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ABSTRACT  

Systemic sclerosis (SSc) is characterized by immune system failure, vascular insult, autoimmunity, 

and tissue fibrosis. Transforming growth factor-beta (TGF-β) is a crucial mediator of persistent 

myofibroblast activation and aberrant extracellular matrix production in SSc. The factors 

responsible for this are unknown. By amplifying pattern recognition receptor signaling, Triggering 

Receptor Expressed on Myeloid Cells 1 (TREM-1) is implicated in multiple inflammatory 

conditions. In this study, we used novel ligand-independent TREM-1 inhibitors in order to 

investigate the pathogenic role of TREM-1 in SSc, using preclinical models of fibrosis, and 

explanted SSc skin fibroblasts. Selective pharmacological TREM-1 blockade prevented and 

reversed skin fibrosis induced by bleomycin in mice and mitigated constitutive collagen synthesis 

and myofibroblast features in SSc fibroblasts in vitro. Our results implicate aberrantly activated 

TREM-1 signaling in SSc pathogenesis, identify a unique approach to TREM-1 blockade, and 

suggest a potential therapeutic benefit for TREM-1 inhibition.  
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INTRODUCTION  

Fibrosis that affects multiple organs is the hallmark sign of systemic sclerosis (SSc), and lacks 

effective therapy (1, 2). Fibrosis in SSc is associated with high mortality (3-5). Numerous 

intracellular signaling pathways are implicated as drivers of SSc fibrosis, but the nature of their 

continuing dysregulation in pathological inflammation and fibrosis remains poorly understood. 

Recent studies have uncovered an essential role for innate immunity in the pathogenesis of SSc 

(6). As a component of the innate immune system, the cellular receptor Triggering Receptor 

Expressed on Myeloid Cells 1 (TREM-1) is expressed on neutrophils, monocytes, macrophages, 

and endothelial cells (7, 8). Endogenous ligands for TREM-1 include high mobility group box 1 

(HMGB1), Hsp70 (heat shock protein 70), peptidoglycan recognition protein 1 (PGLYRP), and 

extracellular cold-inducible RNA-binding protein (eCIRP1) (9). Activation of TREM-1 leads to 

phosphorylation of its signaling partner DNA-activating protein of 12 kDa (DAP12), which 

induces cytokine and chemokine production (10, 11). However, the expression, role and 

mechanisms of TREM-1 signaling in fibrosis in SSc are currently unknown (9, 12).  

Upregulation of TREM-1 on immune cells is implicated in acute inflammation (7, 13), while 

sustained TREM-1 activation plays a crucial role in sepsis, arthritis, and colitis (11, 13-16). 

Notably, TREM-1 amplifies signaling from cellular pattern recognition receptors (PRR) such as 

Toll-like receptor 4 (TLR4), thus amplifying the inflammatory response (17, 18). In previous 

studies, we established an essential role for several extracellular matrix proteins as damage-

associated molecular patterns (DAMPs) that function as endogenous ligands for TLR4 to drive 

sustained fibroblast activation underlying fibrosis progression in SSc (19, 20). In light of TREM-

1’s potential to interact with the TLR4 signaling pathways, we sought to explore the involvement 

of TREM-1 in SSc and the impact of TREM-1 inhibition in preclinical models of fibrosis.  
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There has been substantial effort to develop therapeutic TREM-1 inhibitors.  Currently available 

TREM-1 blockers, including inhibitory peptides LR12 and M3 (21-25), the small molecule VJDT 

(26), and an anti-TREM-1 antibody (27), are ligand-dependent inhibitors that block TREM-1 

binding to its ligand(s) (28). At least five different molecules have been reported as putative 

TREM-1 ligands (29). In the pathogenesis of TREM-1-linked inflammatory diseases, the 

expression of these molecules depends on disease pathogenesis, stage, and severity, which might 

affect the efficacy of ligand-dependent TREM-1 inhibitors. Importantly, despite promising results 

in disease models in small and large animals, and safety in humans (30-35), the first clinical 

TREM-1 blocker, LR12 peptide (Nangibotide), failed in a recent Phase IIb sepsis trial (25).  

