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Introduction
Spinal and bulbar muscular atrophy (SBMA) is an inherited, slowly progressive neuromuscular disorder 
with no FDA-approved disease-modifying therapy. Some of  its characteristics include muscle weakness 
and atrophy, loss of  motor neurons, metabolic disease, and testicular atrophy (1–3). SBMA is caused by a 
cytosine-adenine-guanine (CAG) repeat expansion in exon 1 of  the androgen receptor gene (AR), which 
is on the X-chromosome. Therefore, SBMA only affects males, while females are carriers (4, 5). Healthy 
individuals have between 9 and 36 CAG repeats, while patients have between 38 and 68 repeats (5, 6). 
Expanded CAG repeats lead to abnormal AR function, involving both gain of  toxic functions and loss 
of  function. Mutant AR triggers transcriptional dysregulation, protein aggregation, and other cascading 
events (7). With AR expressed in diverse tissues and eliciting multiple toxic mechanisms, disease complex-
ity poses a challenge for identifying fluid biomarkers suitable for tracking disease progression or informing 
pharmacodynamic effects in clinical settings (2).

The use of  biomarkers increases clinical trial success (8). Sometimes, biomarkers may be the sole 
reason for FDA approval. For example, the FDA recently granted accelerated approval to the amyo-
trophic lateral sclerosis therapeutic tofersen (QALSODY), based on its ability to reduce neurofilament 
light chain (NfL) protein levels in the blood (9). In SBMA, fluid biomarkers used in clinical studies 
— such as CK, creatinine, myoglobin, and liver transaminases (10–14) — exhibited variability across 
patient cohorts and inconsistent associations with clinical characteristics and generally failed to track 
disease progression.

Extensive efforts have been made to identify biomarkers to measure disease progression or therapeutic 
effects in similar complex diseases such as ALS, where the heterogeneity of  disease manifestation together 
with the multiple disease mechanisms involved has hindered the assessment of  potential treatments. This has 
led to the discovery of  several promising biomarkers reflecting the different sites of  pathology in ALS, such 
as NfL, which indicates motor neuron degeneration and is currently the biomarker of  choice in ALS studies 
given its abundance and correlation with clinical outcomes (15). Another biomarker found to be associated 
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in a mouse model of disease. Changes in these SBMA-associated proteins could be used as an early 
predictor of treatment effects in clinical trials.
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with ALS severity was the cardiac troponin T (cTnT), which also prompted investigations in SBMA where 
this marker was found to be increased in patients with SBMA and correlated with lower limb impairment 
(16). The work in ALS and SBMA also highlights the need for more than 1 marker to address the multiple 
pathophysiological mechanisms of  these diseases.

The lack of  robust biomarkers in SBMA may limit the evaluation of  efficacy in interventional trials, and 
additional studies are needed to identify potential pharmacodynamic biomarkers for interventional trials.

This study aimed to uncover novel blood protein biomarkers in SBMA. Protein biomarkers were com-
pared against current clinical laboratory markers and were characterized through gene set analyses, cor-
relations with clinical disease features, and evaluation in a SBMA mouse model. We employed a targeted 
proteomic approach, harnessing proximity extension assay technology for enhanced multiplexing and sen-
sitivity in protein detection. Our research unveiled proteins with known alterations in SBMA and other 
neuromuscular diseases, as well as additional proteins that were associated with SBMA, disease character-
istics in patients, and a SBMA mouse model.

Results
Discovery of  SBMA proteomic signature from patient cohorts. The outline of  our study is shown in Figure 1. 
Briefly, we investigated plasma and serum proteomes from patients with SBMA and age-matched healthy 
controls. We examined reproducibility across multiple cohorts, conducted gene set enrichment analyses 
(GSEA) to characterize findings, investigated correlations between protein abundance and clinical features, 
and characterized protein abundance in a SBMA mouse model.

For a summary of  the data used in our study, see Table 1. We leveraged 2 independent discovery 
cohorts to investigate protein differences between SBMA and control samples, with all samples from male 
donors and patients with SBMA having a confirmed genetic diagnosis. One discovery cohort used samples 
obtained from research conducted at the NIH, with average age of  patients with SBMA of  57.6 years (y) 
(±7.8 y) and of  control donors 58.7 y (±7.3 y) (17). The other discovery cohort came from the UCL, from 
a longitudinal nonintervention study (UCL Discovery). The average ages from this cohort were 60.8 y 
(±9.3 y) and 59.4 y (±10.7 y) from patients with SBMA and control donors, respectively. To determine the 
proteomic profile of  patients with SBMA, we utilized the Olink Explore 3072 platform, which assesses the 
abundance of  2,925 unique proteins. Using principal component analyses (PCA) on all assessed proteins, 
we found distinct separation of  patients with SBMA from matched control samples across cohorts (Figure 
2, A and C). We identified 185 and 280 proteins that exhibited differential abundance between SBMA 
versus controls in NIH and UCL cohorts, respectively (Padj < 0.05 and limit of  detection > 50%; Figure 2, 
B and D). Applying a more conservative log2 fold change > |0.5| cut-off  did not substantially change the 
number of  differentially abundant proteins, with 95% (NIH cohort) and 97.5% (UCL cohort) of  proteins 
retaining their differential abundance. Across cohorts, 46 proteins were significantly associated with SBMA 
(Padj <0.05 and limit of  detection > 50%). The differential abundance of  these proteins was highly correlat-
ed across cohorts (r = 0.78, P < 0.0001) with 40 of  46 of  these proteins (87%) being estimated in the same 
direction in SBMA across cohorts (Figure 2E and Supplemental Table 1; supplemental material available 
online with this article; https://doi.org/10.1172/jci.insight.176383DS1). Herein, these 40 proteins are 
referred to as the “SBMA-associated proteins” (Table 2).

