Complement Protein Signatures in Patients with Alcohol-Associated Hepatitis

Moyinoluwa Taiwo, Emily Huang, Vai Pathak, Annette Bellar, Nicole Welch, Jaividhya Dasarathy, David Streem, Craig J McClain, Mack Mitchell, Bruce Barton, Gyongyi Szabo, Srinivasan Dasarathy, AlcHepNet Consortium, Esperance A. Schaefer, Jay Luther, Le Z. Day, Arumugam Suyavaran, Wajahat Z. Mehal, Jon Jacobs, Russell P. Goodman, Daniel M. Rotroff, Laura E. Nagy

CONTENTS

SUPPLEMENTARY TABL	ES1
Supplementary Table 1.	Complement and complement-associated genes1
Supplementary Table 2.	Complement proteins in liver proteome: Test cohort 13
Supplementary Table 3.	Complement proteins in serum proteome: Test cohort 24
Supplementary Table 4.	Liver pathways6
Supplementary Table 5.	Serum pathways8
Supplementary Table 6.	Spearman's correlation of serum complement proteins with MELD & albumin in patients with sAH: significant findings only
Supplementary Table 7.	Albumin infusion status in patients with severe AH11
Supplementary Table 8.	Point-biserial correlation analysis between serum complement proteins and severe AH: significant findings only12
Supplementary Table 9.	Clinical features of patients with sAH (serum proteome - Test cohort 2)
Supplementary Table 10.	LOOCV ROC curve analysis of complement proteins significantly changed in liver proteome
Supplementary Table 11.	LOOCV ROC curve analysis of serum complement proteins with significant changes: only proteins with AUC \ge 0.70 included15
Supplementary Table 12.	Serum complement proteins in compensated vs decompensated AC.
Supplementary Table 13.	Clinical features of patients used in the validation cohorts18
Supplementary Figure 1.	
Supplementary Figure 2.	
Supplemental Acknowled	Igments: Alcohol Hepatitis Network Consortium

SUPPLEMENTARY TABLES

Supplementary Table 1. Complement and complement-associated genes

Component	Symbol	Component	Symbol
Complement C1q		Collectin-10	
subcomponent subunit A	C1QA		COLEC10
Complement C1q	0405		
Subcomponent Subunit B	CIQB	Collectin-11	COLEC11
subcomponent subunit C	C10C	Collectin-12	COLEC12
Complement C1r	0100		OOLLOIZ
subcomponent	C1R	Plasma protease C1 inhibitor	SERPING1
Complement C1s			
subcomponent	C1S	C4b-binding protein alpha chain	C4BPA
Complement C2	C2	C4b-binding protein beta chain	C4BPB
Complement C2A	C2A	Carboxypeptidase N catalytic chain	CPN1
Complement C2B	C2B	Carboxypeptidase N subunit 2	CPN2
Complement C3	C3	Clusterin	CLU
Complement C3A	C3A	Complement factor H	CFH
Complement C3a-desArg	C3adesArg	Complement factor I	CFI
		Complement decay-accelerating	
Complement C3B	C3B	factor	CD55
Complement iC3B	iC3B	Membrane cofactor protein	CD46
Complement C3C	C3C	Protectin	CD59
Complement C3D	C3D	Vitronectin	VTN
		CUB and sushi domain-containing	
Complement C4	C4	protein 1	CSMD1
Complement C1-A	C4A	COB and sushi domain-containing	
	047	CUB and sushi domain-containing	COMDZ
Complement C4-B	C4B	protein 3	CSMD3
Complement C5	C5	Neutrophil elastase	ELANE
Complement C5A	C5A	Prothrombin	F2
Complement C5B	C5B	Complement receptor type 1	CR1
Complement component C6	C6	Complement receptor type 2	CR2
Complement component C7	C7	Integrin alpha-M	ITGAM
Complement C8	C8	Integrin alpha-X	ITGAX
		V-set and immunoglobulin domain-	
Complement C8 alpha chain	C8A	containing protein 4	VSIG4
Complement C9 bate abain		Complement factor H-related	
Complement C8 gamma	COD	Complement factor H-related	
chain	C8G	protein 2	CFHR2

		Complement factor H-related	
Complement component C9	C9	protein 3	CFHR3
		Complement factor H-related	
Complement factor B	CFB	protein 4	CFHR4
		Complement factor H-related	
Complement factor D	CFD	protein 5	CFHR5
Properdin	CFP		CRIT
		C3a anaphylatoxin chemotactic	
Ficolin-1	FCN1	receptor	C3AR1
		C5a anaphylatoxin chemotactic	
Ficolin-2	FCN2	receptor 1	C5AR1
		C5a anaphylatoxin chemotactic	
Ficolin-3	FCN3	receptor 2	C5AR2
Mannose-binding lectin 1	MBL1	Calreticulin	CALR
		Complement component 1 Q	
Mannose-binding lectin 2	MBL2	subcomponent-binding protein	C1QBP
Mannan-binding lectin serine		Complement component C1q	
protease 1	MASP1	receptor	CD93
Mannan-binding lectin serine			
protease 2	MASP2	Cluster of Differentiation 209	CD209
Mannan-binding lectin serine			
protease 3	MASP3	Integrin beta-2	ITGB2
Complement component			
receptor 1-like protein	CRIL	Integrin alpha-2/beta-3	Integrin α2/β3

Protein	sAH	HC	Fold change	p. value	adj. <i>p. valu</i> e
C1QA	1.772	1.107	1.601	0.0033	0.0088
C1QB	1.483	1.113	1.332	0.0097	0.0212
C1QC	1.586	1.061	1.494	0.0020	0.0072
C1R	1.278	1.224	1.044	0.3355	0.4110
C1S	1.307	1.168	1.118	0.0870	0.1228
FCN1	1.492	1.152	1.296	0.0267	0.0493
FCN2	0.865	1.363	-1.576	0.0026	0.0078
FCN3	1.072	1.373	-1.280	0.0069	0.0166
MASP1	1.051	1.213	-1.154	0.1512	0.2016
MBL2	0.796	1.475	-1.853	0.0008	0.0048
C4BPA	0.980	1.379	-1.406	0.0021	0.0072
C4BPB	0.976	1.320	-1.354	0.0001	0.0012
CD59	1.697	0.954	1.779	<0.0001	0.0012
CLU	0.919	1.316	-1.431	0.0003	0.0024
CPN2	1.077	1.242	-1.153	0.0712	0.1082
VTNC	1.213	1.196	1.014	0.8876	0.8876
C1QBP	1.167	1.227	-1.052	0.3853	0.4403
C1QR1	1.564	1.151	1.358	0.0238	0.0476
C3AR	1.107	1.137	-1.027	0.7305	0.7969
C5AR1	1.310	1.207	1.086	0.3425	0.4110
CALR	1.029	1.270	-1.234	0.0376	0.0645
CALR3	1.000	1.241	-1.242	0.0721	0.1082
CD209	0.744	1.483	-1.994	0.0021	0.0072
VSIG4	1.179	1.224	-1.039	0.8201	0.8558

Supplementary Table 2. Complement proteins in liver proteome: Test cohort 1

24 complement proteins. sAH, severe alcohol- associated hepatitis (mean of n=6);

HC, Healthy control (mean of n=12). adj. p. value, Benjamini-Hochberg adj. p. value

