) 94 (50.3)

Tumor size (cm) Median (IQR) 13.0 (11.6 to 16.5) 4.5 (3.0 to 6.5) <0.001
Sarcomatoid features Present 7 (46.7) 0 (0.0) <0.001

 Not identified 8 (53.3) 169 (100.0)
Necrosis Present 13 (100.0) 31 (20.7) <0.001

 Not identified 0 (0.0) 119 (79.3)
Lymphovascular invasion Present 10 (76.9) 13 (7.8) <0.001

 Not identified 3 (23.1) 154 (92.2)
pT 1 0 (0.0) 138 (73.0) <0.001
 2 1 (6.7) 26 (13.8)
 3 13 (86.7) 25 (13.2)
 4 1 (6.7) 0 (0.0)

pN 0/X 8 (53.3) 189 (100.0) <0.001
 1 7 (46.7) 0 (0.0)

pM 0 6 (40.0) 189 (100.0) <0.001
 1 9 (60.0) 0 (0.0)

TNM stage 1 0 (0.0) 138 (73.0) <0.001
 2 0 (0.0) 26 (13.8)
 3 6 (40.0) 25 (13.2)
 4 9 (60.0) 0 (0.0)

AAdjusted for missing values. pT, pathogenic tumor; pN, pathologic regional lymph nodes; pM, pathologic metastases. Other indicates Asian race or 
unknown. 
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Transcriptional analyses. To gain insight into molecular underpinnings of  dedifferentiation, we inves-
tigated genomic features from paired classic (ChRCCclassic) and ChRCCdediff/atyp tumor areas (Supple-
mental Figure 1B and Supplemental Table 2). We first turned to whole transcriptome data from our 
cohort of  23 aggressive ChRCC (11 patients). Principal component analyses (PCA) identified 3 clusters, 
ChRCCclassic, ChRCCatyp, and ChRCCdediff (Supplemental Figure 1C). Interestingly, metastatic samples 
clustered with the corresponding histological subtype rather than separately (Supplemental Figure 1C). 
These data suggest that the differentiation state has a greater effect on identity than metastasis, sug-
gesting that dedifferentiation, rather than metastasis, is the overarching determinant of  biological state.

We explored differential expressed genes (DEG) in ChRCCdediff compared with their paired ChRCCclassic 
samples. We identified a total of 2,441 overexpressed and 2,044 underexpressed genes with an absolute log2 fold-
change (logFC) ≥ 1 and at a FDR ≤ 0.05 (Figure 2A and Supplemental Table 3). Interestingly, lineage-specific 
ChRCC signature genes — such as forkhead box I1 (FOXI1), its transcriptional target double-sex and mab-3 
related transcription factor 2 (DMRT2), Rh family C glycoprotein (RHCG), and long noncoding RNA LINC01187 
(13) — were all downregulated in ChRCCdediff compared with ChRCCclassic (Supplemental Figure 1D).

Differential expression analysis confirmed the findings of  the PCA showing that metastatic samples 
clustered with the corresponding histology and showed that ChRCCatyp clustered between ChRCCclassic and 
ChRCCdediff (Figure 2B). ChRCCatyp shared genes with both ChRCCclassic and ChRCCdediff, leading us to spec-
ulate that it may represent an intermediate stage of  tumor progression toward dedifferentiation.

Gene set enrichment analysis (GSEA) demonstrated enrichment in ChRCCdediff for transcriptional 
pathways involved in epithelial mesenchymal transition (EMT), cell proliferation (E2F targets, G2M check-
point, mitotic spindle), inflammatory response (IL6/JAK/STAT3, IFN, and TNF signaling), MYC, TP53, 

Figure 1. Histologic features of aggressive ChRCC. (A) Representative images of H&E-stained slides from aggressive 
ChRCC tumors showing the 3 dedifferentiation patterns: sarcomatoid, anaplastic, and glandular. (B) Representative 
H&E images of junctional areas between classic and dedifferentiated ChRCC (in OS02878) and corresponding IHC stains 
showing loss of cytokeratin 7 and CD117 (c-KIT) in ChRCCdediff. Scale bar: 100 μm.
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and mTOR signaling. On the other hand, catabolic metabolism pathways such as oxidative phosphoryla-
tion, fatty acid, and cholesterol homeostasis were downregulated (Figure 2C and Supplemental Table 4). 
CRABP2 and HMGA2 had the highest expression in ChRCCdediff and have been previously implicated in 
tumor aggressiveness and EMT (14–16). In contrast, INSYN1 was downregulated and has previously been 
shown to be associated with indolent RCC (Figure 2A).

To further understand the transcription factor (TF) network, we performed regulon analysis by decou-
pleR to identify putative TFs with differential activity. Out of  294 TFs, 73 had significantly differential 
activity between ChRCCclassic and ChRCCdediff pairs. As shown in Supplemental Figure 1E, TFs that regulate 
EMT, stemness, and cell proliferation, such as FOXP2, SNAI1, ZEB2, CREB3, E2F family, TFDP1, and 
FOXM1, had significantly higher activity in ChRCCdediff. Interestingly, a subset of  these TF (i.e., E2F1, 
E2F2, and TFDP1) were already induced in ChRCCatyp, suggesting that they may be implicated in the 
transition from ChRCCclassic to ChRCCatyp. Conversely, another subset of  TFs were exclusively induced in 
ChRCCdediff, suggesting that they may mediate the transition from ChRCCatyp to ChRCCdediff (i.e., FOXP2, 
SNAI1, ZEB2, CREB3).