The NIH cohort included clinical laboratory tests from both patients and controls, revealing differenc-
es in 6 of  14 measures between SBMA and controls (including creatinine, CK, glucose, insulin, alanine 
transaminase, and aspartate transaminase; Padj < 0.05). CK is widely used across several neuromuscular 
disorders, including prior SBMA interventional trials (18, 19). In the NIH cohort, half  of  the SBMA-asso-
ciated proteins (20 of  40) exhibited a more significant association with SBMA than CK (Padj < 4.6 × 10–5) 
and 77.5% of  these proteins (31 of  40) showed less variability than CK in patients with SBMA (coefficient 
of  variation < 49.8%). This suggests that these proteins may offer enhanced sensitivity and reliability to 
currently available biomarkers.

To gain more insight into the biological systems in which these proteomes were enriched, we per-
formed GSEA on thousands of  gene sets using all detected proteins in each cohort. We found that 29 gene 
sets were significantly enriched across cohorts (Padj < 0.05). The most significant enrichment was observed 
in gene sets associated with skeletal muscle expression and function, but significant enrichment was also 
detected in RNA Binding, Mitochondrion, and Calcium Signaling, among other gene sets (Figure 2F and 
Supplemental Table 2).
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Replication of  SBMA-associated proteins in independent patient cohorts. Plasma samples were also collected 
in a separate, multisite observational study composed of  only patients with SBMA (Table 1). Plasma pro-
teomes from these patients were analyzed on the same Olink Explore 3072 platform and compared with 
the control samples from the 2 discovery cohorts. Once again, PCA indicated that the SBMA samples 
clustered separately from the control samples, suggesting proteome-level differences between cases and 
controls (Figure 3A). In this data set, the abundance of  126 proteins were significantly different in SBMA 
than controls (P < 0.05; Figure 3B). Furthermore, all 40 SBMA-associated proteins demonstrated differen-
tial abundance (P < 0.05) in this independent SBMA cohort, building further evidence for the robustness 
of  these biomarkers (Figure 3C).

Most of  the SBMA-associated proteins had increased abundance in patients, while Repulsive Guid-
ance Molecule A (RGMA), MSTN, and ART3 were the only 3 proteins that were decreased in patients 
as compared with healthy controls. Some of  the proteins with the highest fold change have also been 
identified in samples from patients with other skeletal muscle–related disorders such as Duchenne muscu-
lar dystrophy (DMD) or facioscapulohumeral muscular dystrophy (FSHD) (20–25) (Table 2). It is note-
worthy that CK is also elevated in cases of  DMD and FSHD, but the creatine kinase – muscle isoform 
(CKM) is not measured in the 3072 platform. By comparison, biomarker papers from more neural-related 
disorders such as amyotrophic lateral sclerosis, Parkinson’s disease, or Huntington’s disease did not report 
differential abundance of  the 40 SBMA-associated proteins (26–28).

Figure 1. Study design. Illustration outlining the experimental design and analyses. Multiplexed proximity extension assay was used to discover pro-
tein biomarkers in the plasma/serum from patients with SBMA. These proteins were then measured against clinical outcomes from these patients 
and in the AR113Q mouse model of SBMA.

Table 1. Metadata of fluid samples for analysis

Study Group n Average age (SD) CAG repeats  
(range)

Average no. of 
follow-up samples

Average time between 
follow-up (SD)

NIH Liver Study; Olink Explore 3072
SBMA 15 57.6y (7.8y) 41-49 N/A (cross-

sectional) N/A

Control 15 58.7y (7.3y) N/A N/A (cross-
sectional) N/A

UCL Observational Study; Olink 
Explore 3072

SBMA 19 60.8y (9.3y) 39–52 n = 17; 1–2 each 13 months (4.8)

Control 12 59.4y (10.7y) N/A N/A (cross-
sectional) N/A

Nido Bio Observational Study; Olink 
Explore 3072 SBMA 9 61.7y (4.0y) 41–49 N/A (cross-

sectional) N/A

UCL Observational Study; Olink 
Explore 1536 (Replication cohort)

SBMA 12 57.6y (7.8y) 39–49 N/A (cross-
sectional) N/A

Control 12 58.7y (7.3y) N/A N/A (cross-
sectional) N/A

SBMA Mouse Model Survival Study; 
Olink Target 96

AR113Q 15–30 12–30 weeks N/A 9 (longitudinal) 2 weeks
Wildtype 12 12–30 weeks N/A 9 (longitudinal) 2 weeks

Descriptive data for all samples analyzed and presented. The platform used for analysis is included with the study name. Note the bottom rows are mouse 
samples. y, years; N/A, not applicable or not available due to samples not being tested or not a part of the study design.

https://doi.org/10.1172/jci.insight.176383
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A separate replication cohort of  patients with SBMA and healthy controls from UCL (UCL Repli-
cation) was analyzed on a more limited panel of  1,536 antibody pairs. Similarly in this cohort, we found 
that patients with SBMA showed modest clustering from healthy controls and that 113 proteins showed 
differential abundance between patients with SBMA and healthy controls (P < 0.05; Supplemental Fig-
ure 1, A and B). However, within this limited panel, only 13 of  the 40 SBMA-associated proteins were 
assessed, and 10 of  the 13 assessed proteins (76.9%) exhibited differential abundance between SBMA 
and controls (Supplemental Figure 1C).