				FC	FC	Anova	
Protein	sAH	AUD	HC	sAH/HC	sAH/AUD	p. value	adj. <i>p. valu</i> e
C1QBP	0.63 ^b	1.05ª	1.00 ^a	0.630	0.602	<0.0001	0.0002
COLEC11	15.94°	2.28 ^b	1.00ª	15.943	6.982	<0.0001	0.0002
C7	3.97 ^b	1.26ª	1.00ª	3.966	3.150	<0.0001	0.0002
CD59	2.29 ^b	1.12ª	1.00ª	2.289	2.047	<0.0001	0.0002
CD55	3.05 ^b	1.12ª	1.00 ^a	3.050	2.721	<0.0001	0.0002
FCN2	0.55 ^b	1.10 ^a	1.00ª	0.552	0.501	<0.0001	0.0002
CD93	2.74 ^b	1.17 ^a	1.00ª	2.736	2.340	<0.0001	0.0002
MASP1	0.55 ^b	1.03 ^a	1.00 ^a	0.551	0.533	<0.0001	0.0002
CFI	0.73 ^b	1.03 ^a	1.00 ^a	0.725	0.707	<0.0001	0.0002
C8αβγ	0.66 ^c	1.35 [⊾]	1.00 ^a	0.660	0.488	<0.0001	0.0002
CLU	0.54 ^b	0.97 ^a	1.00 ^a	0.538	0.557	<0.0001	0.0002
CFB	0.92 ^{ac}	1.24 ^b	1.00 ^a	0.920	0.742	0.0001	0.0002
CTSB	1.91 ^b	1.23ª	1.00 ^a	1.906	1.555	<0.0001	0.0002
C1QABC	1.51 ^b	0.94 ^a	1.00 ^a	1.506	1.606	<0.0001	0.0002
CFHR5	0.48 ^b	1.10 ^a	1.00ª	0.481	0.439	<0.0001	0.0002
CALR	0.73 ^b	1.10 ^a	1.00 ^a	0.727	0.659	<0.0001	0.0002
CFH	1.24 ^b	1.03ª	1.00 ^a	1.242	1.210	<0.0001	0.0002
CFP	1.35 ^b	1.01ª	1.00 ^a	1.347	1.327	0.0008	0.0014
SERPING1	1.75 ^b	1.21ª	1.00 ^a	1.753	1.452	<0.0001	0.0002
C9	1.05 ^{ac}	1.40 ^b	1.00 ^a	1.047	0.749	<0.0001	0.0002
C1R	2.96 ^b	2.42 ^b	1.00 ^a	2.961	1.222	0.001	0.0016
C6	0.84 ^b	1.08ª	1.00 ^{ab}	0.841	0.776	0.0009	0.0015
FCN3	0.82 ^a	0.89 ^a	1.00ª	0.824	0.927	0.269	0.3026
CTSG	1.63ª	1.25ª	1.00 ^a	1.630	1.302	0.1611	0.1933
C5	0.99 ^a	1.01ª	1.00 ^a	0.990	0.982	0.9461	0.9461
MBL2	0.84 ^b	1.05ª	1.00 ^{ab}	0.844	0.803	0.1107	0.1485
CD209	0.96 ^a	0.83 ^a	1.00ª	0.962	1.165	0.2255	0.2619
CFD	0.99 ^a	1.08ª	1.00 ^a	0.992	0.915	0.3572	0.3782
ELANE	0.73 ^b	1.12ª	1.00 ^{ab}	0.726	0.647	0.0212	0.0332
VTN	0.77 ^a	0.98ª	1.00ª	0.772	0.791	0.1114	0.1485
C2	1.05ª	1.10ª	1.00ª	1.049	0.952	0.437	0.4495
ITGα2/β3	1.76 ^b	1.94 ^b	1.00 ^ª	1.758	0.906	0.0629	0.0944
FCN1	0.89 ^a	0.98 ^a	1.00 ^a	0.885	0.899	0.1492	0.1852
C4AB	1.44 ^b	0.68ª	1.00 ^{ab}	1.442	2.110	0.0754	0.1086
C3	1.21ª	1.19ª	1.00ª	1.211	1.022	0.3333	0.3636

Supplementary Table 3. Complement proteins in serum proteome: Test cohort 2

F2	0.67 ^a	0.91ª	1.00 ^a	0.671	0.740	0.1395	0.1794
36 compleme	ent proteins	s, differen	t superscrip	ot (a, b, or c)	are significa	antly different	from each other.
sAH, severe	alcohol-as	sociated	hepatitis (r	mean of n=	18); AUD, A	lcohol-use Di	sorder (mean of
n=20); HC, H	Healthy cor	ntrol (mea	n of n=6);	FC, Fold Cl	nange; adj.	p. value, Benj	jamini-Hochberg
adj. p. value							