Figure 2. Transcriptomic features of aggressive ChRCC. 
(A) Volcano plot of differentially expressed genes in 
ChRCCdediff and ChRCCclassic, color coded according to sig-
nificance based on fold change and FDR. (B) Heatmap 
of all 4,485 differentially expressed genes (absolute 
logFC ≥ 1 and FDR ≤ 0.05) between ChRCCdediff and paired 
ChRCCclassic samples from same patients. (C) Hallmark 
gene sets activated and suppressed in ChRCCdediff com-
pared with paired ChRCCclassic from same patients.
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Molecular analyses of  paired classic and dedifferentiated samples. We next turned to WES data from 
our paired classic (ChRCCclassic) and ChRCCdediff/atyp tumor areas (Supplemental Table 2 and Supplemental 
Figure 1B). Classic ChRCC are characterized by nonrandom loss of  chromosomes (1, 2, 6, 10, 13, 17 
and 21), and we asked how this correlated with dedifferentiation. For these analyses, we evaluated chro-
mosomal copy number changes from our cohort of  24 aggressive ChRCC corresponding to 11 patients 
(Figure 3B and Supplemental Figure 2). Overall, 8 of  10 evaluable ChRCCclassic were hypodiploid, and for 
the remaining 2 (KC01383 and KC02826), we could not exclude contamination (Supplemental Figure 3A). 
We observed typical changes in ChRCCclassic, although loss of  chromosome 21 was somewhat less frequent 
(Supplemental Figure 2). ChRCCatyp exhibited similar findings to ChRCCclassic (Figure 3B). Interestingly, 
when we evaluated the corresponding ChRCCdediff samples, we found that a diploid state had been restored 
(Figure 3B and Supplemental Figure 2). The simplest explanation for this observation was duplication of  
the remaining chromosomes, which was observed independently of  whether ChRCCdediff samples were 
from the primary tumor or from metastases, suggesting that chromosomal duplication accompanies dedif-
ferentiation and precedes metastasis development.

Figure 3. Molecular characteristics of 
aggressive ChRCC. (A) Oncoplot show-
ing frequent somatic (nonsynonymous) 
alterations in > 2 ChRCCdediff samples 
(or previously reported in ChRCC) along 
with variant classification, mutation 
frequency, and copy number (CN) loss. 
Each column represents a sample; 
metastasis are framed in black; L, 
loss of heterozygosity (LOH). Stars 
represent samples of low purity and 
low mutation variant allele frequen-
cy (OS02878-T2a-D5, lymph node 
metastasis; and KC02831-T1b-A11, 
high intratumoral inflammatory cells). 
Higher variant number in OS03074 
(ChRCCatyp) is possibly secondary to 
MSH6 mutation. (B) Oncoplot of 
frequent chromosome arm gain or loss. 
Samples OS02878-T2a-D5, KC02831-
T1b-A11, and KC02543-T1a-A1 had low 
purity and were excluded.
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In some cases, copy number gains exceeded 2 copies (e.g., chromosome 1q). In fact, all ChRCCdediff 
showed duplication/gains of  multiple chromosomes resulting in aneuploidy (ploidy range, 2–4.35; mean, 
2.88) (Supplemental Figure 2C and Supplemental Table 2). Thus, in contrast to the hypodiploid state in 
ChRCCclassic, the ChRCCdediff samples underwent amplification of  remaining chromosomes through a process 
that qualifies as WGD, where ≥ 50% autosomal tumor genome showed major allele copy number ≥ 2 (17).

Next, we evaluated total mutation burden (TMB) (nonsynonymous somatic mutations). Median 
TMB for ChRCCclassic was 28 (range, 11–40), which was comparable with previous reports (9) (Supple-
mental Table 5 and Figure 3A). In contrast, TMB was 40 (range, 26–55) for ChRCCdediff. The difference 
was statistically significant (t test, P = 0.014).

We asked what may enable WGD and higher mutation rates, and we focused on TP53, which is regard-
ed as a guardian of  the genome. TP53 has been previously shown to be mutated in ChRCC by us and 
others, but how TP53 mutations correlate with dedifferentiation and metastases is unclear (9–11). We iden-
tified somatic mutations in TP53 in 7 of  11 patients (Figure 3A). TP53 was mutated in ChRCCdediff in all 
patients who developed dedifferentiated ChRCC except for 2 (KC02543 and KC02826). Interestingly, TP53 
mutations were also present in ChRCCatyp, as well as in a subset of  ChRCCclassic. In every instance, where a 
mutation was found in ChRCCclassic, the same mutation was observed in the corresponding ChRCCdediff/atyp 
sample (Figure 3A, Supplemental Figure 3B, and Supplemental Table 6). Overall, these data suggest that 
TP53 mutations arise in ChRCCclassic and precede the development of  ChRCCatyp and ChRCCdediff.