Figure 2. Discovery of protein biomarker signature in SBMA. (A) PCA of control and patients with SBMA from the NIH cohort (n = 15 SBMA; n = 15 con-
trol). Differential abundance in protein expression was calculated using a linear regression framework, adjusting for age. (B) Volcano plot of all measured 
proteins from the NIH cohort. Proteins in red were increased, and proteins in blue were decreased. Proteins in green were not significantly different (Padj 
< 0.05 cut-off, dotted red line). Top proteins are labeled, and clinical labs measured in those patients are in bold and italicized. (C) PCA of samples from 
the UCL cohort (n = 19 SBMA; n = 12 control). (D) Volcano plot as described in B. (E) Correlation of proteins consistent across both cohorts; red indicates 
increased in both, blue indicates decreased in both, and green indicates inconsistent across cohorts. (F) Gene set enrichment analysis (GSEA) of SBMA 
proteomic associations showing the tissues and biological functions that were significantly enriched across cohorts.

https://doi.org/10.1172/jci.insight.176383
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To further establish that these proteins could reliably distinguish patients with SBMA from healthy 
controls, we generated ROC curves for each of  the 40 proteins and confirmed substantial consistency across 
cohorts with an average AUC of  0.94 (SD = 0.06) (Supplemental Figure 2). While these data illustrate the 
utility of  these markers in separating patients from healthy controls, they are not intended to be diagnostic, 
which is done by a genetic test.

Using the Human Protein Atlas, we mapped the human tissue expression of these 40 SBMA-associated 
proteins and found that many of them were enriched in skeletal muscle and tongue and slightly less in cardiac 

Table 2. Listing of SBMA-associated proteins

Gene symbol Protein name Log2 fold  
change NIH

Padj NIH Log2 fold 
change UCL

Padj UCL Identified in 
other NMD

CSRP3 Cysteine and glycine rich protein 3 4.431 4.54 × 10–6 4.905 3.28 × 10–9 DMD
MYBPC1 Myosin binding protein C, slow type 3.35 7.29 × 10–7 3.457 1.88 × 10–8 DMD

TTN Titin 3.349 6.76 × 10–7 2.693 9.67 × 10–7 DMD
MYOM3 Myomesin 3 2.811 1.84 × 10–5 3.224 6.43 × 10–8 DMD
ACTN2 Actinin α 2 2.606 4.45 × 10–5 2.955 2.08 × 10–7

MYL3 Myosin light chain 3 2.831 6.76 × 10–7 2.681 5.34 × 10–8 DMD
MYL11 Myosin light chain 11 2.878 1.98 × 10–4 2.589 1.62 × 10–5 DMD

CA3 Carbonic anhydrase 3 2.682 3.47 × 10–6 2.599 1.88 × 10–8 DMD, FSHD
DUSP29 Dual specificity phosphatase 29 2.435 1.84 × 10–5 2.682 7.07 × 10–8

MYBPC2 Myosin binding protein C, fast type 2.174 1.35 × 10–2 2.839 7.93 × 10–5

MYOM2 Myomesin 2 2.596 1.66 × 10–5 2.159 2.31 × 10–5

CORO6 Coronin 6 2.754 6.76 × 10–7 1.963 7.88 × 10–6

FABP3 Fatty acid binding protein, heart 2.287 2.91 × 10–5 2.391 8.10 × 10–7 DMD, FSHD
TPM3 Tropomyosin α-3 chain 2.336 4.72 × 10–6 2.171 5.44 × 10–7

MB Myoglobin 1.868 5.18 × 10–5 2.477 5.34 × 10–8 DMD
NOS1 Nitric oxide synthase 1 2.093 1.07 × 10–4 2.227 6.45 × 10–7

NEB Nebulin 1.88 4.86 × 10–4 2.251 3.61 × 10–6

KLHL41 Kelch like protein 41 2.199 3.25 × 10–5 1.575 1.86 × 10–3

CAPN3 Calpain 3 2.01 5.79 × 10–5 1.608 6.39 × 10–3

ENO3 β-Enolase 1.655 4.06 × 10–4 1.803 1.14 × 10–4 DMD
HSPB6 Heat shock protein β-6 1.446 1.66 × 10–5 1.95 5.34 × 10–8

IDI2 Isopentenyl-diphosphate delta isomerase 2 1.891 4.68 × 10–4 1.418 1.47 × 10–3

DTNB Dystrobrevin β 1.575 3.47 × 10–6 1.432 7.93 × 10–5

NDUFS6 NADH dehydrogenase [ubiquinone] iron-sulfur protein 6, 
mitochondrial

1.265 3.67 × 10–2 1.549 7.10 × 10–3

CHCHD10 Coiled-coil-helix-coiled-coil-helix domain containing 
protein 10, mitochondrial