In the present study, we sought to characterize the involvement of TREM-1 in SSc. We used unique 

TREM-1 inhibitors to determine the impact of TREM-1 in preclinical disease models. These 

inhibitors were created based on the TREM-1 inhibitory peptide sequence GF9 (reviewed in (28). 

The free peptide GF9 and GA31 peptide formulated in macrophage-targeted lipopeptide 

complexes (GA31-LPC) employ a ligand-independent mechanism to disrupt protein-protein 

interactions between TREM-1 and DAP-12 at the membrane (28). Systemically administered GF9 

functions as a "pan-TREM-1" blocker on all TREM1-expressing cells (neutrophils, monocytes, 

macrophages), while GA31-LPC blocks TREM-1 primarily on macrophages (28). Treatment with 

GF9 and GA31-LPC were previously shown to suppress systemic and local inflammation and 

ameliorate disease in animal models of rheumatoid arthritis, alcoholic liver disease, retinopathy, 

and cancer (36-39).  

Here, we demonstrate that TREM-1 signaling was activated in SSc skin biopsies, and its inhibition 

mitigated constitutive collagen synthesis and the myofibroblasts phenotype in explanted SSc 

fibroblasts. Furthermore, ligand-independent selective TREM-1 blockade prevented and reversed 
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bleomycin-induced fibrosis in mice. Together, these results implicate aberrant TREM-1 signaling 

in SSc,and provide a rationale for further exploring selective TREM-1 targeting as a distinct 

therapeutic strategy.  

RESULTS  

TREM-1 inhibitors treated at early time point prevented bleomycin induced responses. 

 In this study, we used first time TREM-1 inhibitors GF9 and GA31-LPC (34-37) in a preclinical 

disease model of fibrosis. Eight-week-old female C57BL/6J mice were injected with bleomycin 

daily subcutaneously (s.c.) for one-week (5 days/week), concurrently with vehicle or GF9 (25 

mg/kg) or GA31-LPC (13 mg/kg) given by daily intraperitoneal (i.p.) injections (5 days/week). 

Mice were sacrificed on day 8. Masson's trichrome staining of skin from mice treated with 

bleomycin, compared to vehicle-treated mice, showed decreased thickness of the cutaneous white 

adipose tissue (DWAT), associated with increased dermal thickness (Fig.1A). Dramatic 

bleomycin-induced loss of DWAT was substantially attenuated by treatment of the mice with GF9 

or GA31-LPC (Fig. 1A). Loss of DWAT was further demonstrated using perilipin immunostaining 

(Fig.1C). Pharmacological TREM-1 blockade attenuated the increase in inflammatory cytokines 

including Mcp1 and Il6 (Fig. 1B). We observed no significant difference in dermal thickness and 

skin procollagen I levels with TREM- 1 inhibitor treatment at this early timepoint (Fig. 1C). We 

investigated the effect of GF9 and GA31-LPC on accumulation of ASMA-positive interstitial 

myofibroblasts and phospho-DAP12 (a marker for TREM1 activation) and CD45-positive 

leukocytes. Interestingly, 7 days of GF9 and GA31-LPC treatment decreased accumulation of 

ASMA-positive myofibroblasts (p=0.0057 and p=0.012) (Fig 1D), as well as phospho-DAP12- 

and CD45-positive leukocytes (Suppl. Fig. 1A, 1B).  
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TREM-1 inhibition concomitant with bleomycin administration prevented skin fibrosis  

We next examined the effect of treatment with GF9 and GA31-LPC for 21 days. Treated mice 

showed no significant weight loss, and treatment was well tolerated with no behavioral changes or 

overt signs of toxicity. Bleomycin-treated mice showed increased dermal collagen accumulation, 

enhanced dermal thickness, and loss of DWAT, compared to PBS treated mice (Fig. 2A). 