TP53 mutations are often associated with protein stabilization, which can be evaluated by IHC. Such 
analyses would also enable us to correlate p53 protein levels with the underlying tumor cell morphology. 
Interestingly, we observed high nuclear p53 expression in 11 of  12 samples with TP53 mutations (H-score > 
10), suggesting that these mutations had functional consequences (Supplemental Table 2 and Supplemental 
Figure 3, C and D). Interestingly, in the remaining ChRCCdediff, where no TP53 mutations were found, p53 
was similarly stabilized, suggesting that there may be other mechanisms leading to p53 activation. Further-
more, p53 levels often demarcated the transition from ChRCCclassic to ChRCCdediff (Supplemental Table 2 
and Supplemental Figure 3C). Two samples with chromosome 1p loss and 1q gain (without LOH) did not 
exhibit mutual exclusivity with TP53 mutations as described recently (18).

Next, we focused on PTEN, which we and others previously identified to be mutated in ChRCC (9, 
10). In our series, we observed PTEN mutations in 5 patients (Figure 3A and Supplemental Figure 3E). In 
our cohort, PTEN mutations were solely found in ChRCCdediff/atyp. PTEN functions as a negative regulator 
of  the PI3K/mTOR pathway, which is also regulated by the TSC1/TSC2 protein complex. Previously, we 
reported mutations in TSC1 and TSC2 in ChRCC (10), and we found mutations in 2 additional samples, an 
ChRCCdediff and an ChRCCatyp, including 1 that did not have a PTEN mutation. For 1 patient, we observed 2 
different mutations in TP53 and PTEN in 2 ChRCCatyp samples from the same tumor (OS03074), suggesting 
convergent mutation evolution. Overall, these data are consistent with the notion that PTEN/TSC1/TSC2 
mutations develop in ChRCCdediff/atyp.

Figure 4. IHC characteristics of aggressive ChRCC. (A) Box plot of H-scores (H = intensity [0–3] × percentage of positive cells [0–100]) for cytoplasmic 
phospho-S6 staining on ChRCC (11 ChRCCclassic, 3 ChRCCatyp, and ChRCCdediff). Differential H-score between groups was tested by t test. P values adjusted 
using the Benjamini-Hochberg method. **P < 0.01; ****P < 0.0001. (B) Heatmap of CK7, CD117, p53, PTEN, and phospho-S6 protein levels in paired ChRC-
Cclassic and ChRCCatyp/dediff samples. The asterisks indicate gene mutation present in specimen including PTEN or TSC1/2 (Phospho-S6).
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To evaluate the potential effect of PTEN/TSC1/TSC2 mutations and integrate the results with the differenti-
ation state of tumor cells, we performed IHC analyses for mTORC1 activation (phospho-S6 Ser240/244). Nota-
bly, phospho-S6 was significantly induced in ChRCCdediff (P < 0.001; Supplemental Table 2, Figure 4, and Figure 
5A). Adjacent areas of ChRCCclassic were largely negative (Figure 4A, Figure 5B, and Supplemental Figure 4A), 
and the transition was typically abrupt and well demarcated (Figure 5B). Increased phospho-S6 was observed 
in all ChRCCdediff, irrespective of the mutation status and type of morphologic dedifferentiation. The 3 samples 
with atypia had an intermediate degree of phospho-S6 (Supplemental Table 2 and Supplemental Figure 4B).

Sequence of  mutation events. To further assess the sequence of  events, we integrated mutation and CNA. 
We reasoned that, if  mutations preceded the duplication events, they should be found in subsequent chro-
mosomal copies. For these experiments, we overlayed the log odds ratios (logOR) of  TP53 and PTEN 
somatic mutations on the copy number B allele plots (Supplemental Figure 2C).

Figure 5. mTORC1 activation in dedifferentiated ChRCC. (A) Representative H&E and corresponding phospho-S6 IHC from the 3 patterns of dedifferentia-
tion (sarcomatoid, anaplastic, and glandular), suggesting central role of mTORC1 pathway in ChRCCdediff. (B) Representative phospho-S6 images illustrating 
abrupt transition from classic to dedifferentiated ChRCC.
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In 4 patients, we found a TP53 mutation in the ChRCCclassic/atyp component, and all cases had loss of  
chromosome 17, which resulted in loss of  heterozygosity. The same TP53 mutation was found in the corre-
sponding ChRCCdediff, but in ChRCCdediff, we found 2 copies of  chromosome 17 and the TP53 mutation was 
homozygous. Similarly, in the 3 patients where the TP53 mutation was present only in ChRCCdediff, TP53 
mutations were homozygous (Supplemental Figure 2 and Supplemental Table 6). These data suggest that 
TP53 mutations developed in ChRCCclassic and preceded chromosome 17 duplication.

In contrast to TP53 mutations, in our series, PTEN mutations were only observed in the ChRCCdediff/atyp 
component. To determine whether they occurred prior to or following chromosome 10 duplication (where 
PTEN lies), we integrated the results with CNA. Interestingly, in every instance, PTEN mutations were 
homozygous, suggesting that they arose before the WGD event.

