1	Supplemental Data
2	Iron regulatory proteins 1 and 2 have opposing roles in regulating
3	inflammation in bacterial orchitis
4	Niraj Ghatpande ^{1*} , Aileen Harrer ^{2*} , Bar Azoulay-Botzer ¹ , Noga Guttmann-Raviv ¹ , Sudhanshu Bhushan ² ,
5	Andreas Meinhardt ^{2#} , Esther G. Meyron-Holtz ^{1#}
6	
7	

9 Supplementary Figure S1 (A) Immunofluorescence staining of cryosections and (B, C) flow cytometry analysis of untreated testis samples of all three genotypes (WT, Irp1^{-/-}, Irp2^{-/-}) were 10 conducted using CD45 and CD11b and F4/80 markers to identify changes in total leukocytes and 11 macrophages. Representative immunofluorescence images of total leukocytes (CD45) and 12 13 macrophages (F4/80) are provided (N=3-6, scale bar=100um). Statistical analysis was performed using the Kruskal-Wallis test followed by Dunn's multiple comparisons. Mean ± SEM (D) 14 Analysis of circulating immune cells was performed using flow cytometry on blood samples 15 collected from WT, $Irp1^{-/-}$ and $Irp2^{-/-}$ mice (N=3-5). Representative graphs of total leukocytes 16 (CD45⁺; in $2x10^5$ single live cells) and macrophages (F4/80⁺ CD11b⁺; in $2x10^5$ single live cells) 17 are shown. (F) Testis weights were recorded after 7 days of infection, (F; G) and the bacterial load 18 19 in testis were quantified using (F) CFU and (G) PapC qPCR analysis. A summary of three independent experiments is provided, with N=4-7 for CFUs and N=5 for PapC qPCR per group. 20

Supplementary Figure S2. (A, B) Protein levels of ferritin-H (FtH) and ferritin-L (FtL) in UPEC-22 23 infected WT, *Irp1*^{-/-} and *Irp2*^{-/-} testis were analyzed by Western blot. The band intensities of FtH 24 (B) and FtL (C) were quantified using ImageJ and normalized to α -tubulin. Representative images are shown. Significant differences are indicated (*P<0.05, ** P<0.01; Mean ± SEM), N=4-6 25 independent samples. (D) Quantitative RT-PCR analysis of transferrin receptor (Tfr1) in UPEC-26 infected testis (N= 6-15 mice per group). Mean ± SEM (E) Immunofluorescence staining was 27 28 performed to investigate the changes in the localization of FtH and FtL in UPEC-infected testes. 29 Cryosections of all three genotypes were stained for FtH (green), FtL (green) and DAPI (blue).

30 Representative images are shown. Scale bar = $50 \mu m$, N=5. FC=Fold change

31

Supplementary Figure S3: (A, B) Gating strategy for the macrophage and neutrophil antibody 33 panel in infected testis samples. Single live cells were initially gated for CD45 to select total 34 leukocytes. From the CD45⁺ population, monocytes were further gated using Ly6G and Ly6C 35 expression. The gate of Ly6G⁺ and Ly6C- cells was then used to identify granulocytes using 36 CD11b and Ly6G expression. After excluding the monocytes and granulocytes, macrophages were 37 gated (CD11b⁺Ly6G⁻). Finally, macrophages and their subpopulations were identified using the 38 39 following markers.: CD11b⁺F4/80⁺, F4/80⁺MHC-II⁺, and F4/80⁺CD206⁺. (B-D) Gating strategy and respective graphs of B and T cells are presented. Single live cells were initially gated for CD45 40 followed by gating on CD11b alone (B) with subsequent selection of the CD11b⁻ population for 41 gating on CD19 (B cells) and CD3 (T cells) expression, respectively. The graphs depict the 42 percentages of B cells (C) and T cells (D) within the CD45⁺ population. Data were obtained from 43 44 infected testis samples and represent the summary of three independent experiments (each N=2-3 per group). Statistical significance was determined using two-way ANOVA with Tukey multiple 45 comparison (N=6; **P*<0.05, ** *P*<0.01). Mean ± SEM 46

47

Supplementary Figure S4: Bone marrow-derived macrophages (BMDM) from WT, $Irp1^{-/-}$ and $Irp2^{-/-}$ mice were isolated and stimulated with 200 ng/ml lipopolysaccharide (LPS) for different time points (20 and 60 min) under specific oxygen conditions (6% O₂ at 37°C). Protein levels of indicated signalling molecules were analyzed by Western blot. Representative images are shown. Quantitative analysis of the band intensities of p-ERK and p-P38 were performed using ImageJ and normalized to the corresponding loading control. Statistical analysis revealed significant differences (*P<0.05) between the genotypes and time points. Mean ± SEM, FC= Fold change