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Introduction
Less than 2% of the human genome is translated into proteins (1); however, 8%–15% is estimated to be func-
tional (2, 3), and results from ENCODE suggest as much as 80% of the genome can have biological activity 
(4). Advances in high-resolution sequencing technologies have enabled deep molecular profiling, identifying 
elements that were not previously revealed due to their cell type specificity and low-expressing nature. Long 
noncoding RNA (lncRNA; 200 or more nucleotides) is arguably the gene category that has expanded the 
most in the genomic era, from 9,640 in 2012 (5) to 19,928 in 2022 (6). lncRNAs are of  particular interest (7) 
for their ability to regulate gene expression (8) and alter splicing control (9) by binding to target DNA; there is 
also some evidence that lncRNAs may act as a scaffold to recruit proteins (10, 11). Therefore, lncRNAs have 
been shown to affect the regulation of  different biological mechanisms; however, few lncRNAs have been 
functionally characterized (12), and much remains to be discovered regarding their role in health and disease.

Specific lncRNAs have been found to operate in different skin conditions (13), such as ANRIL for mela-
noma (14), HOTAIR for systemic sclerosis (15), TINCR for burn injuries (16) and epidermal differentiation 

Long noncoding RNAs (lncRNAs) regulate the expression of protein-coding genes and have been 
shown to play important roles in inflammatory skin diseases. However, we still have limited 
understanding of the functional impact of lncRNAs in skin, partly due to their tissue specificity 
and lower expression levels compared with protein-coding genes. We compiled a comprehensive 
list of 18,517 lncRNAs from different sources and studied their expression profiles in 834 RNA-
Seq samples from multiple inflammatory skin conditions and cytokine-stimulated keratinocytes. 
Applying a balanced random forest to predict involvement in biological functions, we achieved a 
median AUROC of 0.79 in 10-fold cross-validation, identifying significant DNA binding domains 
(DBDs) for 39 lncRNAs. G18244, a skin-expressing lncRNA predicted for IL-4/IL-13 signaling in 
keratinocytes, was highly correlated in expression with F13A1, a protein-coding gene involved in 
macrophage regulation, and we further identified a significant DBD in F13A1 for G18244. Reflecting 
clinical implications, AC090198.1 (predicted for IL-17 pathway) and AC005332.6 (predicted for 
IFN-γ pathway) had significant negative correlation with the SCORAD metric for atopic dermatitis. 
We also utilized single-cell RNA and spatial sequencing data to validate cell type specificity. Our 
research demonstrates lncRNAs have important immunological roles and can help prioritize their 
impact on inflammatory skin diseases.
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more generally (17), MALAT1 for squamous cell carcinoma (18), and WAKMAR1 for wound healing (19). 
Our previous study (20) revealed that many skin-expressing lncRNAs — including lncRNAs G2608 and 
G25746 — are dysregulated in lesional skin of  patients with psoriasis. Intriguingly, compared with previ-
ously annotated lncRNAs, a greater proportion of  the 1,080 potentially novel skin-expressing lncRNAs we 
identified were differentially expressed in psoriasis. lncRNAs are highly tissue specific (21), and this can be 
beneficial for precision medicine. For example, drug-response models trained using lncRNAs outperformed 
protein-coding models for several medications (22). However, tissue specificity — along with unique spa-
tiotemporal dynamics (23), lower overall expression, and poor sequence conservation (24) (compared with 
protein-coding transcripts) — can make the biological roles of  lncRNAs difficult to determine.

Various approaches have been applied to predict lncRNA biological functions. Proximity to cod-
ing genes (e.g, direct sense-antisense pairing; refs. 25, 26) can reveal the function of  some lncRNAs. 
Sequence motifs have also been used to associate with subcellular localization or protein binding (27). 
For example, XIST contains a repeat E motif, without which it is unable to interact with CIZ1 for enrich-
ment in the nucleus (28). However, this approach requires careful analysis to understand how specific 
motifs may influence the function of  each lncRNA. Automated techniques are increasingly being devel-
oped that apply machine learning to gene coexpression (29) or generic sequence features such as k-mer 
profiles (30, 31). It is also possible to predict lncRNA disease associations through matrix completion of  
similarity based on disease-gene and disease-ontology pairs (32). However, all these approaches depend 
on the quality and quantity of  existing data, which is particularly limited for skin conditions and cuta-
neous biology.

