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Supplemental Figure 1. Endothelium-dependent vasodilation is blunted in 

SUR2AV/AV mice. (A) Representative recordings and (B) summary data showing 

endothelium-dependent vasodilation induced by CCh (muscarinic receptor agonist) in 

mesenteric arteries from WT and SUR2AV/AV mice. Data are presented as means ± SEM 

(n = 8 vessels from four animals per group; *p < 0.05, two-way ANOVA with Šídák's 

multiple comparisons test). (C) Representative recording and (D) summary data showing 

vasodilatory responses to the •NO donor SNP in isolated mesenteric arteries from WT 

and SUR2AV/AV mice. Data are presented as means ± SEM (n = 8 vessels from four 

animals per group; ns = not significant, two-way ANOVA with Šídák's multiple 

comparisons test).    
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Supplemental Figure 2. Mesenteric arteries from SUR2AV/AV mice are 

hypercontractile. (A) Typical recording of the changes in lumen diameter of third-order 

mesenteric arteries from WT and SUR2AV/AV mice in response to increases in intraluminal 

pressure under active and passive (Ca2+-free) conditions. (B) Summary data from WT 

and SUR2AV/AV mice. Data are presented as means ± SEM (n = 8 vessels from four mice 

per group; *p < 0.05, two-way ANOVA with Šídák's multiple comparisons test). (C) 

Representative recording and (D) summary data showing constriction of mesenteric 

arteries from WT and SUR2AV/AV mice in response to increasing concentrations of PE (α1-

adrenoceptor agonist). Data are presented as means ± SEM (n = 6 vessels from four 

animals per group; *p < 0.05, two-way ANOVA with Šídák's multiple comparisons test).  
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Supplemental Figure 3. Myogenic tone does not differ between WT and SUR2AV/AV 

mice in endothelium-denuded vessels. (A) Representative recording and (B) summary 

data of changes in lumen diameter in response to increases in intraluminal pressure 

under active and passive (Ca2+-free) conditions in endothelium-denuded mesenteric 

arteries from WT and SUR2AV/AV mice. Data are presented as means ± SEM (n = 6 

vessels from three animals per group; ns = not significant, two-way ANOVA with Šídák's 

multiple comparisons test).  
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Supplemental Figure 4. Myogenic tone is elevated in cerebral pial arteries from 

Cantú mice. (A) Representative traces of the luminal diameter of isolated pial arteries 

from WT and Kir6.1wt/VM mice showing changes in lumen diameter in response to 

increases in intraluminal pressure under active and passive (Ca2+-free) conditions. (B) 

Summary data of myogenic tone in pial arteries from WT and Kir6.1wt/VM mice. Data are 

presented as means ± SEM (n = 6 vessels from 4 animals per group; *p < 0.05, two-way 

ANOVA with Šídák's multiple comparisons test). (C) Representative traces of the luminal 

diameter of isolated pial arteries from WT and SURAV/AV mice showing changes in lumen 

diameter in response to increases in intraluminal pressure under active and passive 

(Ca2+-free) conditions. (D) Summary data of myogenic tone in pial arteries from WT and 

SURAV/AV mice. Data are presented as means ± SEM (n = 6 vessels from 4 animals per 

group; *p < 0.05, two-way ANOVA with Šídák's multiple comparisons test).  
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Supplemental Figure 5. Vasoconstriction in response to elevated extracellular [K+] 

does not differ between WT and Cantú mice. Summary data showing constriction of 

isolated mesenteric arteries from Kir6.1wt/VM (A) and SUR2AV/AV (B) mice compared with 

WT controls in response to 60 mM KCl. Data are presented as means ± SEM (n = 12–22 

arteries for WT and 18–22 arteries for Cantú mice from 10–12 animals; ns: not significant, 

Student’s t-test). 

 

Supplemental Figure 6. The passive diameter of mesenteric arteries does not differ 

between WT and Cantú mice. Summary data showing the passive inner diameter of 

isolated mesenteric arteries from Kir6.1wt/VM (A) and SURAV/AV (B) mice compared with 

WT controls under Ca2+-free conditions (no added Ca2+, 2 mM EGTA, 10 μM diltiazem). 

Data are presented as means ± SEM (n = 5–8 vessels from 4 animals per group; ns: not 

significant, two-way ANOVA with Šídák's multiple comparisons test). 
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Supplemental Figure 7. KATP channel activation increases endothelial cell Ca2+ 

influx. (A) Representative grayscale and pseudocolored images of mesenteric arteries 

from Cdh5-GCaMP8 mice mounted en face. Arteries were pre-incubated with the 

sarcoendoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin (Tg; 2 µM) for 15 min. 

Recordings were performed initially under baseline conditions and then following initiation 

of Ca2+ signals by addition of CCh (10 µM). The tissue was then treated with pinacidil 

(Pin; 10 µM) followed by treatment with glibenclamide (Glib; 10 µM). Colored boxes show 
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regions of interest (ROIs) where Ca2+-signaling events occurred. Scale bar = 10 µm. (B) 

Representative ΔF/F0 versus time plots of Ca2+ events from multiple Ca2+ event sites. (C) 

Summary data showing the effects of pinacidil and glibenclamide on the amplitude 

(ΔF/F0), frequency (Hz), and number of active sites. Data are presented as means ± SEM 

(n = 5 arteries from three animals; *p < 0.05, one-way ANOVA with Tukey's multiple 

comparisons test).  
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Supplemental Figure 8. Extracellular Ca2+ is required for pinacidil-induced Ca2+ 

influx. (A) Representative pseudocolored images of mesenteric arteries from Cdh5-