Figure 6. Phylogeny trees. Phylogeny trees colored by ChRCC subcategory of tumor samples from 9 patients based on WES data. Each leaf node rep-
resents a sample, metastatic samples are framed in black, and node size indicates ploidy. The length of branch is proportional to the number of unique 
nonsynonymous somatic mutations (dotted line is used to downscale representation of the high number of variants in OS03074 with MSH6 mutation). 
Branches are labeled with putative driver events. WGD, whole genome duplication; CN, copy number.
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Finally, we leveraged our unique paired multiregional samples to reconstruct a phylogenic tree for each 
patient (Figure 6). Allelic copy number loss was detected in the most recent common ancestor (MRCA) 
for all patients (Supplemental Figure 2 and Supplemental Table 6). Somatic TP53 mutations were early 
events, frequently followed by mutations in PTEN/TSC1 and subsequent WGD (Figure 6). Overall, our 
data suggest that TP53 mutations, which can be found in ChRCCclassic and are hemizygous, precede PTEN 
mutations, which are only found in ChRCCdediff/atyp, and are followed by WGD.

Gene expression reveals converging pathways in dedifferentiated RCC. Finally, we thought to extend our gene 
expression analyses in 2 different ways. First, we sought to expand our ChRCC cohort by including addi-
tional samples from TCGA. Second, we sought to determine how sarcomatoid ChRCC (more broadly, 
ChRCCdediff) compares with sarcomatoid differentiation from other RCC histologies. For these experi-
ments, we used previously published data sets from the curated TCGA (KICH) project (9) and UT South-
western Medical Center (UTSW) (10). We first reviewed the morphology of  the KICH cohort using digital 
slides (https://portal.gdc.cancer.gov), where among 12 ChRCCs reported to have metastasized, we found 
2 with a ChRCCdediff component (KN-8427 and KO-8404). We integrated these data with data from UTSW 
that could be easily harmonized (based on sample processing and data analysis pipeline). Ultimately, our 
cohort contained ChRCCdediff (9 from UTSW and 2 from TCGA; ref. 9), ChRCCclassic (44 from UTSW and 
46 from TCGA; refs. 9, 10), ChRCCeo (9 from UTSW and 14 from TCGA; refs. 9, 10), oncocytoma (32 
from UTSW; ref. 10), clear cell RCC (ccRCC; 317 from UTSW; refs. 19, 20), and other RCC with 
sarcomatoid differentiation (RCCsar; 8 from UTSW; refs. 19, 20). To minimize batch effect, we utilized 
normal kidney samples (182 from UTSW and 25 from TCGA; refs. 9, 10) and tumor samples of  the same 
histologic subtype from the different cohorts. Using Uniform Manifold Approximation and Projection 
(UMAP), we found that the 2 ChRCCdediff from TCGA clustered with the UTSW ChRCCdediff. Interestingly, 
ChRCCdediff tumors clustered away from ChRCCclassic and in greater proximity to ccRCC (Figure 7). Fur-
thermore, ChRCCdediff clustered in proximity to 6 of  the 8 RCCsar, suggesting shared biology (Figure 7). To 
explore the common variations between RCCsar and ChRCCdediff, we focused on the 6 RCCsar that clustered 
with ChRCCdediff. As shown in Supplemental Figure 5, A and B, RCCsar had frequent mutations in TP53 
and mTOR pathway genes. Overall, these findings show that ChRCCdediff share gene expression with other 
RCCsar, suggesting a convergent evolutionary trajectory.

Given the previously noted enrichment of  inflammatory response pathways in ChRCCdediff, we explored 
the tumor immune microenvironment in both ChRCCdediff and RCCsar. Consistently, we found higher T 
effector scores in RCCsar and ChRCCdediff relative to ChRCCclassic (Supplemental Figure 5C). These findings 

Figure 7. Converging gene expression of ChRCCdediff with other RCCsar subtypes. Uniform Manifold Approximation and 
Projection (UMAP) of merged RNA-Seq cohorts.
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are compatible with H&E findings of  increased inflammatory infiltrates in ChRCCdediff (Figure 5A). This 
contrasts with ChRCCclassic, which generally lack an immune infiltrate.

Discussion
Herein, we sought to probe the process of  dedifferentiation and metastasis in ChRCC. ChRCC general-
ly follows an indolent course, and in our series of  204 cases, metastases developed in only 7.4% of  the 
patients. While this frequency is likely an underestimate given our median follow-up of  just 2.5 years, other 
series (5) have shown metastasis development in 5% of  patients. Nevertheless, metastatic rates are substan-
tially lower than for ccRCC.

In our series, all tumors that metastasized were of  the classic subtype, and there were no ChRCCeo. 
In addition, 60% of  the metastatic tumors had dedifferentiation (ChRCCdediff). In contrast, dedifferenti-
ation was not observed in any of  the nonmetastatic tumors. The frequency of  dedifferentiation in our 
cohort of  metastatic ChRCC is higher than reported previously (4). Dedifferentiation may be missed in 
routine pathological analyses. Furthermore, 2 patients in whom we found only ChRCCclassic had limited 
samples available for review, raising the possibility that dedifferentiation may have been undersampled. 

Figure 8. Integrated genomic/pathologic model of evolutionary trajectories. A working model for ChRCC dedifferentiation and metastasis.
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Interestingly, while the dedifferentiated clones made up 25% of  the primary tumors on average, they 
represented the exclusive component at sites of  metastases in 70% of  patients in our cohort. These data 
suggest that dedifferentiated clones may be more prone to metastasize. In addition, dedifferentiation state, 
rather than whether the sample was from a primary tumor or a metastasis, was the determinant of  overall 
gene expression, suggesting that dedifferentiation, rather than metastasis, is the overarching determinant 
of  biological state. Thus, while limited by numbers, our data suggest that metastases likely evolve from 
dedifferentiated aggressive subclones.