In our study, we apply machine-learning techniques to a large collection of  RNA-Seq data sets from 
different in vivo and in vitro experiments to predict lncRNAs for specific cytokine pathways; we then 
utilize the sequence information to refine the regulatory effects. Our study provides a comprehensive cat-
alog for lncRNA genomics and highlights the potential roles of  lncRNAs in inflammatory skin diseases.

Results
lncRNA are differentially expressed in inflammatory skin diseases. Figure 1 provides an overview of  the work-
flow for our approach. We profiled gene expression in 434 transcriptomes from 4 inflammatory skin 
disease RNA-Seq cohorts (atopic dermatitis [AD], psoriasis, Netherton syndrome, and hidradenitis sup-
purativa [HS]), revealing 11,082 lncRNAs and 18,022 protein-coding genes to be expressed in at least 1 
skin condition (Table 1). Of  these, 12,547 genes — including 4,163 (33%) lncRNAs — were significantly 
(FDR ≤ 0.05) differentially expressed in at least 1 condition (Supplemental Tables 1–4; supplemental 
material available online with this article; https://doi.org/10.1172/jci.insight.172956DS1). Interesting-
ly, for all 4 diseases, a higher proportion of  the skin-expressing lncRNAs was differentially expressed 
compared with protein-coding genes, suggesting that cellular and molecular changes at the tissue level 
might have a higher regulatory effect on genes with high cell type specificity, and their overall expres-
sions can be affected by cellular composition changes (33, 34). Importantly, we identified a core set of  51 
lncRNAs that were dysregulated in the same direction (14 upregulated and 37 downregulated) for all 4 
skin diseases (Supplemental Figures 2 and 3).

Gene expression was further evaluated in cytokine-stimulated (IFN-α, IFN-γ, IL-4, IL-13, IL-17, 
IL-17 + TNF, and TNF) keratinocytes and unstimulated keratinocytes (50 samples of  each condition). 
Of  the 4,543 lncRNA and 15,406 protein-coding genes expressed (Supplemental Table 5), 2,179 genes 
— including 429 (20%) lncRNAs — were significantly (FDR ≤ 0.05) differentially expressed in at least 1 
stimulation (Supplemental Tables 6–12). By contrast with the skin conditions, the proportions of  skin-ex-
pressing lncRNAs that are differentially expressed were consistently lower than those for protein-coding 
genes for all 7 cytokine stimulations. For each pair of  cytokines and skin conditions, we counted the 
number of  shared differentially expressed lncRNA (Supplemental Table 13) and found a total of  17 pairs 
to be significantly enriched after correcting for multiple testing through Bonferroni adjustment, including 
IFN-γ in psoriasis (P = 6.1 × 10–18, OR = 3.37) and IL-13 (P = 1.1 × 10–5, OR = 63.90) in AD.

Of the 4,163 lncRNAs (5%) differentially expressed in a skin condition, 217 were differentially 
expressed in a cytokine simulation, including 5 of  the 51 lncRNAs (10%) that have the same direction 
of  effect in all 4 skin conditions. Interestingly, these 5 lncRNAs were more likely to be upregulated rather 
than downregulated in the skin conditions (P = 0.018, OR = 13.1, Fisher enrichment test). We also calcu-
lated the distance of  each of  the 51 lncRNAs to H3K27ac marks for active enhancers (35) and the nearest 
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protein-coding gene expressed in a cytokine stimulation (Supplemental Table 14); however, no significant 
differences were found comparing lncRNAs dysregulated/not dysregulated in at least 1 cytokine condition.

