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One Sentence Summary: Persistent mucus plugs in proximal airway generations occur 

in asthma, are consequential for airflow, and are in airway locations amenable to 

treatment. 
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Abstract 

Background: Information about the size, airway location, and longitudinal behavior of 

mucus plugs in asthma is needed to understand their role in mechanisms of airflow 

obstruction and to rationally design muco-active treatments.    

Methods: Computed tomography (CT) lung scans from 57 asthma patients were 

analyzed to quantify mucus plug size and airway location, and paired CT scans 

obtained 3 years apart were analyzed to determine plug behavior over time. Radiologist 

annotations of mucus plugs were incorporated in an image-processing pipeline to 

generate size and location information that was related to measures of airflow. 

Results: The length distribution of 778 annotated mucus plugs was multimodal and a 

12 mm length defined short (“stubby”, ≤12 mm) and long (“stringy”, >12 mm) plug 

phenotypes. High mucus plug burden was disproportionately attributable to stringy 

mucus plugs. Mucus plugs localized predominantly to airway generations 6 to 9, and 

47% of plugs in baseline scans, persisted in the same airway for three years, and 

fluctuated in length and volume. Mucus plugs in larger proximal generations had greater 

effects on spirometry measures than plugs in smaller distal generations, and a model of 

airflow that estimates the increased airway resistance attributable to plugs predicted 

higher impact for proximal and more numerous mucus plugs. 

Conclusions: Persistent mucus plugs in proximal airway generations occur in asthma 

and demonstrate a stochastic process of formation and resolution over time. Proximal 

airway mucus plugs are consequential for airflow and are in locations amenable to 

treatment by inhaled muco-active drugs or bronchoscopy.  
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Introduction 

Severe forms of asthma are characterized by airflow obstruction that does not always 

normalize with treatments that target excessive airway smooth muscle tone or airway 

inflammation (1). Persistent airway mucus plugs are prevalent in severe forms of 

asthma and represent a plausible mechanism of chronic airflow obstruction in these 

patients (2, 3). In addition, mucus plugs in chronic obstructive pulmonary disease are 

associated with more severe airflow obstruction (4) and increased risk of mortality (5).  

Furthermore, mucus plugs occur in patients taking corticosteroid treatment (2), 

indicating that treatment of inflammation is not sufficient to prevent formation of these 

plugs. Specific treatments of mucus plugs could involve drugs to decrease the formation 

of new mucus plugs, drugs to remove existing plugs, or mechanical approaches such as 

mucus clearance devices or bronchoscopy. The rational development or selection of 

best treatments to remove mucus plugs requires quantitative data about their structural 

features and airway tree location, but this information is currently lacking.    

 

Measuring the size and shape of mucus plugs requires volumetric information. 

Analogous to methods to quantify the three-dimensional (3D) geometry of solid tumors 

in the lung (6), the 3D geometry of airway mucus plugs can be reconstructed from 

sequences of 2D CT lung images. In addition, the location of mucus plugs in the airway 

tree can be determined using methods of airway segmentation (7). The use of these 

image-based methods to study the physiological consequences of mucus plugs is 

feasible in the Severe Asthma Research Program (SARP)-3 because the deep 

phenotyping protocol in SARP-3 includes repeated CT lung scans and detailed lung 
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function measures (8). Our overarching goal for this study was to characterize the size, 

shape, and location of mucus plugs in patients with asthma over time and to determine 

how these mucus plug features influence airflow obstruction and air trapping.  

 

RESULTS  

Annotations of mucus plugs in CT lung scans provide novel measures of airway 

mucus plug burden. A previously described mucus plug “segment score” (Figure S1A) 

is generated when a radiologist assigns a point to each bronchopulmonary segment in a 

CT lung scan that has at least one airway occluded by mucus (2). Although of proven 

utility (2-4), the segment score has a limited range of values (1 to 20), is not fully 

quantitative, and does not provide information about the airway location of a mucus plug 

or its shape and size features. To address these limitations and answer research 

questions related to mucus plug characterization, we optimized methods in which 

annotators (thoracic radiologists) used a Digital Imaging and Communications in 

Medicine (DICOM) viewer to place elliptical markings on airways occluded by mucus in 

2D axial slices of CT lung scans (Figure 1A, Movie S1). A clustering algorithm (9) 

applied to these elliptical annotations allowed the plugs to be segmented, reconstructed 

in 3D, and enumerated (Figure 1B). In this way, thoracic radiologists generated 12,476 

unique annotations related to 778 individual whole mucus plugs in CT scans from 57 

asthma patients, whose clinical characteristics are shown in Table 1. By assigning a 

point for each elliptical annotation within a patient’s CT lung scan, a patient-specific 

“mucus slice score” could be calculated from the sum of these points (Figure S1B). The 

mucus slice scores correlate with the mucus plug segment scores (Figure S1D) but 
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provides more quantitative information and a larger range of values. The total number of 

discrete mucus plugs per patient, which we denote as the “mucus plug score,” is 

another total mucus plug burden score with similar advantages (Figure S1C, E).  

 

Mucus plugs are heterogeneous in size and cluster into “stubby” and “stringy” 

phenotypes. To quantify the shapes and sizes of mucus plugs, the voxels for each 

mucus plug were extracted (Movie S2) and the size of each plug was computed and 

quantified as detailed in the methods. We found that the length, diameter, and volume 

of individual mucus plugs varied across one or more orders of magnitude (Figure 1C-E, 

Table 2), indicating a high degree of heterogeneity in the size of mucus plugs in asthma. 

In summing the volume of mucus plugs within each patient, we generated a total mucus 

volume measure, which also varied by multiple orders of magnitude (Figure 1F).  

The distribution of mucus plug lengths appeared to be multimodal (Figure 2A), 

and assessment of model fit by Akaike information criterion revealed that a Gaussian 

mixture model with three underlying distributions had the highest likelihood (Fig S2). 

Based on a length of 12 mm separating the two dominant populations in the model, we 

defined two plug phenotypes based on length - short plugs that were 12 mm or less in 

length, denoted as “stubby”, and long plugs that were more than 12 mm in length, 

denoted as “stringy”. In this way, we found that among 778 plugs, 448 were stubby and 

330 were stringy (example renderings are shown in Figure 2A). Information on the 

numbers of stubby and stringy mucus plugs within each patient allowed determination of 

the mucus plug volume in each patient attributable to stubby versus stringy plugs. As 
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shown in Figure 2B, the patients with the highest total mucus volumes achieved these 

levels mainly because of volume contributed by stringy mucus plugs.  