1.497 2.95 × 10–5 1.253 1.82 × 10–4

HSPA2 Heat shock-related 70 kDA protein 2 1.57 1.13 × 10–4 1.166 1.89 × 10–3

RBFOX3 RNA binding fox-1 homolog 3 1.667 3.79 × 10–6 1.057 4.65 × 10–3

DMD Dystrophin 1.556 6.76 × 10–7 0.667 1.97 × 10–2

EDA2R TNF receptor superfamily member 27 1.21 2.57 × 10–4 0.872 7.81 × 10–3

SORBS1 Sorbin and SH3 domain containing 1 1.126 4.64 × 10–5 0.885 1.36 × 10–4

MYL1 Myosin light chain 1/3, skeletal muscle isoform 1.286 3.49 × 10–5 0.667 3.36 × 10–2

GOT1 Aspartate aminotransferase, cytoplasmic 0.849 1.85 × 10–2 1.048 1.02 × 10–2

MEGF10 Multiple epidermal growth factor-like domains protein 10 0.612 3.52 × 10–2 0.977 3.00 × 10–3

USP28 Ubiquitin carboxyl-terminal hydrolase 28 0.817 1.21 × 10–2 0.603 2.06 × 10–2

PHOSPHO1 Phosphoethanolamine/phosphocholine phosphatase 0.705 1.68 × 10–5 0.634 3.00 × 10–3

THOP1 Thimet oligopeptidase 0.565 1.77 × 10–2 0.442 2.19 × 10–2

NGRN Neugrin 0.477 1.63 × 10–3 0.435 1.24 × 10–2

RGMA Repulsive guidance molecule A –0.999 2.12 × 10–4 –0.508 4.78 × 10–3

MSTN Growth/differentiation factor 8 –1.612 1.17 × 10–3 –0.917 1.79 × 10–2 DMD
ART3 Ecto-ADP-ribosyltransferase 3 –1.514 4.61 × 10–6 –1.24 2.33 × 10–7

All 40 proteins of the SBMA proteomic signature are listed with gene symbol and protein name. Values from both discovery cohorts are listed along 
with a neuromuscular disease (NMD) in which these proteins were also detected in circulating fluids. DMD, Duchenne muscular dystrophy; FSHD, 
facioscapulohumeral muscular dystrophy.

https://doi.org/10.1172/jci.insight.176383
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muscle (Supplemental Figure 3). These expression profiles align with our GSEA and further support that muscle 
tissue is a major site of pathology of SBMA. A few of the SBMA-associated proteins have ubiquitous expression 
patterns across tissues, such as NDUFS6 and CHCHD10, which are localized to mitochondria, with the latter 
being associated with a subtype of ALS (29). Others are expressed in tissues relevant to other sites of SBMA 
pathology, such as ART3 and PHOSPHO1 (testis), MEGF10 and NGRN (spinal cord), and GOT1 (liver).

Overlap of  SBMA-associated proteins and AR gene regulation data sets. Given that these proteins were detected 
in circulating biofluids, identifying their tissue expression patterns is insufficient to fully explain their rele-
vance to SBMA pathogenesis. To gain further insight into potential associations with AR dysfunction, we 
intersected the 40 SBMA-associated proteins with a published data set that used primary human skeletal 
muscle myoblasts to perform AR ChIP coupled with microarrays (30). Proteins whose genes contain andro-
gen response elements (AREs) and are bound by AR may be more likely to have altered levels in the context 
of  SBMA. Using this data set, we found 19 proteins whose encoding genes have evidence of  being regulated 
by AR (Supplemental Figure 4A). Dystrobrevin β (DTNB) followed by CAPN3 and DMD have the highest 
peak values, suggesting that their genes contain AREs that are more likely to be occupied by AR.

Figure 3. Replication of SBMA proteomic signature. (A) PCA of Nido Biosciences SBMA samples (n = 9) compared with control samples from NIH 
and UCL. (B) Volcano plot of increased (red), decreased (blue), or unchanged (green) proteins. (C) Log2 fold change of 40 SBMA-associated proteins 
from Nido Bio compared with control samples from NIH (n = 15) and UCL cohorts (n = 12). Data are plotted as mean ± SEM. *P < 0.05; **P < 0.01; 
***P < 0.001; ****P < 0.0001.

https://doi.org/10.1172/jci.insight.176383
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To further investigate whether these 40 proteins may be regulated by AR, we also interrogated a data 
set derived from RNA-Seq on skeletal muscle from WT and Ar-KO mice (31). Genes that were differential-
ly expressed between Ar-KO and WT muscle after DHT administration include Mstn, Art3, Mb, Dmd, and 
Nos1 (Supplemental Figure 4B). In total, 12 genes had altered expression with the 5 most affected genes 
being downregulated. Although these data sets have some limitations, their information is complementa-
ry, and therefore proteins that were identified in both analyses — MSTN, ART3, MB, DMD, TTN, and 
MYL1 — suggest an increased likelihood of  being directly regulated by AR. It should be noted that gene 
regulation by AR is one of  many mechanisms by which fluid biomarkers can be altered. Proteolysis of  
extracellular domains or passive release from tissue damage are also likely mechanisms.