Figure 1. Overview of our approach. Workflow describing the different data sources and steps in our prediction and analysis of lncRNA functions.

https://doi.org/10.1172/jci.insight.172956
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4

R E S E A R C H  A R T I C L E

JCI Insight 2023;8(24):e172956  https://doi.org/10.1172/jci.insight.172956

Predicting cytokine pathways in skin for lncRNAs. To predict the potential functions of the lncRNAs, we com-
piled multiple gene sets (Supplemental Table 15) relevant to pathways of cytokine response from 5 differ-
ent sources: BioCarta (36), Reactome (37), NCI (38), GO (39), and KEGG (40). Aggregating these gene sets 
provides 135 protein-coding genes for the IFN-α pathway, 239 for IFN-γ, 120 for IL-17, 195 for IL-4/IL-13, 
and 330 for TNF. We selected these genes as the positive set to predict the involvement of lncRNAs for each 
cytokine signaling pathway, using the aforementioned RNA-Seq samples from inflammatory skin diseases and 
cytokine stimulations as training data. An additional 129 samples, available from the same data sets (taken, for 
example, from nonlesional sites), were included such that the training data had 834 samples in total.

Machine-learning prediction was conducted using 10-fold cross-validation to help reduce the risk of  
overfitting. We benchmarked 10 different classifiers on the cytokine pathways using the protein-coding 
genes (Figure 2A and Supplemental Figure 4) and found they gave consistently satisfactory performance, 
with 8 of  10 classifiers having an area under the receiver operating characteristic (AUROC) greater than 
0.6 for all 5 pathways. The highest-performing classifier overall was random forest, which had a median 
AUROC (across the pathways) of  0.75. We further found that, when setting the number of  cases and 
controls in each tree of  the random forest to be equal (i.e., balanced), this significantly increased the 
median AUROC to 0.79 in cross-validation (paired Wilcoxon P = 0.031). When dividing the data into 
70% training and 30% testing, the balanced random forest achieved 0.80 AUROC for IFN-α, 0.79 for 
IFN-γ, 0.79 for IL-4/IL-13, 0.71 for IL-17, and 0.74 for TNF.

Applying the balanced random forest classifier to predict which lncRNAs participate in each cyto-
kine pathway, we averaged the prediction scores for every gene over 100 trials (Supplemental Table 16). 
AL445490.1, the lncRNA with the highest prediction score for IFN-α (mean score = 0.931), is antisense 
and positioned intronic and upstream of  IFN-α–inducible protein 6 (IFI6) and was previously found to 
be highly expressed in an inflammatory subtype of  breast cancer (41). Indeed, we found the expression 
of  AL445490.1 to be highly correlated with IFI6 (Spearman r = 0.79, P = 1.5 × 10–175) across our keratino-
cyte and skin disease samples. The top predicted lncRNA for other cytokines are differentially expressed 
and/or play roles in different kinds of  cancer: AC016027.1 for TNF (mean score = 0.81 of  1) in colorectal 
cancer (42, 43); AC005332.6 for IFN-γ (mean score = 0.94) in pancreatic cancer (44); and AC008074.2 for 
IL-17 (mean score = 0.87) in bladder cancer (45). Meanwhile, the highest prediction for the IL-4/IL-13 
pathway, G18244 (mean score = 0.94), was identified as a skin-expressing lncRNA in our previous study 
(20). Interestingly, single-cell RNA-Seq (scRNA-Seq) analysis on 17 skin samples (46) demonstrates that 
AC016027.1 and AC008074.2 are more expressed in keratinocytes, while G18244 has greater expression in 
endothelial cells (Supplemental Figure 5–7).

Table 1. Differential expression results

Atopic  
dermatitis

Psoriasis Netherton  
syndrome

Hidradenitis  
suppurativa

Experiment details

Lesional 27 92 13 22
Healthy 38 84 19 10
ML-only 88A 28 13 0

Total 153 204 45 32

lncRNA
No. significant 1,348 1,873 1,848 1,112
No. expressed 8,320 7,230 10,411 8,925

Percentage 16.2 25.9 17.8 12.5

Protein-coding
No. significant 2,033 2,895 2,954 1,727
No. expressed 16,999 17,088 17,746 17,644