Concurrent GF9 or GA31-LPC treatment resulted in reduced collagen deposition and dermal 

thickness and restored DWAT compared to bleomycin-treated mice (Fig. 2A, B). When compared 

to early timepoints, the skin at 22 days of bleomycin treatment demonstrates increased numbers of 

ASMA-positive interstitial myofibroblasts, which was attenuated in mice with TREM-1 inhibitors 

administered concomitantly with bleomycin (Fig. 2C). Immunolabelling indicated a marked 

reduction in the numbers of  CD45- leukocytes and CD11b-positive (pan myeloid marker), but no 

significant changes in T cell accumulation, in the dermis from mice treated with TREM-1 

inhibitors. (Suppl. Fig. 2 and Suppl. Fig. 4).  

Treatment with GF9 and GA31-LPC attenuated established skin fibrosis  

To evaluate the effect of TREM-1 inhibition in the therapeutic approach, we initiated TREM1 

inhibitor treatment on day 15 following the start of bleomycin, when skin fibrosis is already 

established (40). Analysis of the lesional skin showed that treatment with GF9 or GA31-LPC 

attenuated the bleomycin-induced increase in dermal thickness and collagen accumulation (Fig. 

3A, B), and restored DWAT. Chronic administration of GF9 and GA31-LPC in these experiments 

appeared to be well tolerated.  

TREM-1 signaling is activated in SSc skin biopsies.  
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To characterize TREM-1 activity in SSc, we determined levels of phosphorylated Syk, a marker 

of TREM-1 activation (41), in the skin. Immunolabelling of skin biopsies indicated significantly 

higher levels of phosphor-Syk (p=0.004), accompanied by increased number of ASMA-posotive 

interstitial cells (p=0.0081), in SSc skin biopsies compared to healthy controls, while there was no 

significant difference in TREM-1 levels (Fig. 4A). Further, levels of the TREM-1 activation target 

DAP12 was elevated in explanted SSc compared to healthy skin fibroblasts (Suppl. Fig. 3A). To 

investigate the effect of TREM-1 on explanted fibroblasts in vitro, confluent SSc skin fibroblasts 

were incubated in media with GF9 (10 μM) for 24 h. GF9 treatment was associated with substantial 

downregulation of mRNA levels of COL1A1 and ACTA2, as well as inflammatory cytokines 

MCP1 and IL-6 (Fig. 4B). Importantly, GF9 reduced the production of collagen I and cellular 

levels of ASMA, which was accompanied by a reduction in cellular phosphor-DAP12 and 

phospho-Syk levels (Fig. 4C, Suppl. Fig. 3B). Together, these results indicate a potent anti-fibrotic 

effect of TREM-1 inhibition in explanted SSc fibroblasts.  

 DISCUSSION  

Fibrosis in SSc affects the skin and multiple internal organs (42). The pathogenesis of SSc is still 

poorly understood, but emerging evidence implicates dysregulated innate immune signaling (43). 

Patients with SSc have limited therapeutic options and unique therapeutic approaches are needed 

(44). TREM-1 is a widely expressed cellular receptor involved in innate immune signaling via the 

adaptor protein DAP12 (28).  TREM-1 activation triggers phosphorylation and activation of the 

Src kinase Syk, resulting in Syk2 phosphorylation (41). The identity of TREM1 ligands remains 

incompletely established, and multiple putative endogenous ligands have been described (28). 

Blocking TREM-1 signaling has been explored as a potential approach to the treatment of 
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inflammation-associated disorders, including sepsis, rheumatoid arthritis, and retinal 

neovascularization, as well as cancer (13, 36, 37, 39, 45).  

Soluble TREM-1 (sTREM-1) is a glycoprotein derived primarily from the proteolytic cleavage of 

membrane TREM-1, and is a biomarker for TREM1 activation. Levels of sTREM1 were elevated 

in patients with diffuse cutaneous SSc, and correlated with the severity of pulmonary fibrosis (30). 

These findings suggested that serum sTREM-1 could be a unique marker for disease severity (45). 