Correlations between patient functional assessments and SBMA-associated proteins. For some SBMA 
cohort blood measures, muscle MRI and clinical functional assessments were also performed at the 
time of  sample collection. Muscle MRI has recently been shown to be an informative biomarker, 
as it quantifies muscle atrophy and fat infiltration into the muscles, 2 major features of  SBMA (32). 
Furthermore, muscle MRI measurements were shown to correlate with clinical assessments. These 
additional measurements allowed us to correlate the abundance of  the 40 SBMA-associated proteins 
with other meaningful aspects of  the disease within patients and investigate the connection of  these 
biomarkers with relevant metrics of  disease. In the NIH cohort, we found that nearly every protein 
correlated with at least 1 clinical parameter measured in those patients. Only 3 proteins, including 
RGMA, MSTN, and ART3, and 1 metabolite (creatinine) were found to have decreased abundances in 
plasma, all of  which significantly correlated with higher thigh MRI muscle fat fraction (MFF) (Figure 
4). In the UCL cohort, the SBMA Functional Rating Scale (SBMAFRS; a rater-based measurement 
of  5 domains and multiple subdomains relevant to SBMA phenotypes) (33) and the 6-minute walk 
test (6MWT) functional assessments were collected. Many proteins that were increased in plasma had 
an inverse correlation with “walking” and “stairs” subscales of  the SBMAFRS scores, indicating that 
higher protein levels correlated with lower scores and increased disease severity. Many of  the proteins 
that correlated with lower-limb items on the SBMAFRS were also associated with the 6MWT in the 

Figure 4. A heatmap showing the correlations (r) of the 40 SBMA-associated proteins with clinical labs and functional readouts in the same patients 
using linear regression. The different cohorts are labeled on the left of the heatmap, proteins and clinical labs (italicized) are labeled on the bottom, and 
traits are labeled on the right. The dendrogram at the top clusters the proteins via a hierarchical clustering algorithm. #P < 0.1; *P < 0.05; **P < 0.01; ***P < 
0.001; ****P < 0.0001 as assessed by linear regression. NA, not applicable; MFF, muscle fat fraction.

https://doi.org/10.1172/jci.insight.176383
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same direction, suggesting consistency across functional assessments. Examples of  individual proteins 
significantly associated with lower limb impairment are reported in Supplemental Figure 5.

Some patients in the UCL cohort also had longitudinal follow-up assessments and blood collections 
every 13 months on average (Table 1), and this allowed us to assess the dynamics of  the SBMA-associated 
proteins over time. Results show that, of  the 40 SBMA-associated proteins, only RGMA and MEGF10 
change over time (Supplemental Figure 6) while most proteins in the SBMA proteomic signature were 
stable over approximately 1 y.

Correlations between SBMA-associated proteins and phenotypes in SBMA preclinical mouse model. Finally, we 
utilized the AR113Q preclinical mouse model of  SBMA, which was generated by knocking in a human AR 
exon 1 with 113 CAG repeats to the mouse Ar locus (34). These mice mimic the genetic cause of  SBMA 

Figure 5. Phenotypes and protein signature in AR113Q mice. (A) Weekly body weight of WT and AR113Q mice from 5–30 weeks of age (2-way ANOVA). 
At study start, n = 47 for WT and n = 45 for AR113Q, with the number of mice that died each week during the study subtracted. (B) Kaplan-Meier surviv-
al plot comparing WT and AR113Q mice. The significance was measured at 30 weeks (Mantel-Cox). (C) Relationship between body weight and survival, 
categorized by AR113Q mice that died or survived. (D) Volcano plot of 92 proteins, as described previously. The red dashed line represents a P < 0.05 
from multilevel metaregression models. (E and F) Volcano plots showing the correlation of protein levels with body weight or rate of death, respective-
ly, across time in AR113Q mice. Eda2r: hazard ratio = 2.63, P = 0.003; Rgma: hazard ratio = 0.019, P = 0.0185 via time-varying Cox proportional hazard 
ratio models. All proteins below the red dashed line (P < 0.05) were not associated with weight or survival. The β represents the regression coefficient/
slope of the model. (G) Differential abundance (log2 fold change) of Eda2r and Rgma between AR113Q and WT at different ages. n = 12 for WT and n = 
15–30 for AR113Q mice, depending on each week. Week 18 samples were not available for analysis. ****P < 0.0001. (H) Change in levels of Eda2r and 
Rgma and association with body weight in AR113Q mice. (I) Change in levels of Eda2r and Rgma over time in AR113Q mice that died.

https://doi.org/10.1172/jci.insight.176383
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and have been shown to recapitulate the pathological features of  the disease such as muscle atrophy and 
polyQ AR protein accumulation. Consistent with previous studies, our data confirm that AR113Q mice 
exhibit body weight loss of  approximately 15% from WT and exhibit decreased survival to 50% by 30 
weeks of  age (Figure 5, A and B). Currently, the cause of  either of  these phenotypes is not well known. To 
determine if  these 2 phenotypes were related to each other, we used time-varying Cox proportional hazard 
ratio modeling and found that decreases in body weight were significantly associated with premature death 
in AR113Q mice (P = 0.0374; Figure 5C).