Supplementary Table 4. Liver pathways								
Name	Direction	FDR	Pvalue	Number of Genes	MeanAbsT0	MeanWeightT0	av_foldchange	sig.
Membrane Trafficking	Up	0.016	0.016	1	2.380165238	2.149554794	0.68740412	FALSE
COPII-mediated vesicle transport	Up	0.016	0.016	1	2.380165238	2.149554794	0.68740412	FALSE
Cargo concentration in the ER COPI-mediated anterograde transport	Up Up	0.016	0.016	1	2.380165238 2.380165238	2.149554794	0.68740412	FALSE
Transport to the Golgi and subsequent modification	Up	0.016	0.016	1	2.380165238	2.149554794	0.68740412	FALSE
Immune System	Up	0.073	0.048	17 16	0.644151321	0.650375403	0.018101364	FALSE FALSE
Metabolism of proteins	Up	0.064	0.062	3	1.043372842	0.411358107	0.036577299	FALSE
Complement cascade	Up	0.109	0.077	15	0.810748492	0.804565802	0.063516209	FALSE
Post-translational protein modification	Up	0.068	0.084	2	1.029782186	0.82073874	0.287736582	FALSE
Initial triggering of complement	Up	0.161	0.133	8	1.043664338	0.986083381	0.091613084	FALSE
Regulation of Complement cascade	Up Up	0.161	0.133	8 12	1.043664338 0.837608085	1.009384096	0.091613084	FALSE
Neutrophil degranulation	Up	0.154	0.149	3	0.939900669	0.837111288	0.180322904	FALSE
Classical antibody-mediated complement activation	Up	0.175	0.158	5	1.213501854	1.417490049	0.336484979	FALSE FALSE
CD209 (DC-SIGN) signaling	Down	0.291	0.272	1	0.43972183	0.554351468	-0.533088995	FALSE
Butyrophilin (BTN) family interactions	Down	0.291	0.272	1	0.43972183	0.554351468	-0.533088995	FALSE
Terminal pathway of complement	Down	0.322	0.304	1	0.198973292	0.238826758	-0.250991815 -0.250991815	FALSE
Antimicrobial peptides	Down	0.322	0.304	1	0.198973292	0.238826758	-0.250991815	FALSE
Platelet activation, signaling and aggregation	Down	0.322	0.304	1	0.198973292	0.238826758	-0.250991815	FALSE
Cell-Cell communication	Down	0.254	0.304	1	0.35084284	-0.448206716	-0.465741267	FALSE
Toll Like Receptor 4 (TLR4) Cascade	Down	0.254	0.308	1	0.35084284	-0.448206716	-0.465741267	FALSE
Toll Like Receptor TLR1:TLR2 Cascade Toll-like Receptor Cascades	Down	0.254	0.308	1	0.35084284	-0.448206716	-0.465741267 -0.465741267	FALSE
Toll Like Receptor 2 (TLR2) Cascade	Down	0.254	0.308	1	0.35084284	-0.448206716	-0.465741267	FALSE
Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell	Down	0.254	0.308	1	0.35084284	-0.448206716	-0.465741267	FALSE
Diseases of metabolism	Down	0.254	0.308	1	0.35084284	-0.448206716	-0.465741267	FALSE
Surfactant metabolism	Down	0.254	0.308	1	0.35084284	-0.448206716	-0.465741267	FALSE
Regulation of TLR by endogenous ligand	Down	0.254	0.308	1	0.35084284	-0.448206716	-0.465741267	FALSE
Defective CSF2RB causes SMDP5	Down	0.254	0.308	1	0.35084284	-0.448206716	-0.465741267	FALSE
Defective CSF2RA causes SMDP4	Down	0.254	0.308	1	0.35084284	-0.448206716	-0.465741267	FALSE
SARS-CoV-1 Intection SARS-CoV-1-host interactions	Down	0.254	0.308	1	0.35084284	-0.448206716	-0.465741267	FALSE
SARS-CoV-1 activates/modulates innate immune responses	Down	0.254	0.308	1	0.35084284	-0.448206716	-0.465741267	FALSE
Generic Transcription Pathway	Down	0.349	0.333	1	0.193910328	0.233870255	-0.227773114	FALSE
Gene expression (Transcription)	Down	0.349	0.333	1	0.193910328	0.233870255	-0.227773114	FALSE
RUNX1 and FOXP3 control the development of regulatory T lymphocytes (Tregs)	Down	0.349	0.333	1	0.193910328	0.233870255	-0.227773114	FALSE
Transcriptional regulation by RUNX1	Down	0.349	0.333	1	0.193910328	0.233870255	-0.227773114 0.183451971	FALSE
Adaptive Immune System	Down	0.435	0.458	3	-0.076942682	-0.509632963	-0.37025374	FALSE
Metabolism	Up	0.558	0.536	1	-0.553102028	-0.468366043	0.170390342	FALSE
Acyl chain remodelling of PC Acyl chain remodelling of PS	Up Up	0.558	0.536	1	-0.553102028	-0.468366043 -0.468366043	0.170390342	FALSE
Acyl chain remodelling of PE	Up	0.558	0.536	1	-0.553102028	-0.468366043	0.170390342	FALSE
Glycerophospholipid biosynthesis	Up	0.558	0.536	1	-0.553102028	-0.468366043	0.170390342	FALSE
Metabolism of lipids	Up	0.558	0.536	1	-0.553102028	-0.468366043	0.170390342	FALSE
Extracellular matrix organization	Up	0.555	0.553	1	-0.645231376	-0.596753908	0.152680262	FALSE
Elastic fibre formation Molecules associated with elastic fibres	Up	0.555	0.553	1	-0.645231376	-0.596753908 -0.596753908	0.152680262	FALSE
Integrin cell surface interactions	Up	0.555	0.553	1	-0.645231376	-0.596753908	0.152680262	FALSE
Syndecan interactions	Up	0.555	0.553	1	-0.645231376	-0.596753908	0.152680262	FALSE
ECM proteoglycans	Up	0.555	0.553	1	-0.645231376	-0.596753908	0.152680262	FALSE
Lectin pathway of complement activation	Down	0.617	0.603	4	-0.526041732	-0.81004297	-0.243659369	FALSE
Hemostasis Signaling by GPCR	Down	0.616	0.624	2	-0.631046864	-0.578082549 -0.933505766	-0.093065389 0.081337706	FALSE
Class A/1 (Rhodopsin-like receptors)	Up	0.615	0.635	1	-0.946119852	-0.933505766	0.081337706	FALSE
Peptide ligand-binding receptors	Up	0.615	0.635	1	-0.946119852	-0.933505766	0.081337706	FALSE
G alpha (i) signalling events	Up	0.615	0.635	1	-0.946119852	-0.933505766	0.081337706	FALSE
GPCR ligand binding	Up	0.615	0.635	1	-0.946119852	-0.933505766	0.081337706	FALSE
Leishmania infection	Up	0.615	0.635	1	-0.946119852	-0.933505766	0.081337706	FALSE FALSE
Cell recruitment (pro-inflammatory response)	Up	0.615	0.635	1	-0.946119852	-0.933505766	0.081337706	FALSE
Parasitic Infection Pathways	Up	0.615	0.635	1	-0.946119852	-0.933505766	0.081337706	FALSE
Ficolins bind to repetitive carbohydrate structures on the target cell surface SARS-CoV Infections	Down	0.65	0.654	3	-0.809979879	-0.676584785 -1.193421966	-0.169632069 -0.245429259	FALSE
SARS-CoV-2 Infection	Down	0.688	0.667	2	-0.664465775	-1.193421966	-0.245429259	FALSE
SARS-CoV-2 activates/modulates innate and adaptive immune responses	Down	0.688	0.667	2	-0.664465775	-1.193421966	-0.245429259	FALSE
ER-Phagosome pathway	Down	0.721	0.747	1	-0.923833304	-0.988854937	-0.111930957	FALSE
Antigen processing-Cross presentation	Down	0.721	0.747	1	-0.923833304	-0.988854937	-0.111930957	FALSE
Influenza Infection Virus Assembly and Release	Down	0.721	0.747	1	-0.923833304 -0.923833304	-0.988854937 -0.988854937	-0.111930957 -0.111930957	FALSE
Assembly of Viral Components at the Budding Site	Down	0.721	0.747	1	-0.923833304	-0.988854937	-0.111930957	FALSE
Cellular responses to stress	Down	0.721	0.747	1	-0.923833304	-0.988854937	-0.111930957	FALSE
ATF6 (ATF6-alpha) activates chaperones	Down	0.721	0.747	1	-0.923833304	-0.988854937	-0.111930957	FALSE
Unfolded Protein Response (UPR)	Down	0.721	0.747	1	-0.923833304	-0.988854937	-0.111930957	FALSE
ATF6 (ATF6-alpha) activates chaperone genes	Down	0.721	0.747	1	-0.923833304	-0.988854937	-0.111930957	FALSE FALSE
Cellular responses to stimuli	Down	0.721	0.747	1	-0.923833304	-0.988854937	-0.111930957	FALSE
Calnexin/calreticulin cycle	Down	0.721	0.747	1	-0.923833304	-0.988854937	-0.111930957	FALSE
Antigen Presentation: Folding, assembly and peptide loading of class I MHC	Down	0.721	0.747	1	-0.923833304 -0.923833304	-0.988854937 -0.988854937	-0.111930957 -0.111930957	FALSE
Apoptosis	Up	0.821	0.832	1	-1.091408326	-1.056358938	0.064861037	FALSE
Intrinsic Pathway for Apoptosis Apoptotic factor-mediated response	Up	0.821	0.832	1	-1.091408326	-1.056358938 -1.056358938	0.064861037	FALSE
Intrinsic Pathway of Fibrin Clot Formation	Up	0.821	0.832	1	-1.091408326	-1.056358938	0.064861037	FALSE
Formation of Fibrin Clot (Clotting Cascade)	Up	0.821	0.832	1	-1.091408326	-1.056358938	0.064861037	FALSE
Signaling by Rho GTPases Programmed Cell Death	Up Un	0.821	0.832	1	-1.091408326 -1.091408326	-1.056358938 -1.056358938	0.064861037	FALSE FALSE
RHOA GTPase cycle	Up	0.821	0.832	1	-1.091408326	-1.056358938	0.064861037	FALSE
RHO GTPase cycle	Up	0.821	0.832	1	-1.091408326	-1.056358938	0.064861037	FALSE
Defective Intrinsic Pathway for Apoptosis Due to p14ARF Loss of Function	Up	0.821	0.832	1	-1.091408326	-1.056358938	0.064861037	FALSE
Diseases of programmed cell death	Up	0.821	0.832	1	-1.091408326	-1.056358938	0.064861037	FALSE
Signaling by Rho GTPases, Miro GTPases and RHOBTB3 Defective Intrinsic Pathway for Apoptosis	Up Un	0.821	0.832	1	-1.091408326 -1.091408326	-1.056358938 -1.056358938	0.064861037	FALSE FALSE
Viral Infection Pathways	Down	0.887	0.833	3	-1.07590944	-1.545340619	-0.200929825	FALSE
Signal Transduction	Up	0.892	0.901	2	-1.440749992	-1.407046826	0.073099372	FALSE
	DOWIT	0.343	0.324	4	1.404024000	1.000007110	0.100002042	I ALOE

Binding and Uptake of Ligands by Scavenger Receptors	Down	0.939	0.946	2	-1.565797919	-1.575717989	-0.068524104	FALSE
Scavenging by Class A Receptors	Down	0.939	0.946	2	-1.565797919	-1.575717989	-0.068524104	FALSE
Disease	Down	0.979	0.967	5	-1.744606171	-2.086910245	-0.091318146	FALSE