Because eosinophilic inflammation - eosinophil counts and levels of eosinophil 

peroxidase (EPX) in blood and sputum - are known to be linked to mucus plug segment 

scores in asthma (2), we explored whether the size of individual mucus plugs was 

influenced by eosinophilic inflammation. We found that the average mucus plug length 

and volume in patients were positively correlated with blood eosinophil counts and 

sputum EPX levels (Figure S3A-D). 

 

Mucus plugs in CT lung images primarily localize to airways that are 2 to 4 mm in 

diameter. By segmenting lung parenchyma and airways on a lobar basis, every mucus 

plug could be localized to a specific airway branch and lobe (Figure 3A). This 

information allowed the creation of a patient-specific “airway mucus plug map,” a 

visualization of the location of each mucus plug within the branching airway tree (Figure 

3B). To summarize the airway generations occluded by all 778 mucus plugs, we 

generated a frequency distribution plot which shows that mucus plugs are located 

primarily in generations 6, 7, 8 and 9 (Figure 3C). We estimated these airways to be 

typically 2 to 4 mm in diameter in the CT lung scans analyzed (Figure 3C). We explored 

whether there was a specific pattern of length or volume of individual mucus plugs in 

different airway generations but did not find any trend (Figure S4A-B). And although the 

number of mucus plugs did not differ significantly in upper versus lower lobes or in the 

right versus the left lung, the volumes of individual mucus plugs in the lower lobes were 
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greater than the volumes of individual mucus plugs in the upper and middle lobes 

(Figure S4C). 

 

Mucus plugs persist in the same airways for many years but demonstrate 

dynamic changes in size over time. Of the 57 patients whose baseline CT lung scans 

were annotated, 43 had a second CT lung scan available at their year 3 visit that 

allowed analysis of mucus plugs over time. Among scans from the 43 patients, 580 

mucus plugs were visible on the baseline scans and 619 mucus plugs were visible on 

the year 3 scans. We found that the per-patient average plug length, average plug 

volume, and total mucus plug volume did not differ significantly between baseline and 

year 3 (Figure 4A-C) indicating overall stability of total mucus plug burden within 

patients over three years.  To explore the temporal dynamics of the 580 mucus plugs 

identified in the baseline scans from the 43 patients, we tracked mucus plugs that 

persisted in the same airway between the baseline and year 3 scans (Movie S3), 

labeling these plugs as “persistent.”  We also tracked mucus plugs that disappeared 

between the baseline and year 3 scans, labeling these plugs as “transient.” 

Remarkably, we found that 47% of the 580 baseline plugs persisted in the same airway 

for three years, and 81% of the 43 patients had at least one persistent plug (Figure 4D). 

Persistent mucus plugs, although static in location, nonetheless exhibited dynamic 

behavior in size and underwent variable changes in length and volume (Figure 4E-F). 

Changes were centered around zero and appeared normally distributed (Figure S5), 

and there was no statistically significant difference in average length or volume of the 

entire population of plugs over the three-year period. In addition, the finding that the 
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total mucus volume per patient stayed, on average, constant over time (Figure 4C) was 

consistent with the observation that the disappearance of transient mucus plugs 

sometimes coincided with the appearance new mucus plugs in different airways at year 

3. 

In comparing the characteristics of persistent and transient mucus plugs, we 

found that persistent mucus plugs were longer, more frequently stringy, and more 

frequently located in the upper lobes (Table 3, Figure 3G-H). We analyzed the CT 

attenuation of the pixels in each plug by computing the median value in Hounsfield units 

and found that transient plugs were more radiodense (Table 3). In analyzing the three-

year behavior of stringy versus stubby plugs using Sankey plot and state-transition 

analyses, we found that among plugs that persisted, stubby plugs were more likely to 

stay stubby, and stringy plugs were more likely to stay stringy (Figure 3I-J). 

 

Mucus plugs in proximal airways have larger effects on spirometric measures of 

lung function than plugs in distal airways. Consistent with our previously reported 

results (2, 3), overall mucus plug burden as assessed by mucus segment score, mucus 

plug score, and mucus slice score was inversely associated with forced expiratory 

volume in one second (FEV1) (FigS6). Our localization of mucus plugging to specific 

airway branches, however, allowed us to compare the relative effects of mucus plugs in 

proximal airways (generations 7 or less), intermediate airways (generations 8 and 9), 

and distal airways (generation 10 and greater). We used correlation coefficients and 

SHapley Additive exPlanation (SHAP) values (which consider plug count in each 

generation as an independent feature in a linear regression) to compare the relative 
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effects of mucus plug count in proximal, intermediate, and distal airways on spirometric 

measures of airflow. In these analyses, the mucus plugs were grouped independently 

by airway generation for each patient, and the number of mucus plugs per generation 

was counted for each patient. The plug count by generation was correlated with 

spirometry, either the post-bronchodilator FEV1 or the forced expiratory flow between 

25% and 75% of forced vital capacity (FEF25-75), to estimate a Spearman coefficient. For 

these analyses, the CT scans and lung physiology data from the baseline and year 3 

visits were pooled so that a total of 97 CT scans from 57 patients were analyzed.  We 

found that the correlation coefficients (rs) for mucus plugs in proximal airways 

(generation ≤7) and FEV1 or FEF25-75 were more negative than the coefficients for 

mucus plugs and FEV1 or FEF25-75 in distal airways (generation ≥10, Figure 5A), 

indicating a stronger negative effect of those plugs on airflow. In addition, the magnitude 

of SHAP values for mucus plugs in proximal airways were larger than those in distal 

airways (Figure 5B), also indicating a stronger effect from proximal plugs. 