Furthermore, phospho-DAP12, the marker for TREM-1 activation was elevated in skin biopsies 

from patients with early stage SSc, as well as in the bleomycin-induced fibrosis model. Our present 

studies are the first to show that targeting TREM-1 using ligand-independent peptide inhibitors 

prevents and reverses pathological skin fibrosis in mice, and represents a potential anti-fibrotic 

strategy for the treatment of fibrosis in patients with SSc.  

TREM-1 enhanced inflammatory response was observed in non-infectious disease models, 

including hemorrhagic shock, pancreatitis (acute inflammation), chronic inflammatory bowel 

diseases, and inflammatory arthritis (46-49). TREM-1-deficient mice displayed significantly 

reduced disease phenotype associated with reduced inflammatory infiltrates and diminished 

expression of pro-inflammatory cytokines, thus representing an attractive target for treating 

chronic inflammatory disorders (50). Such data are noteworthy in suggesting that TREM-1 also 

plays a regulatory role in influencing the disease outcome. Therefore, we pursued the inhibitors' 

anti-fibrotic effect in a preclinical fibrosis model. Treatment with GF9 and GA31-LPC exerted 

potent antifibrotic effects in mice, and mitigated the activated phenotype of SSc fibroblasts in vitro. 

Moreover, the inhibitors showed antifibrotic effects on established skin fibrosis model also. As 

expected, we have found downregulation of pDAP12 and the levels of inflammatory and 

profibrotic cytokines (MCP-1 and IL-6) and pan leukocyte marker CD45 and pan myeloid marker 
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(CD11b) in mice. While the ligands of TREM-1 are still unknown, it has been shown that TREM-

1 activation amplifies inflammation and synergizes with TLR signaling (51). We have shown 

previously that expression of TLR4 and its endogenous damage-associated ligands (DAMPs) are 

elevated in SSc patients (6, 20). Ligand-induced TLR4 activation in stromal cells elicits potent 

stimulation of fibrotic gene expression, myofibroblast transformation and survival, thus 

contributing to fibrosis persistence and progression (19, 52). TREM-1 inhibitors prevented 

phosphorylation of cellular DAP12, an early event in both TLR4 and TREM-1 signaling. 

Therefore, blocking early events in fibrotic activation in stromal cells might represent a therapeutic 

approach to ameliorate fibrosis, and merits further investigation.  

MATERIALS AND METHODS  

Study approval 

Biopsies were performed with written informed consent, as per protocols approved by the IRB for 

Human Studies at Northwestern University and the University of Michigan (00186936). Animal 

experiments were performed according to institutionally approved protocols and in compliance 

with the University Animal Care and Use Committee guidelines (PRO00011706).  

Cell Culture and Reagents  

The synthesis of the 9- and 31-mer TREM-1 inhibitory peptides, GFLSKSLVF (human TREM-

1213-221, GF9) and GFLSKSLVFPLGEEM(O)RDRARAHVDALRTHLA (GA31), was 

described previously (39, 41, 53).  

Primary cultures of fibroblasts were established by explanations from skin biopsies from patients 

with SSc. Low-passage fibroblasts grown in monolayers in plastic dishes were studied as 

previously described (54). All SSc fibroblasts are derived from patients with early-stage (< 3 years 
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from first non-Raynaud disease manifestation) disease. Clinical characteristics of subjects used in 

the study are listed in Table 1. All SSc skin biopsies were recruited from patients with diffuse 

cutaneous systemic sclerosis patients. Control skin biopsies were recruited from healthy subjects.  

Sex as a biological variable 

We used female mice (8-12 weeks old) in this study because they present more excellent fibrotic 

responses in the subcutaneous (s.c.) bleomycin model and SSc has more the solid female sex bias. 