Supplementary Table 5. Serum pathways								
Name Binding and Uptake of Ligands by Scavenger Receptors	Direction Up	FDR 0.00001	Pvalue 0.00001	Number of Genes	MeanAbsT0 2.771336262	MeanWeightT0 2.554735003	av_foldchange 0.752486974	sig. TRUE
Scavenging by Class A Receptors	Up	0.00001	0.00001	3	2.771336262	2.554735003	0.752486974	TRUE
Lectin pathway of complement activation	Up Up	0.00001	0.00001	6	2.572450277 1.467752745	2.324730191 1.422546853	0.18673068	FALSE
Creation of C4 and C2 activators	Up	0.056	0.026	7	1.207799432	1.185567077	0.203065165	FALSE
Intrinsic Pathway for Apoptosis	Down	0.074	0.05	1	0.786926101	0.654764452	-0.502440145	FALSE
Apoptotic factor-mediated response Signaling by Rho GTPases	Down	0.074	0.05	1	0.786926101	0.654764452	-0.502440145 -0.502440145	FALSE FALSE
RHOA GTPase cycle	Down	0.074	0.05	1	0.786926101	0.654764452	-0.502440145	FALSE
RHO GTPase cycle RHOC GTPase cycle	Down Down	0.074 0.074	0.05	1	0.786926101 0.786926101	0.654764452 0.654764452	-0.502440145 -0.502440145	FALSE
Defective Intrinsic Pathway for Apoptosis Due to p14ARF Loss of Function	Down	0.074	0.05	1	0.786926101	0.654764452	-0.502440145	FALSE
Diseases of programmed cell death Signaling by Rho GTPases, Miro GTPases and RHOBTB3	Down	0.074	0.05	1	0.786926101	0.654764452	-0.502440145 -0.502440145	FALSE
Defective Intrinsic Pathway for Apoptosis	Down	0.074	0.05	1	0.786926101	0.654764452	-0.502440145	FALSE
Acyl chain remodelling of PC	Up	0.162	0.1	1	0.857033773	0.90876556	1.054334072	FALSE
Acyl chain remodelling of PS Acyl chain remodelling of PE	Up Up	0.162 0.162	0.1 0.1	1	0.857033773 0.857033773	0.90876556 0.90876556	1.054334072 1.054334072	FALSE
Glýcerophospholipid biosynthesis	Up	0.162	0.1	1	0.857033773	0.90876556	1.054334072	FALSE
Metabolism of lipids	Up	0.162	0.1	1	0.857033773	0.90876556	1.054334072	FALSE
Class B/2 (Secretin family receptors) Collagen formation	Up	0.158	0.108	1	0.758694732	0.629139917	1.112633748	FALSE FALSE
Trafficking and processing of endosomal TLR	Up	0.174	0.135	1	0.688978204	0.657889162	0.553687843	FALSE
Assembly of collagen fibrils and other multimeric structures MHC class II antigen presentation	Up Up	0.174 0.174	0.135 0.135	1	0.688978204 0.688978204	0.657889162 0.657889162	0.553687843 0.553687843	FALSE
ER to Golgi Anterograde Transport	Up	0.218	0.168	2	0.673221147	0.546822582	0.911328161	FALSE
COPI-mediated anterograde transport	Up Up	0.218	0.168	2	0.673221147	0.546822582	0.911328161	FALSE
Transport to the Golgi and subsequent modification	Up	0.218	0.168	2	0.673221147	0.546822582	0.911328161	FALSE
Formation of Fibrin Clot (Clotting Cascade)	Down	0.209	0.187	3	0.268007107	0.045207183	-0.148140114	FALSE
Classical antibody-mediated complement activation Asparagine N-linked glycosylation	Down Up	0.261 0.232	0.187 0.189	2	0.28272672 0.587750137	0.210332007 0.377823563	-0.159094912 0.469199745	FALSE
Programmed Cell Death	Down	0.289	0.216	2	0.253489946	0.167570731	-0.462998371	FALSE
COPII-mediated vesicle transport	Up	0.351	0.267	4	0.203667318	0.201131993 0.144183994	-0.446535887 0.710022574	FALSE
Cargo concentration in the ER	Up	0.326	0.277	1	0.193383745	0.144183994	0.710022574	FALSE
ER-Phagosome pathway	Down	0.333	0.29	1	0.065934622	-0.118914304	-0.415057087	FALSE
Antigen processing-Cross presentation Influenza Infection	Down Down	0.333	0.29	1	0.065934622	-0.118914304 -0.118914304	-0.415057087 -0.415057087	FALSE FALSE
Virus Assembly and Release	Down	0.333	0.29	1	0.065934622	-0.118914304	-0.415057087	FALSE
Assembly of Viral Components at the Budding Site Cellular responses to stress	Down	0.333	0.29	1	0.065934622 0.065934622	-0.118914304 -0.118914304	-0.415057087 -0.415057087	FALSE
Scavenging by Class F Receptors	Down	0.333	0.29	1	0.065934622	-0.118914304	-0.415057087	FALSE
Unfolded Protein Response (UPR)	Down	0.333	0.29	1	0.065934622	-0.118914304	-0.415057087	FALSE
ATF6 (ATF6-alpha) activates chaperone genes	Down	0.333	0.29	1	0.065934622	-0.118914304 -0.118914304	-0.415057087 -0.415057087	FALSE FALSE
Cellular responses to stimuli	Down	0.333	0.29	1	0.065934622	-0.118914304	-0.415057087	FALSE
Calnexin/calreticulin cycle Class I MHC mediated antigen processing & presentation	Down Down	0.333 0.333	0.29	1	0.065934622 0.065934622	-0.118914304 -0.118914304	-0.415057087 -0.415057087	FALSE
Antigen Presentation: Folding, assembly and peptide loading of class I MHC	Down	0.333	0.29	1	0.065934622	-0.118914304	-0.415057087	FALSE
Collagen degradation Defective SERPING1 causes hereditary angioedema	Up Up	0.359	0.302	2	0.184230324 0.031404426	0.005911768	0.511683492	FALSE
SARS-CoV Infections	Down	0.331	0.329	2	0.037362614	-0.120978815	-0.502257086	FALSE
SARS-CoV-2 intection SARS-CoV-2 activates/modulates innate and adaptive immune responses	Down	0.331	0.329	2	0.037362614	-0.120978815	-0.502257086	FALSE
SARS-CoV-2-host interactions Hemostasis	Down Down	0.331 0.362	0.329	2	0.037362614	-0.120978815 -0.366571672	-0.502257086 -0.133912861	FALSE
Complement cascade	Up	0.487	0.384	28	-0.200182881	-0.128979035	0.041260635	FALSE
Toll-like Receptor Cascades Immune System	Up Up	0.384 0.511	0.387	2 33	-0.040819439 -0.181519349	-0.112043455 -0.125477806	0.084217784 0.075772542	FALSE
Innate Immune System	Up	0.514	0.4	32	-0.195989474	-0.106402037	0.091110968	FALSE
Delects of contact activation system (CAS) and kallikrein/kinin system (KAS) Diseases of hemostasis	Up	0.452	0.445	2	-0.228200453	-0.407621118	0.029009902	FALSE
Common Pathway of Fibrin Clot Formation Gamma-carboxylation of protein precursors	Down Down	0.473	0.483	1	-0.354128601 -0.354128601	-0.582375082 -0.582375082	-0.453663688 -0.453663688	FALSE FALSE
Transport of gamma-carboxylated protein precursors from the endoplasmic reticulum to the Golgi apparatus	Down	0.473	0.483	1	-0.354128601	-0.582375082	-0.453663688	FALSE
Removal of aminoterminal propeptides from gamma-carboxylated proteins Gamma-carboxylation, transport, and amino-terminal cleavage of proteins	Down Down	0.473	0.483	1	-0.354128601 -0.354128601	-0.582375082 -0.582375082	-0.453663688 -0.453663688	FALSE
Gamma carboxylation, hypusine formation and arylsulfatase activation	Down	0.473	0.483	1	-0.354128601	-0.582375082	-0.453663688	FALSE
G alpha (q) signalling events	Down	0.473	0.483	1	-0.354128601	-0.582375082	-0.453663688	FALSE
Thrombin signalling through proteinase activated receptors (PARs) Defective factor XII causes hereditary angioedema	Down Down	0.473	0.483	1	-0.354128601 -0.354128601	-0.582375082 -0.582375082	-0.453663688 -0.453663688	FALSE FALSE
Defective factor VIII causes hemophilia A	Down	0.473	0.483	1	-0.354128601	-0.582375082	-0.453663688	FALSE
Detective F8 cleavage by thrombin Antimicrobial peptides	Down Down	0.473	0.483	1 3	-0.354128601 -0.32668152	-0.582375082 -0.327368695	-0.453663688 -0.248330651	FALSE
Platelet degranulation	Up	0.489	0.511	4	-0.374782309	-0.48515146	0.038156667	FALSE
Degradation of the extracellular matrix	Up	0.543	0.522	3	-0.301568236	-0.322584269	0.149385816	FALSE
Regulated Necrosis Pyroptosis	Down Down	0.559	0.522	1	-0.428437182 -0.428437182	-0.417783651 -0.417783651	-0.423556596 -0.423556596	FALSE FALSE
Elastic fibre formation	Down	0.58	0.553	1	-0.487656187	-0.460650841	-0.370550339	FALSE
Molecules associated with elastic fibres Syndecan interactions	Down Down	0.58	0.553	1	-0.487656187 -0.487656187	-0.460650841 -0.460650841	-0.370550339 -0.370550339	FALSE
Non-integrin membrane-ECM interactions	Down	0.58	0.553	1	-0.487656187	-0.460650841	-0.370550339	FALSE
Developmental Biology	Up	0.556	0.632	5	-0.493586613	-0.842714895	0.413541782	FALSE
Generic Transcription Pathway	Up	0.564	0.632	1	-0.601210605 -0.601210605	-0.842714895 -0.842714895	0.413541782	FALSE FALSE
GRB2:SOS provides linkage to MAPK signaling for Integrins	Up	0.564	0.632	1	-0.601210605	-0.842714895	0.413541782	FALSE
p130Cas linkage to MAPK signaling for integrins L1CAM interactions	Up Up	0.564 0.564	0.632	1	-0.601210605 -0.601210605	-0.842714895 -0.842714895	0.413541782 0.413541782	FALSE
Axon guidance	Up	0.564	0.632	1	-0.601210605	-0.842714895	0.413541782	FALSE
Diseases of signal transduction by growth factor receptors and second messengers	Up	0.564	0.632	1	-0.601210605	-0.842714895	0.413541782	FALSE
RAF/MAP kinase cascade	Up	0.564	0.632	1	-0.601210605	-0.842714895	0.413541782	FALSE
MAPK family signaling cascades	Up	0.564	0.632	1	-0.601210605	-0.842714895	0.413541782	FALSE
MAPK1/MAPK3 signaling Signaling by moderate kinase activity BRAF mutants	Up Up	0.564 0.564	0.632	1	-0.601210605 -0.601210605	-0.842714895 -0.842714895	0.413541782 0.413541782	FALSE
Signaling by high-kinase activity BRAF mutants	Up	0.564	0.632	1	-0.601210605	-0.842714895	0.413541782	FALSE
Signaling by RAS mutants Signaling by BRAF and RAF1 fusions	Up Up	0.564	0.632	1	-0.601210605	-0.842714895 -0.842714895	0.413541782	FALSE
Paradoxical activation of RAF signaling by kinase inactive BRAF	Up	0.564	0.632	1	-0.601210605	-0.842714895	0.413541782	FALSE
RNA Polymerase II Transcription	Up	0.564	0.632	1	-0.601210605	-0.842714895	0.413541782	FALSE
Gene expression (Transcription) Transcriptional regulation by RUNX1	Up Un	0.564 0.564	0.632	1	-0.601210605 -0.601210605	-0.842714895 -0.842714895	0.413541782 0.413541782	FALSE FALSE
RUNX1 regulates genes involved in megakaryocyte differentiation and platelet function	Up	0.564	0.632	1	-0.601210605	-0.842714895	0.413541782	FALSE
Signaling downstream of RAS mutants Signaling by RAF1 mutants	Up Up	0.564 0.564	0.632 0.632	1	-0.601210605 -0.601210605	-0.842714895 -0.842714895	0.413541782 0.413541782	FALSE
Nervous system development	Up	0.564	0.632	1	-0.601210605	-0.842714895	0.413541782	FALSE
Initial triggering of complement	Up	0.551	0.658	13	-0.495210174 -0.598118582	-0.774557553	0.098300275	FALSE
Neutrophil degranulation Diseases of glycosylation	Up Up	0.666	0.661	10 1	-0.534146761 -0.803552468	-0.524948224 -0.788852151	0.314708707	FALSE FALSE
Diseases associated with O-glycosylation of proteins	Up	0.671	0.67	1	-0.803552468	-0.788852151	0.192543952	FALSE
Detective B3GALIL Causes PpS O-linked glycosylation	Up Up	0.671 0.671	0.67 0.67	1 1	-0.803552468 -0.803552468	-0.788852151 -0.788852151	0.192543952 0.192543952	FALSE
O-glycosylation of TSR domain-containing proteins Regulation of Complement cascade	Up Down	0.671	0.67	1 22	-0.803552468 -0.645940617	-0.788852151 -0.583882588	0.192543952	FALSE FALSE
· · · · · · · · · · · · · · · · · · ·								