 

Mucus plugs are associated with airway-specific increases in resistance score 

and air trapping. We hypothesized that mucus plugs occlude airways, causing airflow 

obstruction in the conducting airway tree and air trapping in the lung parenchyma distal 

to affected airways. To explore this hypothesis, we developed simplified models of 

airflow and air trapping that explicitly incorporate mucus plugs as obstructing airflow in 

plugged airways. These patient-specific models intake the segmented airways, lungs, 

and mucus plugs for each individual CT scan and output two measures: (1) the 

resistance score (RS), an estimated impact on the large airway resistance due to mucus 
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plugs (Figure 6A) and (2) the obstructed lung volume percentage (OLVP), an estimate 

of percentage of lung parenchyma distal to airways occluded by mucus plugs and likely 

to exhibit air trapping (Figure 6B). Consistent with wide variation in total mucus plug 

burden between patients (Figure 1F), we found that RS and OLVP values also varied 

widely between patients (Figure 6C, 6F). In cross-sectional analyses of data from the 

baseline CT lung scans, both values showed significant inverse associations with FEV1 

(Figure 6D, 6G) and FEF25-75 (Figure S7A, S7C). In addition, the changes in RS and in 

OLVP from baseline to year 3 correlated with changes in FEV1 (Figure 5E, 5H) and 

FEF25-75 (Figure S7B, S7D). For the analyses in Figure 6E, we performed a sensitivity 

analysis to determine the effects of an outlier with ∆RS of 201 and ∆FEV1 of -14%. We 

found that the rs was -0.50 (p=0.001) with this outlier included and -0.46 (p=0.003) with 

the outlier excluded. 

Our air trapping model posits that air trapping is spatially associated with 

occluded airway branches. To test this assumption, we generated lung lobe-specific 

data for OLVP (Figure 6I) and analyzed the relationship between OLVP and the disease 

probability measure of functional small airway disease (DPM-fSAD), a previously 

described measure of air trapping (10). DPM-fSAD is quantified from CT lung scans by 

registering images acquired at inspiration to images acquired at expiration and, on a 

voxel-by-voxel basis, identifying regions of the lung that trap gas (10). We found that 

lobe-specific OLVP measures correlated significantly with fSAD at baseline (Figure 6J) 

and that the change in lobe-specific OLVP from baseline to year 3 correlated with 

changes in fSAD (Figure 6K). OLVP also significantly correlated with two other CT-

based functional measures related to air trapping, (1) the Jacobian mean (the 
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inspiratory to expiratory local lung volume ratio) and (2) expiratory low attenuation area 

percent below -856 HU (LAA856%), on a lobar basis (Figure S8). Analysis from linear 

mixed-effects models to control for multiple measurements from the same patient as 

well as multivariate regression controlling for age, body mass index, gender, and airway 

wall thickness (covariates determined by our directed acyclic graph in Fig S9) were 

consistent with these results (Table 4). In particular, all measures relating OLVP to 

measures of airflow and air trapping remained statistically significant when controlling 

for all covariates. Taken together, these data support the interpretation that mucus 

plugs specifically cause air trapping in the lung region distal to the airways they occlude.  

We next used the RS to further test if mucus plugs located in more proximal 

locations are more consequential for airflow obstruction. For this analysis, we calculated 

the RS in each patient divided by mucus plug score (i.e. plug count) to estimate RS per 

plug as a measure of each individual plug’s impact on airflow obstruction. We stratified 

mucus plugs by proximal (generation ≤7), intermediate (generation 8-9) and distal 

(generation ≥10) airway generation and found that plugs in proximal generations had 

significantly higher RS per plug than intermediate or distal generations (Figure 7A). We 

similarly stratified plugs from patients with high and low mucus plug scores based on 

the median value of baseline patients, 11 plugs. We found that plugs in patients with 

high mucus plug scores had a higher RS per plug score (Figure 7B), consistent with the 

interpretation that as mucus plugs begin to occlude a substantial fraction of large 

airways and leave fewer airways patent, subsequent mucus plugs have a higher 

marginal impact on net airway resistance. These data together support our hypothesis 
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that more numerous mucus plugs in more proximal locations are more consequential for 

airflow obstruction and air trapping than sparser and more distal mucus plugs. 

 

Quantitative Assessment of Airway Mucus Plug Pathology (“qAAMP”). The 

analysis of mucus plugs in CT lung scans in asthma presented above yields multiple 

novel quantitative measures of mucus plug pathology in the lung. As these measures 

may serve as potential biomarkers of mucus pathology, we have summarized them as 

the “Quantitative Assessment of Airway Mucus Plug Pathology” or “qAAMP” in Table 5. 

All of the qAAMP measures can be generated in CT lung scans using the workflow 

described above and in the methods.  

 

DISCUSSION 

Previous studies of the size features of mucus plugs in asthma and their location 

in the airway tree have relied on analyses of mucus plugs in lung tissues from cases of 

fatal asthma (11) or of mucus plugs extracted from the lungs using bronchoscopy (12). 

These studies have analyzed limited numbers of mucus plugs from small numbers of 

patients and have been unable to assess the impact of mucus plugs on lung function. 

Here we provide detailed size and shape information on 1397 mucus plugs in 57 

asthma patients, and we identify the airway tree locations occluded by these plugs and 

their lung function consequences. We show that radiographically visible mucus plugs in 

asthma are heterogeneous in their size and shape, are located primarily in 2 to 4 mm 

airways, and persist for many years, often in the same airway. Our modeling data also 

indicate that mucus plugs increase airway resistance and air trapping in lung regions 
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distal to mucus occluded airways and provides strong rationale to treat mucus plugs as 

a strategy to improve airflow in asthma.  

We found that the length distribution of mucus plugs in asthma is multimodal and 

best fit modeling showed that a plug length of 12 mm defines short (“stubby”) and long 

(“stringy”) plug phenotypes. Although only 40% of the mucus plugs were stringy, these 

plugs contributed the most mucus volume in patients with the highest mucus burden. 