Model of dermal fibrosis  

8-12-week-old female C57BL/6J mice (The Jackson Laboratory) received subcutaneous (s.c.) 

injections of bleomycin (10 mg/kg/day) or PBS daily for 10 days (5 days/week). GF9 (25 mg/kg) 

and GA31-LPC (13 mg/kg) daily intraperitoneal (i.p.) injections were started concurrently with 

bleomycin, and mice were sacrificed on day 8 or day 22. Another group of mice received GF9 and 

GA31-LPC injections starting at day 15 of bleomycin treatment and continuing until sacrifice at 

day 28. A third group of mice received PBS, and a fourth received bleomycin alone. Tissue 

collagen content was determined using Colorimetric Assay Kits (Biovision, Milpitas, CA).  

Paraffin-embedded tissue sections (4 μm) were stained with Trichrome and analyzed as described 

(54). Skin collagen content was determined using hydroxyproline assays (Colorimetric Assay Kits, 

Biovision, Milpitas, CA). Total RNA isolated from mouse skin was reverse transcribed to cDNA 

using Supermix and analyzed by real-time qPCR (Applied Biosystems) on an Applied Biosystems 

7500 Prism Sequence Detection System as described (4, 54).  

Isolation and Analysis of RNA from SSc skin fibroblasts  
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At the end of the experiments, total RNA was isolated from SSc fibroblasts and reverse-transcribed 

to cDNA using Supermix (cDNA Synthesis Supermix; Quanta Biosciences, Gaithersburg, MD) as 

described (55). Amplification products (20 ng) were amplified using SYBR Green PCR Master 

Mix (Applied Biosystems, Foster City, CA) on an Applied Biosystems 7500 Prism Sequence 

Detection System. Primer sequences are listed in Table 2. Data were normalized to GAPDH RNA, 

and the fold change in samples was calculated (55).  

Immunofluorescence confocal microscopy using SSc skin fibroblasts and skin biopsies  

SSc fibroblasts seeded on 8-well Lab-Tek II chamber glass slides (Nalgene Nunc International, 

Naperville, IL) were incubated in serum-free DMEM with or without GF9 (10μM) for 24 h. Cells 

were then fixed, permeabilized, and incubated with antibodies to ASMA (Sigma, 1:500, A5228), 

type I collagen (Southern Biotechnology, 1:100, #1310-01) and p-Syk (CST 2710S), followed by 

Alexa-fluor-labelled secondary antibodies (Invitrogen) as described (55). For 

immunofluorescence, paraffin-embedded skin sections were incubated with antibodies to ASMA 

(Sigma, 1:100, A5228), pSyk (CST 2710S, 1:100), pDAP12 (ab314891, 1:100), CD45 (14-0451-

82, 1:100), CD3(sc-20047; 1:100), , TREM-1 (Invitrogen PA5-47090, 1:100), Anti-CD11b 

antibody (Abcam AB133357, 1:100), procollagen I (Sigma, MAB1912 1:200) or perilipin 

(Abcam; ab61682) followed by appropriate secondary antibodies.  

Nuclei were detected using DAPI. Slides were mounted, and immunofluorescence was evaluated 

in a blinded manner under a Nikon A1R laser scanning confocal microscope. Negative controls 

stained without primary antibodies were used to confirm immunostaining specificity.  

Statistical Analysis  
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We used the Mann-Whitney U and Student’s t-test (two-tailed) to compare two groups, with a p-

value correction for multiple comparisons. We presented the data as means ± S.D unless otherwise 

indicated. We examined the differences among groups for statistical significance using analysis of 

variance (ANOVA) followed by Sidak’s correction. A p-value less than 0.05 was considered 

significant. We analyzed the data using the Graph Pad prism (Graph Pad Software version 8, Graph 

Pad Software Inc., CA).  