We observed 3 morphologic patterns of  dedifferentiation: sarcomatoid, anaplastic, and glandular. 
While both sarcomatoid and anaplastic dedifferentiation have been previously described, to our knowledge, 
ChRCC glandular differentiation has not been reported. Our data suggest that glandular morphology rep-
resents an alternative route of  dedifferentiation with a similar endpoint characterized by convergent gene 
expression and whole genome duplication (WGD). Interestingly, dedifferentiation was typically focal/sub-
clonal, and patterns frequently coexisted in different areas of  the same tumor, suggesting some plasticity. 
Furthermore, the 2 tumors with glandular dedifferentiation also had sarcomatoid change and showed a 
similar IHC profile except for retained CK7 in the glandular component. Notably, metastases from these 2 
patients contained only glandular features, suggesting that glandular dedifferentiation, and not just sarco-
matoid change, is associated with aggressiveness.

To probe the underlying biology, we performed multiregion integrated paired pathological and genomic 
analyses. ChRCC, in particular ChRCCclassic, is typically hypodiploid with nonrandom loss of  chromosomes 
(chromosomes 1, 2, 6, 10, 13, 17, and 21). In contrast, ChRCCdediff was diploid (or hyperdiploid) with gen-
erally 2 or more copies of  chromosomes 1, 2, 6, 10, 13, 17, and 21. Though subclonal variation cannot be 
ruled out, overall, it appears that tumor cells undergo amplification of  remaining monosomes to become 
ChRCCdediff through a process that qualifies as WGD (17), where 50% or more of  the tumor genome shows 
a copy number ≥ 2. Duplication of  the remaining chromosomes was observed independently of  whether 
ChRCCdediff samples were from the primary tumor or from metastases, suggesting that chromosomal duplica-
tion accompanies dedifferentiation and precedes metastasis development. These findings expand the obser-
vations made by Casuscelli et al., who found duplications of  ≥ 3 chromosomes (referred to as imbalanced 
chromosome duplications) in 34.5% (10 of  29) of  primary tumors in a cohort of  metastatic ChRCC (11).

To understand the transition from ChRCCclassic to ChRCCdediff, we performed paired mutational 
analyses. We and others previously showed that TP53 and PTEN are the 2 most commonly mutated 
genes in ChRCC (9–11). In our cohort of  aggressive ChRCC, TP53 mutations were found in tumors 
from 64% of  the patients. We found TP53 mutations in both the ChRCCclassic and ChRCCdediff com-
ponents, suggesting that TP53 mutations are insufficient for ChRCCdediff development. Interestingly, 
while TP53 mutations were typically hemizygous in ChRCCclassic (TP53 is on chromosome 17, which 
is frequently lost), they were homozygous in the corresponding ChRCCdediff component. These data 
suggest that TP53 mutations preceded WGD. Similarly, mutations in PTEN, which is on chromosome 
10, were also homozygous in ChRCCdediff. The simplest interpretation for these data is that mutations 
in TP53 and PTEN precede WGD. Given the role of  p53, which has been called “the guardian of  the 
genome” (21), we speculate that TP53 mutation in ChRCCclassic predisposes to WGD and ChRCCdediff. 
ChRCCdediff was also characterized by a higher TMB (40 versus 28 in ChRCCclassic; P = 0.014), which 
may also be facilitated by TP53 mutation.

Thus, through pathologically guided genomic analyses, we were able to put together a working model for 
ChRCC dedifferentiation and metastasis (Figure 8). Taken together, our data suggest that metastases often 
develop through a process of  dedifferentiation and EMT, which can present with 3 different morphological 
patterns and which results from TP53 and PTEN mutation and subsequent WGD. This process is accompa-
nied by mTORC1 activation, which can serve as a biomarker and demarcates dedifferentiated areas.

How mTORC1 becomes activated is not clear. PTEN mutations may contribute, but they were only 
found in a subset of  tumors. We and others previously reported the identification of  TSC1/TSC2 mutations 
in chRCC (9–11), but these mutations were also infrequent. While these mutations are likely associated 
with mTORC1 activation (12), there are probably other mechanisms, as mTORC1 activation (as deter-
mined by phospho-S6) was a universal feature of  ChRCCdediff.

We sought to expand our studies beyond ChRCC and performed gene expression analyses that includ-
ed non-ChRCC with sarcomatoid differentiation (RCCsar). Interestingly, ChRCCdediff tumors clustered away 
from ChRCCclassic and were found in proximity to ccRCC. Furthermore, ChRCCdediff clustered with RCCsar. 
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These data suggest that, while sarcomatoid transformation may originate from different RCC histologies, 
tumors may evolve toward a similar endpoint. In keeping with this notion, there are frequent mutations in 
TP53 and PTEN in RCCsar, which is consistent with previous reports (22).

One feature of  sarcomatoid tumors, including ChRCCdediff, was inflammation. This was observed by 
histopathological analyses as well as in GSEA and through analyses of  TF underpinning gene expression 
changes. Pathways included IL-6/JAK/STAT3, IFN-γ, and TNF signaling. One feature of  this inflamed 
TME was higher T effector scores.