The heterogeneity we describe for the number and size of mucus plugs has great 

relevance for the design of clinical trials that test interventions to treat mucus plugs. For 

example, it is likely that more numerous mucus plugs or plugs with a stringy phenotype 

will take longer to respond to treatment (especially inhaled treatments) than less 

numerous or stubby plugs. In addition, our three-year longitudinal data informs thinking 

about the required duration of mucus plug treatments. We show some cases where the 

same airway location has persistent plugging for three years and other cases where 

mucus plugs disappear from an airway over time or form in a new airway location (Fig 

S10). Based on our observation that the average plug length and volume in these 

airways is centered around zero and have a normally distributed change in length and 

volume, we infer that these plugs persist in the airways and undergo a stochastic 

process of formation and resolution. These observations indicate that many asthma 

patients have a persistent mucus plug phenotype that results from a dynamic balance of 

mucus plug persistence, resolution, and new formation. Our data give insight into the 

natural kinetic processes of airway mucus plugs and suggest that while one time 

removal of mucus plugs may have clinical benefit, repeated treatments may be needed 

to prevent formation of newly formed plugs in susceptible airways. 
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Prior work in post-mortem autopsies in fatal asthma has emphasized the 

presence of mucus plugs in airways less than 2 mm in diameter, which are typically 

twelfth generation and smaller in the branching airway tree (13). Our lung image-based 

approach shows that mucus plugs in asthma also occur in airways that are 2 to 4 mm in 

diameter, which include the fourth and fifth generation airways that aerate the proximal 

portions of bronchopulmonary segments. This finding that mucus plugs in asthma occur 

in segmental and larger subsegmental airways is important because they are likely to 

have larger effects on lung function in these proximal airway locations. Indeed, 

compared to mucus plugs in more distal airway locations, we show that mucus plugs in 

proximal airway locations are more consequential for spirometry-based measures of 

lung function and model-based estimates of airway resistance. Removal of these mucus 

plugs is therefore a rational strategy to improve lung function in asthma. In this context, 

our modelling of airway resistance, which is computed by comparing the resistance of 

the airway tree in the presence and absence of mucus plugs, can be thought of as a 

“virtual plug extraction.” Our virtual plug extraction data support removal of mucus plugs 

as a strategy to improve lung function in asthma.   

Development of muco-active drugs for lung disease has been slowed by lack of 

predictive and monitoring biomarkers and by limited information about mucus plug 

phenotypes to guide drug dosing and formulation. We propose that the quantitative 

assessment of airway mucus plug pathology (“qAAMP”) metrics provided here will have 

great utility to select patients with mucus plug-high phenotypes for clinical trials of 

muco-active drugs and to monitor the effects of treatment on mucus plugs in these 

patients. For example, the qAAMP measures will allow determination of whether a 
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muco-active treatment affects total mucus plug burden and whether this occurs globally 

in the airway tree or is restricted to specific locations in the airway tree. In terms of 

guiding drug dosing and drug formulation, the mucus plug volume data will be useful in 

calculating the delivered drug dose required to lyse mucus plugs. In addition, the airway 

mucus plug map data and three-dimensional visualizations of the location of persistent 

plugs (Fig S10) will guide optimization of the physiochemical properties of aerosols or 

mechanical interventions needed to reach mucus plugs in fourth to tenth generation 

airways.  

We note two limitations of the current study. First, our assessment of airway 

mucus plugs is limited by the resolution of computed tomography lung scans. This 

means that our data does not include information about mucus plugs in small airways. 

Despite this limitation, our data for mucus plugs in larger airways emphasize the 

presence of plugs in these airways and demonstrate the consequences of these plugs 

for lung function. Second, the process of generating annotations is time-intensive and 

requires expertise by specialty-trained thoracic radiologists. Prior work has shown 

promising results in automating plug segmentation using deep learning (14), and the 

volumetric segmentation data generated here can be used to train analogous algorithms 

in the asthma population. 

In summary, heterogeneously sized mucus plugs in asthma persist for many 

years and show dynamic changes in their shape and size over time. These mucus plugs 

in proximal airway locations affect lung function, and they are amendable to treatment 

by aerosolized drugs or by interventional bronchoscopy. Treatments to remove mucus 
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plugs and prevent their re-formation in severe asthma constitutes a rational strategy to 

improve airflow obstruction in treatment-refractory disease. 

 

METHODS 

Subjects. Patient data was obtained from the NHLBI Severe Asthma Research Program 

(SARP) database, a multi-institutional cohort designed to obtain longitudinal clinical, 

serologic, physiologic, and imaging data of severe asthmatic patients (15). CT scans 

were acquired post-bronchodilator using a previously described protocol (16). A sample 

size of 54 was calculated based on an initial power estimate needed to demonstrate an 

association between mucus plugs in proximal generations and FEV1. Based on this 

estimate, we selected 57 patients from a larger cohort of patients whose CT lung scans 

had previously been scored by radiologists and shown to have mucus plugs (3). Of the 

57 patients, 43 had a second CT lung at year 3. Scans were included in the study 

reported here if they had at least one mucus plug either at baseline or year 3. In total, at 

the baseline visit, CT scans from 55 patients had mucus plugs that were analyzed and 

included in the baseline dataset; at the year 3 visit, CT scans from 42 patients had 

mucus plugs that were analyzed and included in the year 3 dataset. Scans were 

excluded if they demonstrated radiographic evidence of active infections, allergic 

bronchopulmonary aspergillosis, lung scarring, or motion-degradation limiting the ability 

to evaluate for mucus plugs. All eligible SARP-3 scans acquired at the UCSF center 

were included in the study, and additional scans were randomly sampled from the 

remainder of the SARP-3 CT lung imaging database.  
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Mucus Plug Annotations. Four fellowship-trained thoracic radiologists (LH, KK, TH, and 

BE) with 3, 5, 11 and 16 years of experience annotated the chest CTs in this study. The 

annotation process is illustrated in Figure 1A. Readers used a DICOM viewer (OsiriX; 

Pixmeo) to place an elliptical marking over each mucus plug within an axial slice. Per 

previous protocol (17), window width was 1200 and window center was 600 Hounsfield 

units (HU) during visualization. Voxel spacing of the reconstructed volumes ranged from 

0.5-0.7 mm in the axial (xy-) plane, and spacing between axial slices (z-axis) ranged 

from 0.5-0.6 mm. Each annotation yielded a center coordinate, width, and height for a 

region of interest (ROI) containing the plug at that slice. This process was repeated for 

every plug and every axial slice in the scan (Figure 1 A, inset). Annotations that 

belonged to a single contiguous plug were designated with a single numerical label.  

The annotation process was performed independently twice by two radiologists 

for each scan (Figure 1B). Plugs that were identified by only one of two readers were 

considered discordant and reviewed by a third reader for adjudication. Movie S1 (left) 

shows the annotations in a CT scan resulting from the three-reader adjudication 

process. From the finalized annotation, the mucus segment score was calculated after 

manual identification of the bronchopulmonary segment containing each mucus plug. 