Data availability 

 All the raw and processed data is stored in University of Michigan shared folder 

S:\Intmed_Rheum\Research\VSclero_Lab and are available upon request. All data point presented 

in the graphs are available in the supporting data file as a supplemental file.  
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FIGURES  

 

Figure 1: Pharmacological inhibition of TREM-1 prevents early loss of dermal adipose tissue  

C57/BL6 mice received daily s.c. injections of PBS or bleomycin alone, or together with GF9 and 

GA31-LPC or vehicle for 5 days. Mice were sacrificed on day 8 and skin was harvested for 

analysis. A. Trichrome stains, representative images. Bar-100 μm (left panel); dermal thickness 

(right panel, means ± SD of eight determinations/hpf). One-way analysis of variance followed by 

Sidak’s multiple comparison. B. Real-time quantitative PCR. Results, normalized with GAPDH, 
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are means ±s.d. of triplicate determinations from six mice per group; One-way analysis of variance 

followed by Sidak’s multiple comparison test. C. Immunolabelling using antibodies to perilipin 

(green), procollagen I (red) and DAPI (blue). Representative images. Bar = 100 μm. D. Antibodies 

to ASMA (green) and DAPI (blue). ASMA positive cells (average from four randomly selected 

from four mice/group). One-way analysis of variance followed by Sidak’s multiple comparisons 

test. 

 

Figure 2: Inhibition of TREM-1 signaling by GA31-LPC treatment prevents skin fibrosis.  
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C57/BL6 mice were treated as described in Fig1 above and were sacrificed on day 22 and skin was 

harvested for analysis. A. Trichrome stains, representative images, bar-100 μm (left panel); dermal 

thickness (right panel, means ± SD of eight determinations/hpf). One-way analysis of variance 

followed by Sidak’s multiple comparisons test. B. Skin hydroxyproline assays; results are mean ± 

SEM. C.  Immunolabelling using antibodies to ASMA (green) and DAPI (blue). Representative 

images. Bar = 100 μm. ASMA-positive cells (average from four randomly selected from four 

mice/group). One-way analysis of variance followed by Sidak’s multiple comparisons test. 

 

Figure 3: Inhibition of TREM-1 signaling by GF9 and GA31-LPC treatment mitigates 

established skin fibrosis.  

C57/BL6 mice were randomized to four treatment groups (n=5-8 mice/group), euthanized on day 

28 and skin was harvested. A. Trichrome stains, representative images, bar-100 μm (left panel); 

dermal thickness (right panel, means ± SD of five to eight determinations/hpf). One-way analysis 
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of variance was followed by Sidak’s multiple comparisons test. B. Hydroxyproline assays, One-

way analysis of variance followed by Sidak’s multiple comparisons test. 

 

Figure 4: TREM-1 signaling is activated in SSc skin. 

A. Skin biopsies from patients with SSc (n=8) and healthy controls (n=4) were immunolabeled 

with antibodies to phospho-Syk or ASMA, and immunofluorescence was visualized by Nikon A1R 

laser scanning confocal microscope; the percentage of immunopositive cells (means from four 

randomly selected regions) were quantified. Mann-Whitney U test. B. Confluent SSc skin 

fibroblasts (n=8, upper panel; n=3, lower panel) were incubated with GF9 for 24 h, and mRNA 

levels were quantitated by real-time quantitative PCR. Results, normalized with GAPDH, are 

means±s.d. of triplicate determinations from individual patient. Paired t test. C. SSc fibroblasts 
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(n=6) were immunolabeled using antibodies to collagen I, ASMA or pSyk (bar-100μm). 

Representative images. Relative fluorescence intensities (means ± SEM from 3 randomly selected 

regions). 

 

SUPPLEMENTARY FIGURE 

 

Supplementary Figure 1. Inhibition of TREM-1 signaling by GF9 and GA31-LPC treatment 

attenuated pDAP12 and CD45 levels in mice skin tissue. C57/BL6 mice received daily s.c. 

injections of PBS or bleomycin alone, or together with GF9 and GA31-LPC or vehicle. Mice were 

sacrificed on day 8. Skin tissues for the respective groups were immunolabelled with antibodies to 

(A) pDAP12 and (B) CD45 (bar, 50 μm).  Quantitation of pDAP12 and CD45 positive cells (means 