Cell-Cell communication	Down	0.66	0.679	1	-0.746705608	-0.816342535	-0.385252276	FALSE
Toll Like Receptor 4 (TLR4) Cascade	Down	0.66	0.679	1	-0.746705608	-0.816342535	-0.385252276	FALSE
Toll Like Receptor TLR1:TLR2 Cascade	Down	0.66	0.679	1	-0.746705608	-0.816342535	-0.385252276	FALSE
Toll Like Receptor 2 (TLR2) Cascade	Down	0.66	0.679	1	-0.746705608	-0.816342535	-0.385252276	FALSE
Signal regulatory protein family interactions	Down	0.66	0.679	1	-0.746705608	-0.816342535	-0.385252276	FALSE
Surfactant metabolism	Down	0.66	0.679	1	-0.746705608	-0.816342535	-0.385252276	FALSE
Regulation of TLR by endogenous ligand	Down	0.66	0.679	1	-0.746705608	-0.816342535	-0.385252276	FALSE
Diseases associated with surfactant metabolism	Down	0.66	0.679	1	-0.746705608	-0.816342535	-0.385252276	FALSE
Defective CSF2RB causes SMDP5	Down	0.66	0.679	1	-0.746705608	-0.816342535	-0.385252276	FALSE
Defective CSF2RA causes SMDP4	Down	0.66	0.679	1	-0.746705608	-0.816342535	-0.385252276	FALSE
SARS-CoV-1 Infection	Down	0.66	0.679	1	-0.746705608	-0.816342535	-0.385252276	FALSE
SARS-CoV-1-host interactions	Down	0.66	0.679	1	-0.746705608	-0.816342535	-0.385252276	FALSE
SARS-CoV-1 activates/modulates innate immune responses	Down	0.66	0.679	1	-0.746705608	-0.816342535	-0.385252276	FALSE
Signaling by GPCR	Up	0.71	0.719	4	-0.699371218	-0.854660169	0.146729338	FALSE
GPCR ligand binding	Up	0.71	0.719	4	-0.699371218	-0.854660169	0.146729338	FALSE
Cytokine Signaling in Immune system	Up	0.713	0.723	1	-0.782872529	-0.798837855	0.318026202	FALSE
Metabolism of Angiotensinogen to Angiotensins	Up	0.713	0.723	1	-0.782872529	-0.798837855	0.318026202	FALSE
Peptide hormone metabolism	Up	0.713	0.723	1	-0.782872529	-0.798837855	0.318026202	FALSE
Interleukin-1 family signaling	Up	0.713	0.723	1	-0.782872529	-0.798837855	0.318026202	FALSE
Interleukin-1 processing	Up	0.713	0.723	1	-0.782872529	-0.798837855	0.318026202	FALSE
Signaling by Interleukins	Up	0.713	0.723	1	-0.782872529	-0.798837855	0.318026202	FALSE
Suppression of apoptosis	Up	0.713	0.723	1	-0.782872529	-0.798837855	0.318026202	FALSE
Infection with Mycobacterium tuberculosis	Up	0.713	0.723	1	-0.782872529	-0.798837855	0.318026202	FALSE
Response of Mtb to phagocytosis	Up	0.713	0.723	1	-0.782872529	-0.798837855	0.318026202	FALSE
Platelet Aggregation (Plug Formation)	Down	0.668	0.737	2	-0.675526831	-1.007690786	-0.020060953	FALSE
C-type lectin receptors (CLRs)	Down	0.745	0.742	1	-0.955232736	-0.901155274	-0.127167833	FALSE
CD209 (DC-SIGN) signaling	Down	0.745	0.742	1	-0.955232736	-0.901155274	-0.127167833	FALSE
Butyrophilin (BTN) family interactions	Down	0.745	0.742	1	-0.955232736	-0.901155274	-0.127167833	FALSE
Infectious disease	Down	0.71	0.744	5	-0.76299387	-0.944492514	-0.207245549	FALSE
Integrin cell surface interactions	Up	0.704	0.75	2	-0.769945093	-0.92161875	0.021495722	FALSE
ECM proteoglycans	Up	0.704	0.75	2	-0.769945093	-0.92161875	0.021495722	FALSE
Extracellular matrix organization	Up	0.722	0.759	5	-0.720549784	-0.832755578	0.098229778	FALSE
Activation of Matrix Metalloproteinases	Down	0.776	0.781	2	-0.85652531	-0.860281317	-0.052765197	FALSE
Adaptive Immune System	Down	0.78	0.797	5	-0.88952237	-0.984599037	-0.061694408	FALSE
Post-translational protein modification	Up	0.818	0.818	7	-0.880716398	-1.072630806	0.175138276	FALSE
Disease	Down	0.763	0.834	10	-0.83694969	-1.15904287	-0.087456235	FALSE
Diseases of metabolism	Down	0.83	0.857	2	-1.096197999	-1.135044048	-0.096354162	FALSE
G alpha (i) signalling events	Down	0.864	0.891	2	-1.275131716	-1.241739735	-0.036026354	FALSE
Class A/1 (Rhodopsin-like receptors)	Down	0.872	0.893	3	-1.24559693	-1.350110658	-0.175238798	FALSE
Peptide ligand-binding receptors	Down	0.872	0.893	3	-1.24559693	-1.350110658	-0.175238798	FALSE
GPCR downstream signalling	Down	0.872	0.893	3	-1.24559693	-1.350110658	-0.175238798	FALSE
Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell	Down	0.88	0.91	2	-1.264810793	-1.300687541	-0.159967483	FALSE
Leishmania infection	Up	0.894	0.914	2	-1.290384667	-1.288309863	0.191671756	FALSE
Purinergic signaling in leishmaniasis infection	Up	0.894	0.914	2	-1.290384667	-1.288309863	0.191671756	FALSE
Cell recruitment (pro-inflammatory response)	Up	0.894	0.914	2	-1.290384667	-1.288309863	0.191671756	FALSE
Metabolism of proteins	Up	0.918	0.934	9	-1.286578234	-1.484364917	0.128749096	FALSE
Post-translational protein phosphorylation	Up	0.937	0.95	2	-1.548909339	-1.499841885	0.039744217	FALSE
Alternative complement activation	Down	0.94	0.956	4	-1.628731517	-1.564894747	-0.022354362	FALSE
Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-like Growth Factor Binding Protein	Down	0.97	0.979	4	-1.663744862	-1.751154835	-0.014037263	FALSE
Activation of C3 and C5	Down	0.98	0.989	6	-2.158876805	-2.069672916	-0.024630925	FALSE

MELD		
Complement proteins	Correlation coefficient (r)	p. value
C1QBP	-0.77	0.0002
CD59	0.77	0.0002
ITGα2/β3	-0.66	0.003
MASP1	-0.65	0.003
CD93	0.59	0.01
C8αβγ	-0.58	0.01
CD55	0.58	0.01
FCN1	-0.57	0.01
CFD	0.55	0.02
F2	-0.49	0.04
CTSG	0.48	0.05
FCN3	0.47	0.05
Albumin		
Complement	Correlation	
proteins	coefficient (r)	<i>p</i> . value
FCN1	-0.57	0.01
C1QBP	-0.56	0.02
ITGα2/β3	-0.55	0.02
CD93	0.47	0.05

Supplementary Table 6.