The mucus slice score was calculated as the sum of the number of elliptical 

annotations, and mucus plug score was calculated as the sum of the number of 

individual mucus plugs.  

Annotation of year 3 scans. Annotations of the year 3 scans occurred after the baseline 

scans, and the radiologists had access to the finalized baseline scans results during 

annotation. Similar to the baseline scan process, two radiologists independently 
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annotated each year 3 scan, followed by adjudication by a third radiologist. In certain 

cases, the annotator of the year 3 scan identified a likely plug on the baseline scan that 

had not been annotated during the initial process. These possible baseline plugs were 

collectively reviewed by the entire team of four radiologists, and a consensus vote was 

taken to determine if the plug should be retroactively annotated on the baseline scan. In 

this manner, an additional 34 plugs in the baseline cohort were identified and annotated. 

This consensus read was undertaken to obtain higher fidelity data in mucus plug 

tracking (Figure 4) and in identifying mucus plug persistence over time. 

Mucus plug segmentation, quantification, and visualization. To segment and analyze 

individual plugs, we developed a custom computational workflow to ingest and process 

annotations (Figure 1B). Each annotation was first used to extract an elliptical ROI 

surrounding each mucus plug in a particular slice. The extracted voxels from all slices 

belonging to a single mucus plug were combined into a single volumetric subset. A 

fuzzy clustering algorithm known as Gustafson-Kessel (GK) clustering was used to 

segment the mucus plug from surrounding lung parenchyma and airway lumen in a 

manner similar to that described for segmentation of lung nodules (9). In our pipeline, 

the GK clustering algorithm was run on the extracted volumetric subset and used to 

separate voxels into two clusters based on imaging intensity (radiodensity). The 

foreground was taken to be the cluster with the highest intensity value. The single 

largest contiguous foreground region by volume was then selected as the mucus plug. 

Results of an example plug segmentation are shown in Movie S1 (right).  

Once individual mucus plugs were segmented on a volumetric basis, their size 

was estimated using voxel and mesh-based methods (18). The length of each plug was 
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computed by employing principal component analysis on the ROI to calculate 

eigenvalues along the three principal axes (λmaj > λmin > λleast) and estimating the length 

L by the following formula: L = 4√λmaj.  (18).  The diameter was calculated by fitting the 

3D mucus region of interest to a cylinder and using the resultant best-fit value for the 

cylinder diameter (19). The CT radiodensity of segmented pixels was analyzed per plug 

to compute the median density value for each individual plug. For visualization of 

individual mucus plugs, a triangular mesh representing the surface of the mucus plugs 

was generated using the marching cubes algorithm (9) with an additional surface 

smoothing algorithm (20) applied prior to rendering (Figure 2A, Movie S2).  

Lung and airway segmentation and skeletonization: Lung parenchyma was segmented 

on a lobar basis using previously described methods (21) and available in an open 

source software package (22). Airway segmentation was performed by combining a 

region-growing method (22), which yields an estimate of central airways, with a 

convolutional neural network-based approach (23), which has improved performance in 

smaller airways. The segmented airway was taken to be largest contiguous region 

resulting from the voxel-wise union of the two methods. The airway tree was then 

skeletonized (22) yielding a centerline estimation of the airway tree. A topological 

representation of the airway tree was generated that contained information for each 

portion of airway including the location of centerline points, branching points, length of 

each segment, local airway radius estimates, airway generation number, lobar location, 

and information about connectivity to more distal (child) branches. Airway termination 

points were defined as the most distal points of the centerline that no longer had child 

branches. 
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Airway mucus plug map generation. After individual mucus plugs were segmented, 

each plug was then localized to a position in the airway tree. For each mucus plug, a 

search was performed for the nearest airway termination point by Euclidean distance. 

Mucus plugs were then incorporated into the topological diagram of the airway tree. The 

lobe of each plug was assigned based on the lobe of the airway to which it localized, 

and the generation was computed by counting the number of airway bifurcations from 

the trachea, with the trachea considered generation 0.   

Estimation of resistance score: To estimate the total impact of mucus plugs on airflow 

obstruction, we used the information generated in the airway mucus plug map for each 

CT scan to calculate a novel measure of airway resistance (“resistance score” or “RS”). 

First, the total airflow 𝑉̇ through the visible airway tree due to an applied pressure ∆P 

was computed by converting the airway tree into a network of resistive elements (Figure 

6A, right). The length Ln and radius rn of each airway segment n was used to estimate 

the resistance Rn through that portion of the airway using Rn=8µLn/πrn4, where µ is the 

dynamic viscosity of humidified air. The resulting series of flow and pressure equations 

at each node was then solved using previously published methods to obtain 𝑉̇ (24). Of 

note, the formula for Rn reflects Poiseuille flow. Prior work has shown that even if certain 

assumptions of Poiseuille flow are violated, the resistance of airway segments in the 

lung is still inversely proportional to the fourth power of airway radius (25). The effective 

resistance Ra of the entire tree in the absence of mucus plugs was calculated as Ra=∆P 

/ 𝑉̇a. In the next step, we considered each terminal branch of the airway tree to be 

obstructed by associated mucus plugs as determined in our airway mucus plug map. 

We recomputed Rp as the net resistance with these branches blocked, i.e. flow is set at 
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zero at those nodes. The resistance score was then calculated as the percentage 

increase in resistance due to plugs above the unplugged airway by RS = [100 x (Rp - 

Ra)/Ra]. We were unable to estimate RS in 3 out of 97 scans (3%) because the 

processing pipeline did not converge on the parameter estimates for the entire airway. 

The Pearson correlation coefficient for Ra between baseline and year 3 scans was 0.72. 

Estimation of obstructed lung volume percentage. After lobar segmentation, the voxels 

within each lobe were assigned to a specific airway branch by finding the nearest airway 

termination point, similar to (26). Each subregion was then labelled as obstructed if a 

mucus plug occluded the terminal airway, and unobstructed if a mucus plug was absent 

(Figure 6B). The obstructed lung volume percentage (OLVP) for each lobe was 

estimated as the volume of voxels associated with an obstructed airway (Vo) divided by 

the total voxel volume of the lobe (Vt), or OLVP = (100 x Vo/Vt). The computation was 

performed on a lobar basis to ensure lung parenchyma was not assigned to an airway 

branch opposite a fissure, after which the OLVP was then estimated for the entire lung. 