This study has practical implications. We found that dedifferentiated ChRCC lacked diagnostic mark-
ers such as CD117 and CK7 (except for the glandular component, which retains CK7). This can pose diag-
nostic challenges. Given the higher rate of  ChRCCdediff at metastatic sites compared with primary tumors, 
our data support prioritizing primary tumors for diagnostic biopsy over metastases, when chRCC is sus-
pected. While this may increase diagnostic accuracy, a potential drawback is an underestimation of  dedif-
ferentiated components, which may have implications for therapy. We describe 3 morphological variants of  
ChRCCdediff, sarcomatoid, anaplastic, and glandular. These variants often coexist and are associated with 
WGD and shared gene expression. They are also characterized by mTORC1 activation. Phospho-S6, a 
marker of  mTORC1 activity, was substantially higher in ChRCCdediff than in other RCCs and demarcates 
areas of  dedifferentiation. In addition, p53 was also commonly induced in ChRCCdediff tumor cells.

Expanding upon prior studies, we found tumor size, advanced pathogenic tumor (pT) stage, presence of  
sarcomatoid change, tumor necrosis, and lymphovascular invasion to be associated with ChRCC metastasis. 
Notably, nuclear grade, which is a robust prognostic factor for other RCCs, is not currently recommended for 
ChRCC (23). This is because nuclear irregularities, prominent nucleoli, and nuclear pleomorphism are ubiqui-
tously present in ChRCC. While new grading systems have been proposed (6, 24, 25), our data support a 3-tier 
classification. The 3 tiers would involve ChRCCclassic (and ChRCCeo), ChRCCatyp, and ChRCCdediff. Our data 
suggest that ChRCCatyp represents an intermediate step between differentiated and ChRCCdediff. Unsupervised 
gene expression analyses placed ChRCCatyp between differentiated and ChRCCdediff. ChRCCatyp shared genes 
(as well as TFs) with both ChRCCclassic and ChRCCdediff, suggesting that it represents a transition stage toward 
dedifferentiation. Similarly, ChRCCatyp exhibited levels of mTORC1 activation that were intermediate between 
ChRCCclassic and ChRCCdediff. CNA also placed ChRCCatyp between ChRCCclassic  and ChRCCdediff, with a reduced 
fraction of chromosome loss and greater gains than ChRCCclassic but fewer changes than in ChRCCdediff. Mor-
phologically, ChRCCatyp manifested itself  by nuclear size variation, hyperchromasia (excluding smudged nuclear 
atypia that is inherent to oncocytoma and ChRCC), and increased mitosis including atypical mitosis. These find-
ings were often associated with rounding of nuclei, loss of nuclear membrane irregularities (which are inherent 
to ChRCCclassic), increased cytoplasmic eosinophilia, and tumor necrosis. Multiinstitutional efforts are ongoing, 
investigating the value of Ki-67, phospo-S6, and p53 to help recognize the atypical state for routine diagnosis.

Our findings may also have therapeutic implications. In our small series, we observed a complete 
response to ICI therapy in 1 patient and a partial response in another, both with sarcomatoid change, which 
suggests that a subset of  aggressive ChRCC may be responsive to ICI. Whether ICI responsiveness is simi-
lar among anaplastic and glandular subtypes remains to be determined. The similar inflammatory infiltrate 
and convergent gene expression suggest that these other dedifferentiated subtypes may also be responsive to 
ICI. However, further research is required and metastatic ChRCC appear to be particularly resistant to ICI 
compared with other histological subtypes. In addition, one of  the patients in our series, a patient with a 
TSC1 truncating mutation, had substantial benefit from everolimus, an mTORC1 inhibitor.

This study has several limitations. Foremost is the limited number of  patients studied, which is due to 
the low frequency of  ChRCC and, in particular, ChRCCdediff. In addition, we were also limited in the num-
ber of  RCCsar that could be included due to challenges associated with harmonization of  different data sets. 
Nevertheless, our results support a working model that can be tested in other cohorts.

In summary, through comprehensive genomic and transcriptomic studies including comparative stud-
ies from morphology-driven multiregional sampling, we provide insight into molecular mechanisms under-
lying dedifferentiation and metastasis in ChRCC with clinical implications.

Methods
Sex as a biological variant. Sex was not considered as a biological variable.

Case selection and clinical data extraction. We searched our institutional RCC database of  3,964 consecutive 
partial and/or radical nephrectomies from 3,728 patients (between 1998 and 2020 at UTSW and between 
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2003 and 2017 at Parkland Hospital, Dallas, Texas, USA) to identify nephrectomies with pathologic diag-
nosis of  ChRCC as described previously (26, 27). Relevant clinical data were collected from the database 
and complemented through comprehensive review of  electronic medical records. The tumors were staged 
based on the 2018 American Joint Committee on Cancer (AJCC) TNM classification for pathologic staging.