Spearman's correlation of serum complement proteins with MELD & albumin in patients with sAH: significant findings only

MELD, Model for End-Stage Liver Disease

Sample ID	Albumin infusion	Albumin infusion day (0=sample collection)	Index Albumin
672	No		2.3
559	No		2.1
569	No		2.6
557	Yes	-6, 0	3.5
635	No		2.7
607	Yes	-3,-2, 0	3.7
601	Yes	-4,-3, 0	4
515	No		2.8
605	Yes	-7, -5	2.6
473	Yes	-14, -8,-3, 0	2.6
673	No		3.3
636	Yes	-13-12-11-1	2.5
482	Yes	-11, 0	2.6
676	No		2.8
442	Yes	-4	2.8
677	No		2.2
432	Yes	-2	3.2
431	Yes	-13	3

Supplementary Table 7. Albumin infusion status in patients with severe AH

Supplementary Table 8.

Point-biserial correlation analysis between serum complement proteins and severe AH: significant findings only

Complement Proteins	Coefficient (r)	95% CI	<i>p</i> . value
C1QBP	-0.87	-0.941 to -0.714	<0.0001
C7	0.81	0.596 to 0.913	<0.0001
CD55	0.71	0.434 to 0.867	<0.0001
CD93	0.81	0.601 to 0.914	<0.0001
CFHR5	-0.83	-0.922 to -0.634	<0.0001
CFI	-0.78	-0.899 to -0.544	<0.0001
CLU	-0.81	-0.914 to -0.603	<0.0001
COLEC11	0.82	0.624 to 0.920	<0.0001
CTSB	0.75	0.497 to 0.886	<0.0001
FCN2	-0.72	-0.871 to -0.446	<0.0001
MASP1	-0.79	-0.903 to -0.560	<0.0001
SERPING1	0.73	0.471 to 0.878	<0.0001
C8αβγ	-0.65	-0.837 to -0.340	0.0005
C1R	0.63	0.305 to 0.824	0.001
CFH	0.59	0.248 to 0.804	0.0023
CD59	0.59	0.243 to 0.802	0.0025
C1QABC	0.52	0.150 to 0.764	0.0089
CALR	-0.50	-0.749 to -0.115	0.0138
CFP	0.42	0.023 to 0.706	0.0396

CI, Confidence Interval

	Severe AH (sAH)				
Clinical features	Alive (n = 7)	Dead (n = 11)	p. value		
Age, mean (SE)	43.6 (2.9)	47.8 (2.4)	0.211		
Male, n (%)	5 (71)	8 (72)	>1.000		
BMI, mean (SE)	33.8 (3.1)	29.7 (2.0)	0.260		
Albumin (g/dL), mean (SE)	2.6 (0.1)	3.0 (0.2)	0.082		
MELD	25 (2.1)	36 (2.6)	0.004		
Creatinine (mg/dL), mean (SE)	1.72 (0.7)	2.84 (0.5)	0.126		
eGFR (ml/min/1.73m ²), mean (SE)	83.14 (18.8)	41.45 (10.4)	0.058		

Supplementary Table 9.

Clinical features of patients with sAH (serum proteome - Test cohort 2)

eGFR, Estimated Glomerular Filtration Rate. eGFR was calculated using the 2021 CKD-EPI equations for GFR from MDCalc (<u>https://www.mdcalc.com/calc/3939/ckd-epi-equations-glomerular-filtration-rate-gfr</u>)

Protein	AUC	Optimal threshold	Sensitivity %	Specificity %
CD59	1.00	0.50	100.0	100.0
C1QR1	1.00	0.44	100.0	100.0
FCN1	0.94	0.00	100.0	83.3
MBL2	0.92	0.38	100.0	91.7
C4BPB	0.92	0.21	100.0	91.7
FCN2	0.89	0.09	100.0	66.7
C1QA	0.88	0.24	83.3	83.3
C1QC	0.86	0.28	83.3	91.7
CD209	0.86	0.32	100.0	83.3
C1QB	0.81	0.23	100.0	66.7
C4BPA	0.79	0.34	83.3	83.3
FCN3	0.78	0.62	66.7	100.0
CLU	0.76	0.52	83.3	91.7

Supplementary Table 10. LOOCV ROC curve analysis of complement proteins significantly

changed in liver proteome

LOOCV, Leave-One-Out Cross-Validation; ROC, Receiver Operating Characteristic; AUC, Area Under Curve Supplementary Table 11. LOOCV ROC curve analysis of serum complement proteins with significant changes: only proteins with AUC ≥ 0.70 included

Protein	AUC	Optimal threshold	Sensitivity (%)	Specificity (%)	
C1QBP	1.00	0.50	100.0	100.0	
COLEC11	1.00	0.50	100.0	100.0	
CD59	1.00	0.68	100.0	100.0	
CD55	1.00	0.50	100.0	100.0	
CFHR5	1.00	0.61	100.0	100.0	
C7	0.99	0.85	94.4	100.0	
SERPING1	0.99	1.00	94.4	100.0	
CFI	0.94	0.74	94.4	100.0	
CTSB	0.94	0.72	94.4	100.0	
CLU	0.94	0.86	88.9	100.0	
FCN2	0.92	0.91	83.3	100.0	
CALR	0.92	0.74	88.9	100.0	
CFH	0.91	0.83	83.3	100.0	
C8αβγ	0.89	0.93	66.7	100.0	
C1QABC	0.85	0.68	83.3	83.3	
CD93	0.82	0.57	94.4	83.3	
MASP1	0.79	0.42	94.4	83.3	
C1R	0.79	0.57	94.4	83.3	
CFP	0.78	0.69	72.2	83.3	

sAH vs HC

sAH vs AUD

Protein	AUC	Optimal threshold	Sensitivity (%)	Specificity (%)
C1QBP	1.00	0.50	100.0	100.0
COLEC11	1.00	0.49	100.0	100.0
CD59	0.97	0.81	88.9	100.0
MASP1	0.95	0.25	94.4	85.0
C8αβγ	0.95	0.21	100.0	90.0
CD55	0.94	0.14	100.0	85.0
FCN2	0.94	0.55	88.9	95.0
C7	0.94	0.63	88.9	100.0
CFI	0.94	0.55	94.4	95.0
CD93	0.93	0.58	88.9	95.0
CLU	0.93	0.51	88.9	90.0
CFHR5	0.92	0.41	100.0	80.0
CALR	0.92	0.60	88.9	95.0
C1QABC	0.91	0.40	88.9	80.0
SERPING1	0.86	0.41	83.3	80.0

C9	0.86	0.44	88.9	80.0
CTSB	0.84	0.37	94.4	85.0
CFH	0.84	0.71	72.2	100.0
CFB	0.82	0.35	83.3	70.0
C6	0.79	0.60	66.7	85.0
CFP	0.79	0.52	66.7	95.0
ELANE	0.71	0.56	66.7	80.0

LOOCV, Leave-One-Out Cross-Validation; ROC, Receiver Operating Characteristic; AUC,