OLVP could not be computed in 3 of 97 scans (3%) where lobar segmentation failed. 

Measurement of regional air trapping: Automated quantitative CT analysis was 

performed by Vida Diagnostics (Coralville, Iowa) to estimate disease probability 

measure air-trapping, Jacobian mean, and LAA856% on a lobar level as previously 

described (10). 

Clinical survey data and physiologic measurements. Clinical surveys of asthma control, 

comorbid conditions, spirometry, hematologic testing, and sputum characterization were 

collected and analyzed as part of the SARP-3 protocol (8, 15). Values were taken from 
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the visit closest to the date of the designated CT scan. Not all patients had data for 

every study outcome, and analyses used available data. 

Statistics. Statistical analyses were carried out using the SciPy, scikit-learn, and 

statsmodel packages in Python (27). Numeric nonparametric variables were evaluated 

by non-parametric methods including Kruskal-Wallis, Mann-Whitney U, or Wilcoxon 

signed rank test (matched samples). Categorical variables were evaluated by chi-

square analysis. Regression of numeric variables was quantified using the Spearman 

correlation coefficient (rs). For linear regressions on variables with repeated 

measurements from the same patient, p-values were additionally confirmed using a 

linear mixed model with random effects for patient. A p-value of less than 0.05 was 

considered significant. For analysis of proximal versus distal airway mucus plugs, 

confidence intervals for rs of plug count by generation versus FEV1 and FEF25-75 were 

obtained by bootstrapping. In each bootstrapping sample, a set of 55 patients was 

generated using random resampling with replacement. The process was repeated 1000 

times. Statistical significance in comparing rs for generation ≤7 and generation ≥10 was 

determined by estimating the 95% (p<0.05) or 99% (p<0.01) percentile value of the 

quantity (rsgen≤7-rsgen≥10) from the bootstrap distribution. SHAP value analysis was carried 

out using the SHAP Python package (28). Directed acyclic graph analysis was 

performed using DAGitty (29). 

Study approval. Written informed consent approved by each center’s institutional review 

board was received from participants prior to inclusion in the study. Study procedures 

and sample collection were carried out using standardized protocols approved by each 

center’s institutional review board. 
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Data availability.  

The supplement includes a data values file that provides the values underlying the 

graphed data and the means reported in the main manuscript and in the supplement. 

The Severe Asthma Research Program (SARP)-3 cohort database is being made 

available through dbGaP (https://www.ncbi.nlm.nih.gov/gap/) under the accession 

number phs002788.v1.p1. Requests for access to lung images from participants in 

SARP-3 are considered by the SARP-3 steering committee on a case by case basis 

and any such request can be facilitated by the corresponding author. 
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FIGURES 

 

Figure 1. Mucus plugs are heterogeneous in size and shape in asthma.  

(A-B) Overview of annotation and image processing pipeline for mucus plug shapes 

quantification. (A) An elliptical mark placed over each plug generates a center 

coordinate, width, and height for a region of interest (colored arrows). The process is 

repeated at each axial slice (inset), with z indicating the slice location relative to the 

initial image, and color denoting annotations belonging to the same plug. (B) 

Annotations are incorporated into an image-processing pipeline for segmentation and 

feature extraction on plugs, enabling calculation of their length, diameter and volume. 

(C-E) Results of shape feature quantification of individual mucus plugs (left, n=778 

plugs) and averages by patient (right, n=55 patients) from baseline scans, including (C) 

plug length, (D) plug diameter, and (E) plug volume. Note that scales are logarithmic. 

Bars indicated interquartile range, and whiskers show min and max values. (F) Total 

mucus volume per patient. Definition of abbreviations: GK - Gustafson-Kessel. 
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Figure 2. Mucus plugs exhibit multiple underlying length phenotypes.  

(A) Distribution of mucus plug lengths with best fit Gaussian mixture model by Akaike 

information criterion, with separation between short (“stubby”) plugs and long (“stringy”) 

plugs at 12 mm. Very long plugs (component 3) make up a small portion of total 

population. The inset shows three-dimensional renderings of stubby and stringy mucus 

plugs. (B) Distribution of mucus plug volume in each patient (n=55) ordered by 

predominance of stubby versus stringy mucus plugs within each patient. The inset 

image provides renderings of mucus plugs (red) within the lung of a patient with a 

majority stubby plug volume (patient 1) and majority stringy plug volume (patient 55).  
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Figure 3: Mucus plugs are primarily located in proximal airway generations in 

asthma.  

(A) Rendering of segmented lung parenchyma (blue), airways (grey), and mucus plugs 

(red) in a patient with asthma. (B) Mucus plug map showing topological location of 

mucus plugs in the airway for the same patient. Generation number is counted by each 

airway bifurcation with trachea as generation 0. (C) Histogram showing that mucus 

plugs are located primarily in airway generations 6 - 9, which have a diameter of 2 to 4 

mm. Data are from 778 plugs visible in 55 baseline CT lung scans, and the mean airway 

diameter is the average diameter measured at each airway generation across the 55 

scans. 
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Figure 4. Mucus plugs persist for years in the same airways and demonstrate 

dynamic changes in size over time.  

(A-C) Comparison of patient-level measurements for patients with matched baseline 

and year 3 scans with (A) average plug length per patient, (B) average plug volume per 

patient, and (C) total plug volume per patient all showing similar between baseline and 

year 3. Data in A to C are from 580 baseline plugs and 619 year 3 plugs visible in 86 CT 
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lung scans from 43 patients. Bars indicate interquartile range (IQR), and whiskers 

indicate 1.5 IQR. (D) Percentage of individual plugs classified as persistent or transient 

using analyses of scans at baseline and year 3 (upper pie chart). Percentage of patients 

with at least one persistent plug in the same airway at baseline and at year 3 (lower pie 

chart). (E) Frequency distribution plot showing the change in mucus plug length from 

baseline to year 3 (F) Frequency distribution plot showing the change in mucus plug 

volume from baseline to year 3. Data in E and F are from 270 persistent mucus plugs. 