To measure the plasma proteomic profile of  AR113Q mice, we again used the Olink platform; how-
ever, this rodent panel was limited and only measured 92 proteins. Of  these 92 proteins, only 2 of  the 40 
SBMA-associated proteins were measured. We found that 36 proteins exhibited differential abundance 
between AR113Q versus WT (P < 0.05; Figure 5D and Supplemental Table 3). Interestingly, Ectodysplasin 
A2 receptor (Eda2r; Xedar, Tnfrsf27) which was one of  the 2 SBMA-associated proteins measured in this 
panel, was significantly increased in AR113Q mice (P = 5.47 × 10–7). Eda2r is a single-pass transmembrane 
receptor of  the TNF family, located near AR on the X-chromosome, and is linked to several overlapping 
features of  patients with SBMA or AR biology, including aging, metabolic dysfunction, dysregulation of  
hair growth (androgenic alopecia), and muscle atrophy (35, 36).

We also tested whether plasma protein levels in AR113Q mice correlated with body weight or survival 
phenotypes. Our analyses identified several proteins that were significantly associated with body weight 
(Figure 5E) and survival (Figure 5F) using mixed-effects regression and time-varying Cox proportional haz-
ard ratios models. Increases in Eda2r were associated with decreases in body weight and premature death 
in AR113Q mice (Figure 5, G–I). Decreases in Rgma, the other SBMA-associated protein measured in this 
panel, was associated with decreased body weight and premature death in AR113Q mice (Figure 5, G–I). 
Rgma is a GPI-anchored glycoprotein that functions as a guidance molecule, with tissue-dependent roles 
of  cellular adhesion or repulsion (37–39). Rgma has an important role in nervous system development and 
maintenance as well as myoblast fusion and myotube hypertrophy. Together, both Eda2r and Rgma were 
constituents of  the SBMA proteomic signature, correlated with other SBMA-relevant endpoints, and are 
reported to function in biology relevant to the pathophysiology of  SBMA, making them interesting targets 
for further investigation in the context of  SBMA.

Discussion
The objective of  this study was to identify protein biomarkers from SBMA blood samples. We found a panel 
of  40 proteins that were significantly different in patients with SBMA compared with matched controls. 
These proteins were reproducible across independent samples and were enriched for skeletal muscle process-
es aligning with the clinical manifestations and areas of  pathology implicated in SBMA. We have illustrated 
the connections of  these proteins with potential pathophysiological mechanisms in Figure 6. Acknowledg-
ing that this illustration does not capture the full expression patterns and molecular complexities of  these 
proteins, it integrates our discovery with known biology. Additionally, our investigation revealed correlations 
between these SBMA-associated proteins and various clinical outcomes in patients, suggesting a potential 
link to pathogenic processes. Of  note, many of  these SBMA-associated proteins demonstrated more favor-
able characteristics than currently assessed biomarkers, including lower variability, stronger correlations with 
functional assessments, and more significant differences between disease and control groups.

While our findings offer insight into potentially new disease biomarkers, we acknowledge that the 
mechanisms underlying the altered levels of  these proteins remain unclear. We have yet to determine 
whether increased protein levels result from transcriptional regulation or posttranslational processing 
or whether they are released into circulation due to muscle degeneration, a key component of  SBMA. 
To bridge this gap, we integrated publicly available data sets that assessed AR gene regulation activity, 
such as ChIP-on-chip from myoblasts and RNA-Seq from Ar-KO mice, providing insights into potential 
mechanistic pathways. However, further analysis is necessary to determine whether these protein-en-
coding genes are direct targets of  AR. Indeed, analysis of  AR promoter/enhancer occupancy in myo-
tubes could be informative, but analysis of  AR in myofibers in adult intact skeletal muscle is missing. 
Additionally, myotubes do not reproduce the molecular architecture and physiology of  the intact myofi-
ber in the intact muscle. There are similar concerns in the Ar-KO mice, where the effect can be indirect, 
as loss of  a transcription factor can result in network changes of  coordinated control of  gene expression 
by other transcription factors and coregulators of  transcription.
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Despite the elusive mechanisms underlying altered protein levels, our discoveries shed light on vari-
ous sites of  pathology and distinguishing features of  SBMA. The majority of  SBMA-associated proteins 
are comprised of  genes highly expressed in skeletal muscle. Several of  these proteins, including MB 
(myoglobin), CA3, and FABP3 are also increased in muscle degenerative disorders such as DMD and 
FSHD. Of  note, MB levels are reported to be abnormally high in 100% of  patients with SBMA but do 
not display abnormalities in patients with ALS (10). Interestingly, evidence suggests that MB has an 
ARE and is differentially expressed by Ar KO in mouse skeletal muscle tissue. Other SBMA-associated 
proteins highly expressed in muscle, such as KLHL41 and NEB, may also be altered in other diseases but 
are not detected due to differences in the detection method or other sample postprocessing techniques. 
Interestingly, mutations in KLHL41 and NEB are associated with subtypes of  nemaline myopathy, fur-
ther connecting these proteins to myodegeneration in SBMA (40, 41).

As previously mentioned, the proteins EDA2R and RGMA are intriguing biomarkers, given their 
known biology and their clinical and preclinical connections with SBMA. Increased EDA2R levels may 
reflect heighted inflammation, muscle atrophy, and aging as recently elucidated (35, 42, 43). RGMA 
may also be a valuable biomarker as it correlates with muscular fat content in the lower limbs of  patients 
with SBMA, decreases over time, and is associated with premature death and low body weight in the 
AR113Q mouse model. While we have yet to determine whether altered levels of  RGMA reflect a neuro-
nal or muscle contribution to SBMA pathology, our data align with the previous conclusion that muscle 
biomarkers may be more revealing of  disease status than neuronal biomarkers (11). Consistent with 
these observations, the NfL (gene name NEFL) marker of  neurodegeneration did not exhibit differences 
between SBMA versus control (Padj > 0.05). The SBMA proteomic signature appeared stable over time 
based on the limited longitudinal patient samples analyzed. Future studies with additional mouse mod-
els and patients that include presymptomatic and more longitudinal samples, extended follow-up assess-
ments, and differing disease states will be needed to fully characterize longitudinal changes and identify 
proteomic biomarkers with wider dynamic ranges. It may be that the largest biomarker abnormalities 
precede the onset of  symptoms by years, as is the case with Alzheimer’s disease (44).