Area Under Curve

Protein	Compensated	Decompensated	p. value	adj. <i>p. valu</i> e
C1QBP	0.927	0.775	0.0031	0.11
COLEC11	8.674	9.382	0.8133	0.84
C7	2.273	3.942	0.014	0.25
CD59	1.240	1.049	0.1918	0.41
CD55	1.653	1.748	0.7214	0.79
FCN2	0.853	0.726	0.2302	0.41
CD93	1.781	1.864	0.7867	0.83
MASP1	0.924	0.742	0.1485	0.41
CFI	0.880	0.760	0.0554	0.33
C8αβγ	1.099	1.024	0.6557	0.76
CLU	0.711	0.763	0.5683	0.73
CFB	1.111	0.989	0.1537	0.41
CTSB	1.476	1.346	0.423	0.61
C1QABC	1.054	1.153	0.2996	0.48
CFHR5	0.610	0.459	0.1941	0.41
CALR	1.085	0.806	0.0734	0.38
CFH	1.014	1.108	0.1135	0.41
CFP	1.073	1.085	0.8556	0.86
SERPING1	1.217	1.329	0.5432	0.72
C9	1.336	1.135	0.0444	0.33
C1R	2.074	2.661	0.3077	0.48
C6	0.948	1.104	0.203	0.41
FCN3	0.775	0.612	0.2789	0.48
CTSG	1.036	1.403	0.1171	0.41
C5	0.897	1.012	0.1628	0.41
MBL2	1.088	1.312	0.541	0.72
CD209	0.850	0.751	0.3251	0.49
CFD	0.992	0.860	0.2291	0.41
ELANE	0.828	0.753	0.6833	0.77
VTN	1.087	0.687	0.0292	0.33
C2	0.981	0.932	0.1672	0.41
ITGα2/β3	1.485	2.078	0.0836	0.38
FCN1	0.889	0.936	0.6562	0.76
C4AB	0.614	1.127	0.2022	0.41
C3	1.254	1.177	0.6444	0.76
F2	1.037	0.532	0.0487	0.33

Supplementary Table 12. Serum complement proteins in compensated vs decompensated AC

No significantly changed proteins between compensated (AC.c, mean of n=7) and decompensated AC (AC.d, mean of n=6). adj. *p*. value, Benjamini-Hochberg adj. *p*. value

A. Immunoblotting (Validation Cohort 1)					
		Age, years	_		
	n	(mean/SE)	Sex	MELD (mean/SE)	
Healthy controls	5	N/A	N/A	N/A	
Severe AH	5	42 (4.2)	3M/2F	44(9.0)	

Supplementary Table 13. Clinical features of patients used in the validation cohorts

B. COLEC11 ELISA (Validation Cohort 2)					
Variables	Healthy Control (HC)	Severe AH (sAH)			
No. of cases	23	110			
Age (years) mean (SE)	41 (3.3)	47 (0.9)			
Male, n (%)	10 (43.5)	73 (66.4)			
BMI (kg/m²), mean (SE)	ND	30 (1.1)			
Race, n (%)					
White	8 (34.8)	98 (89.1)			
African/American	0	10 (9.1)			
American Indian	0	1 (0.9)			
Asian	0	0			
Other	0	1 (0.9)			
Unknown	15 (65.2)	0			
Liver function score, mean (SE)					
MELD	ND	26 (0.5)			
Maddrey score	ND	59 (2.4)			
Laboratory Tests, mean (SE)					
AST (IU/L)	ND	123 (6.7)			
ALT (IU/L)	ND	49 (3.4)			
Total Bilirubin (mg/dL)	ND	18 (0.8)			
Albumin (g/dL)	ND	3 (0.1)			
Creatinine (mg/dL)	ND	1 (0.1)			
INR	ND	2 (0.04)			

C. MASP1 and F2 ELISA	(Validation Cohort 3)
-----------------------	-----------------------

Variables	Healthy Control (HC)	Severe AH (sAH)	Alcohol Cirrhosis (AC)
N0. of cases	25	98	17
Age (years) mean (SE)	45 (2.2)	45 (1.0)	52 (2.4)
Male, n (%)	12 (48.0)	66 (67.3)	11 (64.7)
BMI (kg/m²), mean (SE)	26.9 (1.0)	30.5 (0.7)	28.5 (2.1)
Race, n (%)			
White	17 (68.0)	86 (87.8)	16 (94.1)

African/American	3 (12.0)	8 (8.2)	1 (5.9)
American Indian	0	1 (1.0)	0
Asian	5 (20.0)	0	0
Other	0	0	0
Unknown	0	3 (3.0)	0
Liver function score, mean (SE)			
MELD	7 (0.2)	30 (0.8)	18 (2.8)
Child-pugh score	5 (0.0)	10 (0.2)	8 (1.5)
Laboratory Tests, mean (SE)			
AST (IU/L)	22 (2.0)	131 (8.4)	52 (4.2)
ALT (IU/L)	21 (2.4)	57 (4.2)	26 (3.0)
Total Bilirubin (mg/dL)	0.5 (0.05)	22.0 (1.2)	7.0 (2.4)
Albumin (g/dL)	4.4 (0.04)	3.0 (0.1)	3.3 (0.3)
Creatinine (mg/dL)	0.86 (0.03)	1.96 (0.2)	1.28 (0.2)
INR	1.02 (0.02)	2.0 (0.1)	1.7 (0.3)

ND, Not Done; MELD, Model for End-Stage Liver Disease; BMI, Body Mass Index; AST,

Aspartate aminotransferase; ALT, Alanine transaminase; INR, International Normalized Ratio

		Pro-inflammatory cytokines															
Complement Proteins	IL33	CXCL1	IL17E	TSLP	S100B	IFNα	IL12	IL18	TNFα	IL8	IL17C	IL1β	IL1α	IFNy	IL17	CCL20	CX3CL1
C7	-0.37	-0.78	-0.49	-0.68	-0.15	-0.86	-0.67	-0.72	-0.18	-0.40	-0.27	-0.41	-0.33	-0.37	-0.42	-0.26	-0.40
VSIG4	-0.22	-0.13	-0.19	-0.09	-0.07	-0.12	-0.03	0.13	0.20	0.23	0.25	0.29	0.25	0.15	0.47	0.40	0.21
F2	0.02	0.02	0.19	-0.22	0.41	0.10	0.04	-0.33	-0.33	-0.49	-0.63	-0.39	-0.66	-0.24	-0.59	-0.44	-0.47
COLEC11	0.27	-0.23	-0.52	-0.21	-0.30	0.09	-0.57	-0.03	0.39	0.18	0.01	0.14	0.25	0.06	0.23	0.27	0.70
CD59	0.29	0.26	-0.02	0.14	-0.13	0.64	-0.10	0.33	0.21	0.18	-0.22	0.14	0.15	-0.13	0.07	0.23	0.68
VTN	0.00	-0.22	-0.09	-0.26	0.11	0.03	-0.26	-0.08	-0.34	-0.22	-0.29	-0.13	-0.48	-0.34	-0.17	-0.21	-0.40
C6	-0.48	-0.58	-0.20	-0.50	0.03	-0.54	-0.17	-0.43	-0.45	-0.33	-0.12	-0.24	-0.43	-0.26	-0.02	-0.21	-0.62
CFI	-0.31	-0.26	-0.41	-0.30	-0.03	-0.68	-0.53	-0.09	0.48	0.27	0.09	0.26	0.20	0.21	-0.15	0.36	-0.15
C4BPA	0.46	0.70	0.52	0.56	0.43	0.51	0.33	0.38	0.31	0.28	-0.07	0.24	0.19	0.24	-0.14	0.18	0.34
FCN2	0.79	0.58	0.59	0.61	0.36	0.71	0.26	0.27	-0.01	-0.01	-0.14	-0.03	0.01	-0.18	-0.16	-0.12	0.47
SERPING1	0.02	0.22	0.41	0.26	0.63	-0.17	0.12	0.12	0.24	0.36	0.04	0.34	0.20	0.15	0.11	0.47	0.13
C8A	0.10	0.11	-0.38	0.01	-0.19	-0.01	-0.46	0.39	0.66	0.44	0.16	0.46	0.37	0.21	0.03	0.47	0.31
COLEC10	0.21	0.49	0.18	0.34	-0.01	0.37	-0.05	0.36	0.47	0.40	-0.18	0.22	0.39	0.04	-0.24	0.35	0.62
CFHR5	-0.09	0.37	0.09	0.17	0.19	0.25	0.42	0.39	0.25	0.37	0.28	0.46	0.17	0.67	0.45	0.33	-0.08
C8G	0.07	-0.13	-0.28	-0.18	0.19	-0.18	-0.41	0.14	0.23	0.29	0.10	0.37	-0.06	0.25	0.14	0.28	-0.22
CD93	-0.18	0.02	0.10	0.30	-0.11	-0.26	0.30	0.25	0.14	0.43	0.70	0.36	0.57	0.31	0.65	0.40	0.16
C8B	0.45	0.37	0.00	0.19	0.22	0.41	-0.15	0.41	0.35	0.30	-0.02	0.36	0.02	0.28	-0.02	0.20	0.12
FCN3	0.44	0.22	0.22	0.35	0.24	0.21	-0.12	0.25	0.33	0.20	0.05	0.23	0.29	-0.19	0.08	0.33	0.62
CFHR4	-0.41	-0.32	-0.72	-0.49	-0.63	-0.09	-0.18	-0.04	0.18	-0.09	0.13	0.02	0.05	0.25	0.24	0.01	-0.04
CPN1	0.33	0.59	0.47	0.52	0.58	0.32	0.25	0.60	0.28	0.44	0.17	0.53	0.12	0.28	0.11	0.37	-0.07
C1QA	-0.49	-0.57	-0.69	-0.49	-0.60	-0.71	-0.52	-0.30	0.20	0.18	0.22	0.01	0.27	0.20	0.07	0.15	-0.05
CLU	0.19	0.09	0.07	0.11	-0.26	0.16	0.00	-0.15	-0.04	-0.26	-0.20	-0.37	0.04	-0.29	-0.39	-0.32	0.29
CFB	0.18	0.63	0.46	0.57	0.20	0.25	0.20	0.44	0.46	0.41	-0.01	0.28	0.45	0.04	-0.24	0.37	0.45
C1QB	-0.57	-0.56	-0.58	-0.44	-0.44	-0.83	-0.46	-0.24	0.17	0.24	0.29	0.10	0.25	0.19	0.12	0.22	-0.22
CFH	-0.24	0.54	0.30	0.38	0.19	0.05	0.13	0.58	0.61	0.46	-0.01	0.46	0.44	0.01	-0.19	0.62	0.24
CPN2	-0.26	0.39	0.30	0.14	0.35	-0.05	0.12	0.22	0.30	0.04	-0.30	0.12	-0.02	-0.13	-0.52	0.19	-0.20
C1QC	-0.43	-0.55	-0.64	-0.42	-0.53	-0.71	-0.46	-0.24	0.15	0.22	0.35	0.08	0.27	0.26	0.20	0.15	-0.13
CFHR1	0.62	0.16	0.10	0.26	0.32	0.41	0.06	0.24	0.13	0.22	0.28	0.33	0.11	0.29	0.58	0.22	0.42