GCaMP8 mice mounted en face. Endothelial cell Ca2+ signals were recorded under 

control conditions, then in the presence of pinacidil alone (Pin; 10 µM), with arteries 

bathed in a Ca2+-free solution or a solution containing 2 mM extracellular Ca2+, followed 

by treatment with the KATP channel blocker glibenclamide (Glib; 10 µM). Colored boxes 

show ROIs where Ca2+-signaling events occurred. Scale bar = 10 µm. (B) Representative 

ΔF/F0 versus time plots of Ca2+ events from multiple Ca2+ event sites. (C) Summary data 

showing the effects of pinacidil on the amplitude (ΔF/F0), frequency (Hz), and number of 

active sites for Ca2+ signals in Ca2+-free solution or a solution containing 2 mM 

extracellular Ca2+. Data are presented as means ± SEM (n = 6 arteries from three animals; 

*p < 0.05, one-way ANOVA with Tukey's multiple comparisons test). (D) Representative 

pseudocolored images of mesenteric arteries from Cdh5-GCaMP8 mice mounted 

en face. (E) Representative ΔF/F0 versus time plots of Ca2+ events at multiple sites. For 

CCh-induced Ca2+ signaling, events were recorded without or with pinacidil (Pin; 10 µM) 

in the absence of extracellular Ca2+ or in a solution containing 2 mM extracellular Ca2+, 

followed by treatment with glibenclamide (Glib; 10 µM). Colored boxes indicate ROIs with 

active Ca2+ signals. Scale bar = 10 µm. (F) Summary data showing the effects of pinacidil 

at 0 mM or 2 mM extracellular Ca2+ in the presence of CCh. The amplitude (ΔF/F0), 

frequency (Hz), and number of active sites for Ca2+ signals were analyzed. Data are 

presented as means ± SEM (n = 6 arteries from 3 mice; *p < 0.05, two-way ANOVA with 

Tukey's multiple comparisons test). 
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Supplemental Figure 9. Specificity of mitochondrial labeling. Representative 

confocal images of mesenteric arteries from WT mice mounted en face, co-labeled with 

MitoTracker green to identify mitochondria and (A) X-Rhod-1 or (B) CellRox. Scale bar = 

10 µm. 
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Supplemental Figure 10. Cytosolic ROS generation is increased in the endothelium 

of Cantú mice. (A) Representative images of mesenteric arteries from WT and Kir6.1wt/VM 

mice mounted en face and loaded with the general oxidative stress indicator CM-

H2DCFDA. Changes in CM-H2DCFDA fluorescence were imaged following treatment 

with CCh (10 µM), pinacidil (Pin; 10 µM), and the mitochondrial ROS scavenger 

mitoTEMPO (5 µM). Boxes show regions of interest (ROIs). Scale bar = 10 µm. (B) 

Representative ΔF/F0 versus time plots of the change in fluorescence intensity under 

each condition. Arrows indicate application of the agonist. (C) Summary data showing the 

changes in CM-H2DCFDA fluorescence intensity. Data are presented as means ± SEM 

(n = 6 to 7 arteries from 3 animals per group; *p < 0.05, two-way ANOVA with Tukey's 

multiple comparisons test). 
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Supplemental Figure 11. Extracellular ROS inhibition does not restore 

endothelium-dependent dilation in mesenteric arteries from Kir6.1wt/VM mice. (A) 

Representative recordings and (B) summary data showing endothelium-dependent 

dilation evoked by CCh in mesenteric arteries from Kir6.1wt/VM mice before and after 

treatment with the extracellular ROS scavengers SOD (500 U/ml) and catalase (500 

U/ml). Data are presented as means ± SEM (n = 5 vessels from 4 animals per group; *p 

< 0.05, two-way ANOVA with Šídák's multiple comparisons test).   

 

 

 

Supplemental Figure 12. Blocking mitochondrial ROS generation reduces the 

hypercontractility of arteries from Kir6.1wt/VM mice. (A) Representative recording 

showing the change in lumen diameter of mesenteric arteries from Kir6.1wt/VM mice in 

response to increases in intraluminal pressure under active and passive (Ca2+-free) 
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conditions. The trace on the right shows a representative recording of an artery treated 

with mitoTEMPO. (B) Summary data showing myogenic tone in mesenteric arteries from 

Kir6.1wt/VM mice treated with mitoTEMPO or vehicle. Data are presented as means ± SEM 

(n = 6-7 vessels from 5 animals per group; *p < 0.05, two-way ANOVA with Šídák's 

multiple comparisons test).  

 

 

Supplemental Videos Legends 

Supplemental Video 1. Pharmacological activation of KATP channels increases CCh-

induced Ca2+-signaling events in mesenteric arteries from Cdh5-GCaMP8 mice. 

Ca2+ signals were recorded in the presence of CCh (10 µM), and following treatment with 

pinacidil (Pin; 10 µM) and glibenclamide (Glib; 10 µM). 

Supplemental Video 2. Extracellular Ca2+ is required for KATP channel-induced 

increases in Ca2+ influx. Ca2+ events were recorded in the endothelium of mesenteric 

arteries from Cdh5-GCaMP8 in the presence of pinacidil (Pin; 10 µM) in a Ca2+-free 

solution or a solution containing 2 mM extracellular Ca2+. 

Supplemental Video 3. CCh-induced Ca2+-signaling activity is increased in 

mesenteric arteries from Kir6.1wt/VM mice. Endothelial Ca2+ signals were recorded from 

a mesenteric artery isolated from a Cdh5-GCaMP8 x Kir6.1wt/VM mouse in the presence 

of CCh (10 µM) and following treatment with pinacidil (Pin; 10 µM) and glibenclamide 

(Glib; 10 µM). 