Figure 6. Contextual summary of 40 SBMA-associated proteins. All 40 proteins are labeled next to their specific or 
general molecular functions as they may relate to neuromuscular biology in SBMA. The listed molecular functions or 
localization of proteins is not meant to rigidly define these proteins but, rather, to link the constellation of potential 
mechanisms that may contribute to SBMA pathophysiology.
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A major advance in our work is identifying biomarkers that correlate with clinical outcomes. We found 
several muscle-enriched proteins that correlate with the SBMAFRS and the subscores of  lower- or upper-
limb test items that involve recruitment of  large muscle groups. Consistent with previous studies, CK did 
not correlate with any functional readout in patients with SBMA (11, 45). Creatinine, on the other hand, 
showed correlations with SBMA muscle MRI and the SBMAFRS, aligning with published research (11, 
46). While clinical labs like CK and creatinine remain useful in SBMA, our findings suggest that other 
protein biomarkers may hold greater relevance to the disease.

It should be noted that, while the proteomic technology platform used in this study detects upward of  
3,000 proteins, it is well short of  an entire proteome. Such is a limitation of  this technology that, while it is 
highly sensitive, it is not unbiased and will only measure proteins for which there are antibodies. Whereas 
mass spectrometry offers unbiased discovery and higher specificity, it is not as sensitive as ligand-binding 
approaches. Additionally, aptamer-based approaches offer a complementary technology that can be highly 
sensitive and multiplexed. Ultimately, all technologies will advance and give a more complete picture of  
disease-specific proteomes.

In summary, our study reveals several promising protein biomarkers that merit further exploration in 
both clinical and preclinical settings. These discoveries offer potential keys to a deeper understanding of  
SBMA and may ultimately assist the research and development of  effective therapies for patients.

Methods
Sex as a biological variable. SBMA only affects males; therefore, only male samples, humans and mice, were 
collected and used.

SBMA human samples. The current study utilized 4 SBMA patient cohorts and 2 cohorts from a preclini-
cal mouse model (Table 1). Demographic information on the human samples was unavailable. Two patient 
cohorts were used for discovery, and 2 were used for replication. One of  the human discovery samples 
came from a NIH study published in 2017 (17) that also contained data on clinical labs and thigh muscle 
MRI data. Another human discovery sample came from an observational study at UCL that contained 
data on the SBMAFRS and 6MWT. One human replication sample came from a longitudinal observa-
tional study conducted by Nido Biosciences (study no. NDO-000-001) and consisted of  only patients with 
SBMA. The other human replication sample came from UCL but used independent participants and was 
analyzed on a previous version of  the proteomics platform including a reduced number of  proteins (~1,500 
versus ~3,000 in the other data sets).

SBMA mouse model samples. Longitudinal plasma samples were collected in 2 cohorts from WT and AR113Q 
male mice. C57BL/6J-hAR*113Q hemizygous (gift from A. Lieberman, University of Michigan, Ann Arbor, 
Michigan, USA) and C57BL/6J (The Jackson Laboratory) WT littermate male mice (approximately 3–5 weeks 
of age) were bred and genotyped at the Charles River Laboratory and were then shipped to Psychogenics. Mice 
were assigned unique identification numbers (ear notched) and were single-housed in polycarbonate cages with 
filter tops. All animals were examined, manipulated, and weighed prior to initiation of the study to assure ade-
quate health and suitability and to minimize nonspecific stress associated with manipulation. Animals were 
body weighed weekly. In total, the study included 47 WT mice and 45 AR113Q mice at study start.

During the course of  the study, 12:12 light/dark cycles were maintained. The room temperature was 
maintained between 20°C and 23°C with relative humidity maintained around 50%. Chow and water were 
provided ad libitum for the duration of  the study. This line of  mice does not show rapid or overt signs of  
morbidity or other clinically relevant changes immediately before death, although in rare cases extreme 
lethargy or immobility necessitated euthanasia. Euthanasia was deemed necessary when mice lost more 
than 10% of  their body weight within 1 week. Most animals that died were found dead. The cause of  death 
in this line of  mice is yet to be fully understood.