Morphologic evaluation. Where available, archival material was retrieved and rereviewed by a genito-
urinary (GU) pathologist to confirm the histology. For each patient, all available metastases samples were 
thoroughly evaluated for sarcomatoid change and dedifferentiation. Dedifferentiation was defined per pre-
vious recommendations (28) as the presence of  any component of  markedly atypical neoplastic cells with 
hyperchromasia and pleomorphism, including spindle cells (sarcomatoid features), anaplastic monomor-
phic round cells, and pleomorphic giant cells (anaplastic features). For a small subset of  metastatic RCC 
cases, outside institution nephrectomy slides were reviewed at the time of  presentation to our institution; 
however, slides and blocks were not available for further analyses.

IHC. Supportive IHC analyses were performed, if  needed, at our kidney cancer program core histol-
ogy lab on representative 3–5 μm formalin-fixed paraffin-embedded (FFPE) whole tumor tissue sec-
tions. IHCs included CK7 (M7018-OV-TL 12/30, 1:100; Dako), CD117 (A4502, 1:700; Dako), PTEN 
(7196-A103, 1;200; Dako), p53 (37259-3F9, 1:100; Abcam), vimentin (M0725, 1:75; Dako), and phos-
pho-S6 (Ser240/244) (5364-D68F8, 1:300; Cell Signaling Technology). IHC was performed using a Dako 
automated system (Agilent). Phospho-S6, p53, and PTEN expression was determined based on the 
percentage of  tumor cells staining positive (0%–100%) and the intensity of  expression (range, 0–3), 
which were multiplied (H-score).

Nomenclature and annotation. A unique patient ID was assigned to each patient in our kidney can-
cer database. Samples used for genomic sequencing are labeled with a “Sample ID” using a nomencla-
ture format that can identify samples from the same patient and the source of  the tumor (N, normal; 
T, tumor; M, metastasis). Samples are numbered in the sequential order they are collected (thus, T1a 
in the nomenclature does not refer to stage of  the tumor).

Next generation sequencing. All H&E stained FFPE slides were examined to select the most repre-
sentative areas from paired classic (ChRCCclassic) and dedifferentiated (ChRCCdediff) areas from primary 
and metastatic tumors (when available), and matched benign kidney was included. To enable integra-
tive genomic analyses, the corresponding areas were punched (i.e., classic and dedifferentiated areas 
from primary tumors and metastases as well as from benign kidney), and both DNA and RNA were 
simultaneously extracted from the same specimen as described previously (29). DNA and RNA-Seq wer-
performed as previously described (10). DNA-Seq was performed using 75 bp paired-end fragments at an 
average read depth > 100× on a HiSeq2500 platform (Illumina). On average, 50 million reads per sample 
were obtained, for RNA-Seq using 50 bp single-end on a HiSeq2500 platform.

Somatic mutation calling from WES. WES reads from FASTQ files were aligned to the human reference 
genome GRCh38 (hg38) using BWA algorithm (version 0.7.15-r1140) set to default parameters (30). Picard 
(version 2.18) was used to mark PCR duplicates. GATK toolkit (version 4.1.4.1) (31–33) was used to per-
form base quality score recalibration and local realignment around indels. Strelka2 (version 1.0.15) (34) 
was used to call somatic variants and small-scale insertions and deletions (indels) for each pair of  tumor 
and normal samples. ANNOVAR was used to annotate somatic mutations and indels (35). Ensembl Vari-
ant Effect Predictor (VEP, release 99) (36) was used to assign putative functional consequences. Variants 
were classified according to the American College of  Medical Genetics and Genomics (ACMG) 2015 
Guidelines. cBioPortal (https://www.cbioportal.org/), COSMIC (https://cancer.sanger.ac.uk/cosmic) 
and ClinVar (www.ncbi.nlm.nih.gov/clinvar/) were used to annotate cancer relevance and clinical poten-
tial for detected variants. A variant allele frequency (VAF) ≥ 15% in tumor samples was required to call 
a somatic variant. Intronic, splice regions, untranslated regions, and intergenic and silent mutations were 
filtered out. The somatic mutation hotspots were identified based on a published resource for statistically 
significant mutations in cancer (version V2) (37). Two samples with low purity estimate and low overall 
VAF were excluded for mutation analyses (OS02878-T2a-D5 and KC02831-T1b-A11). Somatic variants 
reported in the oncoplot were, in addition, individually inspected using Integrated Genomics Viewer (IGV; 
version 2.13.1; Broad Institute, MIT Harvard, Cambridge, Massachusetts, USA) (38).

Somatic copy number calling from WES. Somatic allelic copy number variation (CNV) analyses were carried 
out on paired tumor and normal WES samples using FACETS (version 0.6.2) (39) and FACETS-suite (ver-
sion 2.0.8) R packages. Based on human common variation sites from the Single Nucleotide Polymorphism 