Supplemental Table 14. Spearman's correlation analysis of complement proteins and pro-inflammatory cytokines in sAH: Test cohort 3

CFP	-0.43	-0.67	-0.34	-0.45	-0.12	-0.81	-0.23	-0.48	-0.26	-0.13	0.26	-0.13	-0.11	0.04	0.20	-0.10	-0.51
CR1L	-0.16	-0.45	-0.03	-0.54	0.10	-0.09	-0.11	-0.72	-0.72	-0.72	-0.70	-0.71	-0.80	-0.48	-0.48	-0.67	-0.47
C4BPB	0.13	0.55	0.50	0.27	0.42	0.56	0.46	0.21	-0.06	-0.16	-0.40	-0.06	-0.26	-0.08	-0.32	-0.12	-0.06
MASP1	-0.03	0.01	-0.19	0.06	-0.57	0.24	-0.12	0.14	0.19	0.05	-0.01	-0.06	0.38	-0.29	0.05	0.13	0.70
C4A	0.43	0.26	0.18	0.09	0.22	0.66	0.31	0.02	-0.23	-0.27	-0.20	-0.13	-0.35	0.12	0.07	-0.32	0.03
C9	-0.18	-0.19	-0.21	-0.24	0.05	-0.06	0.09	-0.02	-0.13	0.10	0.20	0.18	-0.13	0.41	0.47	0.08	-0.31
C4B	0.13	0.49	0.45	0.25	0.44	0.33	0.22	0.13	0.15	0.00	-0.43	0.00	-0.09	-0.07	-0.43	0.06	0.13
C1R	-0.27	-0.40	-0.68	-0.43	-0.75	-0.06	-0.44	-0.15	0.18	0.07	-0.04	-0.07	0.26	-0.02	0.16	0.13	0.51
C5	0.22	0.00	0.16	-0.02	0.60	-0.32	-0.34	-0.15	0.15	-0.02	-0.25	0.05	-0.22	-0.12	-0.43	0.05	-0.22
CFD	-0.04	-0.18	-0.14	-0.10	0.02	-0.05	0.09	-0.04	-0.01	0.10	0.28	0.17	0.10	0.29	0.56	0.18	0.11
CTSG	-0.21	0.15	0.16	0.28	0.15	-0.16	0.23	0.42	0.20	0.64	0.53	0.57	0.44	0.42	0.58	0.58	-0.01
MBL2	-0.53	-0.19	0.03	-0.09	-0.04	-0.74	-0.09	-0.25	0.12	0.07	0.03	-0.07	0.23	-0.12	-0.29	0.15	-0.16
C1S	-0.29	-0.17	-0.55	-0.14	-0.63	-0.34	-0.42	0.12	0.57	0.47	0.29	0.28	0.64	0.25	0.15	0.46	0.47
C2	0.38	0.75	0.40	0.68	0.08	0.66	0.42	0.70	0.37	0.61	0.27	0.48	0.51	0.42	0.28	0.40	0.53
CALR	0.35	0.49	0.14	0.44	0.34	0.38	0.09	0.70	0.63	0.63	0.38	0.76	0.46	0.45	0.54	0.72	0.49
CFHR2	0.38	0.32	-0.06	0.32	0.10	0.36	-0.10	0.58	0.61	0.65	0.36	0.67	0.52	0.42	0.58	0.69	0.68
C3	-0.12	0.43	0.27	0.15	0.23	0.17	0.04	0.24	0.26	0.05	-0.44	0.06	-0.04	-0.19	-0.59	0.14	-0.01

R coefficients are given. Correlations with p < 0.05 are shown in color (blue for positive correlations and red for negative correlations).

Supplementary Figure 1

Supplementary Figure 1. Index albumin values in patients with sAH (Test cohort 1): A comparison between those who did not receive albumin infusion (n=8) and those who did (n=10), at least once within the 14 days leading up to the blood draw. Box-and-whisker plots show minimum and maximum values, lower and upper quartiles, and median, with each individual value represented as a point superimposed on the graph. ns - non significant.

Supplementary Figure 2

Supplementary Figure 2. MASP1 in patients with sAH based on 90-day survival status: alive vs dead (validation cohort 3). **(A)** Plasma concentrations of MASP1. Box-and-whisker plots show minimum and maximum values, lower and upper quartiles, and median, with each individual value represented as a point superimposed on the graph. Alive (n=47), Dead (n=33). ns-non significant. **(B)** Receiver operating characteristic curves (ROC) show area under curve (AUC) for MASP1.

Supplemental Acknowledgments: Alcohol Hepatitis Network Consortium

Indiana University School of Medicine, Indianapolis, IN: Naga Chalasani, MD; Lauren Nephew, MD; Kavish R. Patidar, DO (currently at Baylor College of Medicine); Raj Vuppalanchi, MD; Niha Samala, MD; Lindsey Yoder, PA; Suthat Liangpunsakul, MD, MPH, Shawna Prange, RN.

Mayo Clinic, Rochester, Minnesota: Vijay H. Shah, MD; Douglas A. Simonetto, MD; Patrick Kamath, MD; Hugo E. Vargas, MD (Mayo Clinic, Scottsdale); Liu Yang, MBBS (Mayo Clinic, Jacksonville)

Cleveland Clinic, Cleveland, Ohio: Srinivasan Dasarathy, MD; Nicole Welch, MD; Annette Bellar; Amy Attaway, MD; Jaividhya Dasarathy, MD (MetroHealth, Cleveland, Ohio); Ashley Growley; David Streem, MD; Laura E. Nagy, PhD

University of Texas Southwestern, Dallas, Texas: Mack C. Mitchell, MD; H. Franklin Herlong, MD; Thomas Kerr, MD; Thomas Cotter, MD

Virginia Commonwealth University, Richmond, Virginia: Arun Sanyal, MBBS; Sara O'Connor, RN; Velimir Luketic, MD; Amon Asgharpour, MD; Stephanie Taylor, RN

University of Louisville, Louisville, Kentucky: Craig J. McClain, MD; Vatsalya Vatsalya, MD, PhD; Loretta Jophlin, MD, PhD; Matt Cave, MD; Suman Kumar Jha, MD; Luis Marsano, MD; Ashutosh Barve, MD, PhD; Jane Frimodig, PhD

University of Pittsburgh, Pittsburgh, Pennsylvania: Ramon Bataller, MD (currently at Universitat de Barcelona, Barcelona, Spain) Samhita Ravi; Jaideep Behari, MD; Sharvari Shivanekar, MD; Paula Novelli, MD; Andres Duarte-Rojo, MD (currently at Northwestern University, Chicago, IL), Naudia Jonassaint, MD

Beth Israel Deaconess Medical Center, Boston, Massachusetts: Gyongyi Szabo, MD, PhD; Michael Curry, MD; Zhenghui G Jiang, MD; Ushma Agarwal; Hannah Siegenberg, Mia Hazel

University of California at San Diego: Bernd Schnabl, MD NIAAA Project Scientist: Svetlana Radaeva, PhD