Plasma was collected via submandibular bleeds every other week from 12–28 weeks of  age. Briefly, ani-
mals were scruffed and a lancet was used to pierce the cheek. The animal was then held to a plasma K-EDTA 
tube and allowed to bleed into the tube. After collection, the bleeding was stopped by applying pressure with 
a sterile gauze pad to the cheek until blood stopped flowing. Animals were then given 1 mL Ringer’s solution 
and allowed to recover on heating pad before being returned to their home cage. Collection tubes were then 
left on wet ice for at no more than 15 minutes prior to centrifugation at 5,000g for 10 minutes at 4°C. The 
supernatant containing the plasma was then pipetted out and placed in a separate 1.5 mL Eppendorf  tube 
and frozen on dry ice. At each time point, 50 μL of whole blood was collected to generate 25 μL of plasma.
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Public data set analyses. To determine whether genes had a mechanistic link to AR, we used muscle (gas-
trocnemius) RNA-Seq data from female mice treated with DHT with a conditional KO of  AR in muscle 
tissue (31). Briefly, 13-week-old female mice (n = 3 per group) were used that were treated with a biode-
gradable pellet of  10 mg DHT at 9 weeks of  age. RNA-Seq data were aligned to reference genome mm10 
using salmon (47) and STAR (48). Differential expression analyses explored differences between Ar KO 
DHT versus WT DHT by using a negative binomial regression model from DESeq2 (49). RNA-Seq data 
are available on the Gene Expression Omnibus (GEO; GSE152756).

To investigate possible ARE for proteins of  interest, we leveraged published ChIP-on-chip data from pri-
mary human skeletal muscle myoblasts (30). Cells were treated with 30 nM of  DHT or DMSO for 8 hours. 
IgG and AR ChIPs were performed on lysates, and probes were mapped to the hg18 reference genome. 
Active regions were defined as 10,000 bp up- or downstream from a gene, and enrichment of  AR binding 
sites was performed using Tiling Analysis Software and the Microarray Analysis Tool. ChIP-on-chip data 
are available on GEO (GSE22076).

Proximity extension assay. Olink Proteomics has developed targeted immunoassays for protein bio-
marker research that can measure numerous proteins simultaneously in multiple matrices. Three plat-
forms were used: Olink Explore 3072, Olink Explore 1536, and Olink Mouse Target 96, with the num-
bers indicating the approximate number of  proteins measured in that platform (i.e., Explore measures 
~3,000 proteins and Target measures ~96 proteins). To identify a single protein (or antigen of  the 
protein), antibodies are coupled to 1 of  2 complementary oligonucleotides, which will then hybridize 
to each other when brought into close proximity of  the antibodies binding a specific protein. Then, 
either quantitative PCR (qPCR) or DNA sequencing is used to quantify the number of  hybridized 
oligonucleotides, and those values are then converted to normalized protein values. The antibodies are 
multiplexed, allowing detection of  several proteins at once.

The biosamples analyzed were kept frozen at Nido Biosciences from the time of  receipt and storage, 
through shipment and storage at Olink. No additional freeze-thaw cycles were done since sample ascertain-
ment by Nido Biosciences. Samples were thawed at 4°C at Olink before plating for analysis.

Each study was done with a set of  technical controls predetermined by Olink. These controls were 
implemented on every 96-well plate, in which test samples were analyzed. After each sample set analysis, the 
data are scrutinized for quality control and are accompanied by an Analysis Report (available upon request).

Statistics. To determine protein abundance differences between SBMA and controls, linear regression 
analyses adjusted for age were performed. The UCL cohort had longitudinally assessed SBMA sample; 
thus, a linear mixed-effects regression was conducted using sample IDs as a random effect to account for 
repeated participants across time points using the lmerTest R package (50). The Nido Biosciences Obser-
vational Study did not have control samples. To determine proteomic associations with disease, Nido Bio-
sciences patients with SBMA were compared with control samples from NIH and UCL discovery data 
sets using linear regression and adjusting for age and cohort. GSEA were also conducted (51) using the 
fgsea package in R (52) on over 3,000 gene sets with > 15 genes to test for enrichment from 7 categories of  
gene sets (Hallmark pathways, Kyoto Encyclopedia of  Genes and Genomes [KEGG] pathways, Ingenuity 
pathways, Human Protein Atlas tissue expression,and Gene Ontology gene sets of  biological processes, 
molecular functions, and cellular components).

Linear regression analyses were also conducted in mice to investigate protein abundance differences 
between AR113Q versus WT mice controlling for cohort. Analyses were conducted within time point, 
and results were metaanalyzed across time points using multilevel metaregression via the metafor package 
in R (53). Linear mixed-effects regression models adjusting for cohort were performed to identify protein 
correlations with body weight in AR113Q mice. Kaplan-Meier survival analysis was determined using 
GraphPad software (version 9), utilizing the Mantel-Cox method. Time-varying Cox proportional hazard 
ratio models adjusting for cohort were also fit to determine protein and body weight associations with rates 
of  survival over time in AR113Q mice via the survival R package (54).

For human discovery data sets, correction for multiple testing was performed via a Benjamini-Hoch-
berg adjustment using a threshold of  Padj < 0.05 to determine significance for differential protein abundance 
and significantly enriched gene sets. Replication and preclinical follow-up samples employed a nominal P 
value cut-off  of  P < 0.05.

Study approval. Participants were recruited under NIH protocols NCT02124057 and NCT04944940. 
The study was approved by the NIH Combined Neuroscience IRB and the NIH IRB, and informed 
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consent was obtained from all participants. The UCL samples were collected on this study: Character-
isation of  a panel of  disease biomarkers in peripheral blood from individuals with amyotrophic lateral sclerosis/
motor neuron disease (Research Ethics Committee reference no. 09/H0703/27).

Data availability. The data supporting this study are available from the corresponding author upon 
reasonable request. A Supporting Data Values file has been provided with this manuscript.
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