(G) Compared to mucus plugs in lower lobe locations, mucus plugs in upper lobe 

locations are more likely to persist for 3 years. ***Indicates significantly different from 

lower lobes, p<0.001 (Kruskal-Wallis test). (H) Compared to stubby plugs, stringy 

mucus plugs are more likely to persist for three years. *Indicates significantly different 

from stubby, p<0.05 (Kruskal-Wallis test). (I) Sankey plot showing how stringy, stubby, 

and absent mucus plug phenotypes vary from baseline to year 3.  (J) State-transition 

diagram showing the probability of transition between stubby, stringy, and absent plug 

group from baseline to year 3. 
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Figure 5 Proximal plugs are more consequential for spirometric measures of 

airflow obstruction in asthma. 

(A) Correlation analysis of mucus plugs grouped independently by proximal airway 

generations (7 or less), intermediate airway generations (8 and 9), and distal airway 

generations (10 and greater) and spirometry measures. The estimated Spearman 

coefficients for each generation group, which correlate plug count by generation group 

with FEV1 and FEF25-75, are shown for proximal, intermediate, and distal airway 

generations along with 95% confidence interval. *Indicates significantly different from 

distal airway generations for FEV1, p<0.05 (by bootstrapping). **Indicates significantly 

different from distal airway generate, p<0.01 (by bootstrapping).  Data presented 

includes pooled baseline and year 3 follow up scans (n=97). (B) Absolute SHapley 

Additive exPlanation (SHAP) values for FEV1 and FEF25-75 at proximal, intermediate, 

and distal airway generations (n=97). 
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Figure 6 Mucus plugs are associated with an increase in modeled airway 

resistance and in measured air trapping in lung regions distal to mucus-occluded 

airways. 

(A) Schematic illustrating computation of Resistance Score (RS) by incorporating 

mucus plugging into the airway tree. The airway tree is divided into different segments 

with an effective resistance Rn given by the length and radius of the airway at that 

location. After combining all segments, the net resistance of the airway tree in the 

presence of plugging (Rp) is compared to the resistance of the native airway tree in the 

absence of plugs (Ra) to yield the increased percentage in airway resistance RS = [100 

x (Rp - Ra)/Ra] due to plugs. (B) Estimation of obstructed lung volume percentage 

(OLVP). The voxel volume of the lung region distal to a mucus occluded airway (Vo) was 

divided by the total voxel volume in the lobe (Vt) to generate the estimated obstructed 

lung volume percentage (100 x Vo/Vt). (C) Distribution of RS for patients at baseline 

(n=54). (D) Relationship between predicted RS and FEV1 at baseline. (E) Relationship 

between changes in predicted RS and changes in FEV1 over three years for matched 

patients (n=40). (F) Distribution of OLVP per patient at baseline (n=53). (G) Relationship 

between OLVP and FEV1 at baseline. (H) Relationship between changes in predicted 

OLVP and changes in FEV1 over three years for matched patients (n=40). Sensitivity 

analysis of outlier point (∆RS = 201, ∆FEV1 = -14%) shows similar correlation coefficient 

(rs = -0.50, p=0.001 with outlier included and r= -0.46, p=0.003 with outlier excluded). (I) 

Distribution of OLVP per lobe at baseline (n=260). (J) Relationship between OLVP and 

disease probability measure functional small airways disease (DPM-fSAD) per lobe at 

baseline. (K) Relationship between changes in OLVP and DPM-fSAD per lobe over 
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three years (n=195). rs denotes Spearman correlation coefficient. Statistical results of 

linear mixed model and multivariate regression are shown in Table S1. 
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Figure 7 Mucus plugs in proximal generations have a higher impact on resistance 

score than distal generations. 

(A) Resistance Score (RS) per plug grouped independently by proximal airway 

generations (7 or less), intermediate airway generations (8 and 9), and distal airway 

generations (10 and greater) (n=1327 plugs). The RS values for each generation group 

are shown for proximal, intermediate, and distal airway generations. ***Indicates 

significantly different from distal airway generations, p<0.001 by Kruskal-Wallis test. 

(p=0.008 and p=0.002 for comparison with proximal versus intermediate and proximal 

versus distal generations, respectively, using linear mixed model with random effects for 

patient.) (B) RS per plug grouped independently by mucus plug score-high (>11 plugs) 

and plug score-low (≤11 plugs) (n=94 patients). **Indicates significantly different from 

mucus plug score-low, p<0.01 by Kruskal-Wallis test. (p=0.014 for linear mixed model 

with random effects for patient.) 
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TABLES 

Table 1: Clinical characteristics of patients with asthma 
 

  (n = 57) 
Age (yr), mean (SD)   51.2 ± 15.2 
BMI (kg/m2), mean (SD)   31.9 ± 8.4 
Race, n (%) Asian 6 (10.5%) 

Black/African 
American 

9 (15.8%) 

White 38 (66.7%) 
More than one race 4 (7.0%) 

Female, n (%)  38 (66.7%) 
Severe AsthmaA ,n (%) 

 
51 (89.5%) 

ACT, median (IQR)   15 (13 ,20) 
High dose ICS usage, n (%)  53 (94.6%) 
Daily oral corticosteroid, n (%) 

 
8 (14.3%) 

Pre-BD FEV1 (% pred), mean (SD)   63.6 ± 17.8 
Pre-BD FVC (% pred), mean (SD)   79.8 ±17.0 
Pre-BD FEV1/FVC (%), mean (SD)   63.6 ± 9.3 
IgE (kU/L), median (IQR)   175 (71, 319) 
Blood Eosinophil Count (cells / 
µL), median (IQR) 

  327 (181 ,535) 

ASevere asthma is defined by ATS/ERS consensus. Definition of abbreviations: ACT = 
asthma control test; BD = bronchodilator response; BMI = body mass index. FEV1 = forced 
expiratory volume in 1 second. FVC = forced vital capacity. ICS = inhaled corticosteroid 
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Table 2: Quantitative measures of mucus plug shape features in asthma 

 
Plug Measurement Per Plug  

Median Value (IQR) 
Average Per Patient 
Median Value (IQR) 

Total Per Patient 
Median Value (IQR) 

 (n=778) (n=55) (n=55) 

Length (mm) 10.2 (6.9 - 18.6) 
 

11.1 (8.3 - 14.2)  

Diameter (mm) 3.1 (2.5 - 3.9) 3.1 (2.6 - 3.6)  