1 5

R E S E A R C H  A R T I C L E

JCI Insight 2024;9(10):e176743  https://doi.org/10.1172/jci.insight.176743

Database (dbSNP) (40), FACETS evaluated read coverage of  chromosomal segments and estimated puri-
ty, ploidy, and total and allelic integer copy number for tumor samples. The FACETS-suite provided a 
wrapping function to the FACETS algorithm enabling a 2-pass run to calculate overall copy number 
and sample purity first and to then detect more focal events with increased sensitivity. The 2 passes were 
performed with critical values set to 1,000 and 500, respectively, to tune the coarseness of  chromosome 
segmentation. Plots of  copy number log ratio, B allele log odds ratios (logOR), and integer copy number 
were produced by the FACETS-suite. We manually calculated the logOR of  TP53 and PTEN somatic 
mutations, under the assumption that the mutations were on the major allele, and we overlayed them on 
the B allele plots. By matching gene locations, gene-level integer copy numbers were inherited from the 
segment integer copy number from the second pass run. Chromosome arm level gain or loss was called 
when > 50% of  the chromosome arm had copy number gain or loss. Differential gene-level copy number 
comparisons between paired ChRCCdediff and ChRCCclassic to identify significantly amplified genes used a 
t test adjusted P ≤ 0.05 and integer copy number FC ≥ 2. These analyses excluded 3 samples with purity 
estimate < 0.3 or significant artifacts (OS02878-T2a-D5, KC02831-T1b-A11, and KC02543-T1a-A1).

Gene expression analyses. RNA-Seq raw data were analyzed using HTSeqGenie (41) from Bioconductor. 
Reads with low nucleotide qualities (70% of  bases with quality ≤ 23) or matched to rRNA were removed 
prior to alignment. Adapter sequences were similarly removed. The remaining reads were aligned to the 
human reference genome (version GRCh38.p10) using GSNAP (42, 43) (version 2013-10-10-v2), with 
parameters: “-M 2 -n 10 -B 2 -i 1 -N 1 -w 200000 -E 1 --pairmax-rna=200000 --clip-overlap” and maximum 
of  2 mismatches per 75 base sequence. Transcripts were annotated based on the Gencode (44) human 
genes database (version 27). Gene expression levels were quantified by the number of  reads mapped unam-
biguously to the exons of  each gene using FeatureCounts (45). Gene counts in tumor samples were filtered 
using the R package edgeR (version 3.38.4) (46) by requiring at least 10 read counts in at least 2 tumor sam-
ples. Normalization was conducted among all high-quality tumor RNA-Seq samples in this cohort using the 
trimmed mean of  M values (TMM) (47) algorithm from edgeR. PCA plots were generated using all filtered 
genes among tumor samples. Differential gene expression analysis was performed by edgeR to identify DEGs 
(absolute logFC ≥ 1 and FDR ≤ 0.05) between ChRCCdediff and ChRCCclassic on a subcohort from 7 patients 
with paired samples. GSEA was deployed by clusterProfiler (48) (version 4.4.4) on basis of  the logFC values 
(ChRCCdediff/ChRCCclassic) from DE analysis to identify enriched MSigDB Hallmark gene sets (49, 50) (q ≤ 
0.05). Regulon analysis was performed using Bioconductor package decoupleR (51) to extract the activity 
of  TF from expression data. Differential TF activity was tested on quantified activity levels by t test between 
ChRCCdediff and ChRCCclassic for each TF. The T effector score for each tumor sample was calculated by the 
mean logCPM (transformed from normalized gene read counts by voom; ref. 52) of  the T effector signature 
genes reported (53). In addition, we integrated the current cohort (9 ChRCCdediff, 10 ChRCCclassic, and 9 nor-
mal) with a prior UTSW cohort (32 oncocytoma, 34 ChRCCclassic, 9 ChRCCeo, 317 ccRCC, 8 RCCsar, and 173 
normal) (10, 19, 20) and the TCGA-curated KICH cohort (46 ChRCCclassic, 14 ChRCCeo, 2 ChRCCdediff, and 
25 normal) (9). Bioconductor packages edgeR and sva (version 3.44.0) (54) were used to perform normaliza-
tion and batch effect minimization (using ComBat; ref. 55) on count data. UMAP (56) plots were generated 
by R package umapr (version 0.0.0.9001) (57) using all filtered genes with default parameters. The T effector 
scores for UTSW tumor samples were calculated by the mean logCPM expression of  the T effector signature 
genes reported (53). The logCPM expression was transformed from normalized gene read counts by voom 
(52) on the merged data set.

Driver phylogenic tree reconstruction. For each of  the 9 patients with ≥ 2 tumor samples, we used non-
synonymous somatic mutations with VAF ≥ 15% to manually reconstruct phylogenic trees to infer the 
progression. Each leaf  node represents a sample that is colored by ChRCC subcategory, and the corre-
sponding node size indicates ploidy. Nodes corresponding to metastases were framed in black. Branches 
were colored by the ChRCC subcategory of  the child nodes to represent common variations. The length of  
the branch is proportional to the number of  common/unique nonsynonymous somatic mutations. Each 
branch was labeled with putative driver events, including both mutations and copy number changes.

Statistics. All statistical analyses were conducted using R (v4.2). Unless otherwise stated, all comparisons 
for continuous variables were performed using a 2-tailed t test (R function t.test) for 2 groups. P < 0.05 was 
considered significant. For all box plots, the horizontal line represents the median; the lower and upper hinges 
correspond to the first and third quartiles, respectively.

Study approval. The study was conducted with approval by the UTSW IRB (STU 02215-015).
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Data availability. Values for all data points in graphs are available in the Supporting Data Values file. 
Sequencing files for patients with explicit consent to share genomic information are available in the Europe-
an Genome-Phenome Archive (study ID: EGAS50000000287; WES dataset: EGAD50000000415; RNA-
Seq: EGAD50000000416).
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