± SD; average from three randomly selected from four mice/group). Representative images.  
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Supplementary Figure 2. GF9 and GA31-LPC concomitant treatment with bleomycin 

attenuated immune cell infiltrations. C57/BL6 mice received daily s.c. injections of PBS or 

bleomycin alone, or together with GF9 and GA31-LPC or vehicle. Mice were sacrificed on day 

22. Skin tissues for the respective groups were immunolabelled with antibodies to A) CD45 for 

leukocytes and B) CD3 for T-lymphocytes (left panel, representative images, bar, 50μm) with 

quantification (right panel). 
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Supplementary Figure 3. TREM-1 downstream target is activated in SSc fibroblast. A. HC (n=2) 

and SSc fibroblasts (n=2) were immunolabeled using antibodies to pDAP12 (bar-50μm) and 

visualized by Nikon A1R laser scanning confocal microscope. Representative images. Relative 

fluorescence intensities (means ± SEM from 3 randomly selected regions). B. Confluent SSc skin 

fibroblasts (n=3, were incubated with GF9 for 24 h, and immunolabeled using antibodies to 

pDAP12 (bar-100μm). Representative images. Relative fluorescence intensities (means ± SEM 

from 3 randomly selected regions).  
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Supplementary Figure 4. GF9 and GA31-LPC concomitant treatment with bleomycin 

attenuated myeloid cell infiltrations. C57/BL6 mice received daily s.c. injections of PBS or 

bleomycin alone, or together with GF9 and GA31-LPC or vehicle. Mice were sacrificed on day 

22. Skin tissues for the respective groups were immunolabelled with antibodies to A) CD11b for 

myeloid cells (representative images, bar, 50μm) with quantification (right panel). Quantitation of 

CD11b positive cells (means ± SEM; average from three randomly selected from four mice/group). 
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Table 1 Clinical characteristics of subjects (skin biopsies used to establish explanted 

fibroblast lines)  

Identity Age 

(years) 

Sex Ethnicity SSc     Subtype Disease 

duration 

 

SAPRC_SSc_7 50 Female White Non-

hispanic 

Diffuse 8.96 

months 

SAPRC_SSc_11 64 Female White Non-

hispanic 

Diffuse 8.24 

months 

SAPRC_SSc_31 60 Female White Non-

hispanic 

Diffuse 12.8 

months 

SAPRC_SSc_37 63 Female White Non-

hispanic 

Diffuse 13.07  

months 

SAPRC_SSc_40 43 Female White Non-

hispanic 

Diffuse 9.16 

months 

SAPRC_SSc_43 55 Female Black Non-

hispanic 

Diffuse 11.20 

months  

SAPRC_SSc_44 64 Female White Non-

hispanic 

Diffuse 7.16 

months 

SAPRC_SSc_45 62 Female White Non-

hispanic 

Diffuse 19.44 

months 
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Table 2 -List of primers used for gene expression. 

hIL-6-F AAATTCGGTACATCCTCGACGG 

hIL-6-R GGAAGGTTCAGGTTGTTTTCTGC 

hACTA2-F CAGGGCTGTTTTCCCATCCAT 

hACTA2-R GCCATGTTCTATCGGGTACTTC 

hCOL1A1-F CTGAGTCAGCAGATTGAGAACA 

hCOL1A1-R AGGTTGCAGCCTTGGTTAG 

hGAPDH-F CATGAGAAGTATGACAACAGCCT 

hGAPDH-R AGTCCTTCCACGATACCAAAGT 

hMCP1-F ACTGAAGCTCGTACTCTC 

hMCP1-R CTTGGGTTGTGGAGTGAG 

mMCP1-F CATCCACGTGTTGGCTCA 

mMCP1-R GATCATCTTGCTGGTGAATGAGT 

mGAPDH-F ATCTTCTTGTGCAGTGCCAGC 

mGAPDH-R GTTGATGGCAACAATCTCCAC 

mIL-6-F GAGGATACCACTCCCAACAGACC 

mIL-6-R AAGTGCATCATCGTTCATACA 
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