Volume (µL) 63.4 (32.8 - 115.6) 70.2 (43.3 -106.5) 831 (154 - 1698) 

 

Table 3 – Size and shape features of transient and persistent 
mucus plugs in asthma 
 Transient Persistent p-value 
 (n = 310) (n = 270)  
Volume (µL), 
median (IQR) 58 (30,96) 63 (30,117) 0.174 
Length (mm), 
median (IQR) 9.1 (6.4,15.7) 10.3 (7.2,18.4) 0.012 
Diameter (mm), 
median (IQR) 3.1 (2.4,3.8) 3.0 (2.5,3.9) 0.938 
Length:Diameter 
Ratio,  
median (IQR) 2.9 (2.3,4.4) 3.4 (2.5,5.2) 0.004 
Median Density 
(HU), median 
(IQR) 

-529 (-623, -
405) 

-575 (-645,-
476) <0.001 

Airway 
Generation, 
median (IQR) 7 (6,9) 7 (6,8) 0.099 
Stringy 
N, (%) 103 (33.2%) 115 (42.6%) 0.025 
Stubby  
N, (%) 207 (66.8%) 155 (57.4%)  
Left  
N, (%) 164 (52.9%) 123 (45.6%) 0.093 
Upper  
N, (%) 117 (37.7%) 143 (53.0%) <0.001 
p-values calculated as chi-square for categorical variables and 
Kruskal-Wallis for continuous nonparametric variables. 
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Table 4: Results of statistical analysis using linear mixed-effects or multivariate 

regression models for resistance score and obstructed lung volume percentage 

 
Independent 
Variable 

Dependent Variable Linear regression 
or linear mixed 
effect model - 
unadjustedA 
Random effect = 
Patient 
 
Coeff (CI), p-value 

Multivariate linear 
regression or linear 
mixed effect model 
- adjustedA  
Random effect = 
Patient 
Covariate = Age, 
BMI, Gender, Pi10 
 
Coeff (CI), p-value 

RS, Baseline FEV1 (% Pred) -0.214 (-0.430 – 
0.003), p=0.053 

-0.181 (-0.420 – 
0.058), p=0.134 

∆RS,  
Baseline - Year 3 

∆FEV1 (% Pred) -0.082 (-0.161 –  
-0.003), p=0.042 
 

-0.096 (-0.174 – 
-0.019), p=0.016 

RS, Baseline FEF25-75 (% Pred) -0.376 (-0.624 – 
-0.128), p=0.004 

-0.327 (-0.586 – 
-0.068), p=0.014 

∆RS, 
Baseline - Year 3 

∆FEF25-75 (% Pred) -0.068 (-0.171 – 
0.035), p=0.189 

-0.091 (-0.198 – 
0.015), p=0.090 

OLVP, Baseline FEV1 (% Pred) -0.389 (-0.721 – 
 -0.058), p=0.022 

-0.386 (-0.751 – 
-0.020), p=0.039 

∆OLVP, 
Baseline - Year 3 

∆FEV1 (% Pred) -0.284 (-0.505 – 
-0.064), p=0.013 

-0.324 (-0.538 – 
-0.111), p=0.004 

OLVP, Baseline FEF25-75 (% Pred) -0.749 (-1.122 – 
-0.375), p<0.001 

-0.728 (-1.119 – 
-0.338), p<0.001 

∆OLVP, 
Baseline - Year 3 

∆FEF25-75 (% Pred) -0.365 (-0.643 – 
-0.087), p=0.011 

-0.423 (-0.706 – 
-0.140), p=0.005 

OLVP by Lobe,  
Baseline 

DPM-fSAD 0.152 (0.079 – 
0.225), p<0.001 

0.153 (0.080 – 
0.226), p<0.001 

∆OLVP by Lobe, 
Baseline - Year 3 

∆DPM-fSAD 
 

0.095 (0.040 – 
0.151), p=0.001 

0.083 (0.022 – 
0.144), p=0.008 

OLVP by Lobe, 
Baseline 

Jacobian Mean -0.003 (-0.005 – 
-0.001), p=0.001 

-0.003 (-0.005 – 
-0.001), p=0.001 

∆OLVP by Lobe, 
Baseline - Year 3 

∆Jacobian Mean -0.002 (-0.003 – 
-0.000), p=0.024 

-0.002 (-0.003 – 
-0.000), p=0.042 

OLVP by Lobe, 
Baseline 

LAA856% 0.226 (0.146 – 
0.305), p<0.001 

0.233 (0.151 – 
0.315), p<0.001 

∆OLVP by Lobe, 
Baseline - Year 3 

∆LAA856% 0.083 (0.038 – 
0.128), p<0.001 

0.089 (0.040 – 
0.139), p<0.001 
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AMeasurements per patient (FEV1, FEF25-75) analyzed with linear regression, and 
measurements per lobe (DPM-fSAD, Jacobian Mean, LAA856%) analyzed with linear mixed-
effects model. Definition of abbreviations: BMI = body mass index; DPM-fSAD = disease 
probability measure of functional small airway disease; FEF25-75 = forced expiratory flow 
between 25% and 75% of forced vital capacity; FEV1 = forced expiratory volume in 1 
second; LAA856% - expiratory low attenuation area percent below -856 HU; OLVP = 
obstructed lung volume percentage; Pi10 - square root of wall area of a 10-mm lumen 
perimeter; RS = resistance score; ∆ = change.  
 

 
 
Table 5: Quantitative Assessment of Airway Mucus Pathology (“qAAMP”) 

1. Measures of total mucus plug burden in the lungs 

• Mucus segment score 

• Mucus slice score 

• Mucus plug score 

• Total mucus plug volume 

2. Measures of the size and shape of individual airway mucus plugs 

• Length of each mucus plug and the average length of all plugs in the lungs.  

• Diameter of each mucus plug and the average diameter of all plugs in the lungs.  

• Volume of each mucus plug and the average volume of all plugs in the lungs.  

• Categorization of each mucus plug and each patient as stubby or stringy phenotype. 

3. Airway mucus plug map 

Provides a visual representation (map) of the airway location of each mucus plug in 

the airway tree 

4. Integrated measures of predicted mucus plug impact 

• Resistance score  

• Obstructed lung volume percentage  
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List of Supplemental Materials 

Supplemental Figure S1 to S10 

Supplemental Movie S1 to S3 
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