Percentage 12 16.9 16.6 9.8

Other
No. significant 808 872 1,180 692
No. expressed 6,648 4,917 8,141 5,322

Percentage 12.2 17.7 14.5 13.0

The number of significant and expressed genes from each category and disease/cytokine, as well as the percentage of expressed genes that were 
significant (|logFC| ≥ 1, FDR ≤ 0.05) in differential expression. The gene category with the highest percentage of differential expression for each disease 
cohort is bolded. ML-only indicates additional samples that were used in the machine-learning but not differential expression (for example nonlesional). 
AWe also include psoriasis samples from the same data set in the ML training.

https://doi.org/10.1172/jci.insight.172956
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We set a prediction score threshold for each cytokine pathway by maximizing the F-statistic (Figure 2B). 
The F-statistic represents the harmonic mean of  precision (the proportion of  genes predicted to be involved 
in a pathway that actually are involved) and recall (the proportion of  genes involved in the pathway that are 
successfully predicted to be involved), thus providing an optimal trade-off  between these 2 competing goals. 
We calculated the maximum F-statistic for each cytokine pathway using the protein-coding genes and set the 
threshold 1 percentage point lower (to account for statistical error); we then included all lncRNAs with mean 
prediction scores greater than this in the final set of  lncRNAs predicted for each cytokine (Supplemental 
Table 17). Table 2 presents a summary of  these results and shows that we have predicted 27 lncRNAs for 
IFN-α, 148 for IFN-γ, 683 for IL-4/IL-13, 25 for IL-17, and 35 for TNF, with 165 lncRNAs being predicted 
for more than 1 pathway and 721 lncRNAs overall (Supplemental Figure 8). We compared the predicted 
lncRNAs with those differentially expressed for each cytokine (Supplemental Table 18) and found significant 
enrichment (after Bonferroni correction) among lncRNAs predicted for IFN-α (P = 5.5 × 10–8, OR = 750.8), 
IFN-γ (P = 3.80 × 10–21, OR = 14.2), and IL-17 (P = 4.0 × 10–3, OR = 383.5).

Exploring a possible further refinement, we aggregated interaction scores (from the RNAInter v4.0 
database) between lncRNAs and the coding genes in each pathway; we then correlated these with the 
prediction scores from our machine-learning framework. Interestingly, the correlation for all 5 cyto-
kine pathways — IFN-α (r = 0.26, P = 3.2 × 10–182), IFN-γ (r = 0.24, P = 2.5 × 10–153), IL-17 (r = 0.33, 
P = 3.7 × 10–308), IL-4/IL-13 (r = 0.33, P = 5.0 × 10–296), and TNF (r = 0.27, P = 5.4 × 10–191) — was 

Figure 2. Results of lncRNA function prediction. (A) Benchmarking the performance of classifiers across different cytokine pathways on the prediction 
task, and measuring according to the AUROC on protein-coding genes. (B) The F-measure curve for protein-coding genes in each cytokine pathway, as a 
harmonic mean of precision and recall, is used to set the threshold for lncRNA prediction. (C) Heatmap of correlations between the top 3 lncRNA for each 
cytokine pathway and the most correlated protein-coding genes. *P < 1e-10; **P ≤ 1e-100. (D) Enrichment of lncRNA predicted for different cytokines in 
k-mer clusters from SEEKR analysis. *nominally significant (P < 0.05); ***significant after Bonferroni (p_adj < 0.05).

https://doi.org/10.1172/jci.insight.172956
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strong, although it is difficult to evaluate the effect on predictions without a gold standard for lncRNA 
functions.

Assessing the roles of  predicted lncRNAs. Figure 2C presents the top 3 lncRNAs predicted for each cytokine 
pathway, along with the protein-coding genes that have the highest correlation in gene expression with each one, 
across the different samples in the training data set. For the IL-17 pathway, 2 of the top 3 lncRNAs, AC090198.1 
and TRA3IP2-AS1, have the highest correlation with the protein-coding gene PIK3R1, so there are only 2 pro-
tein-coding genes shown. As expected, lncRNAs tend to have a higher correlation with protein-coding genes in 
their predicted pathways (Figure 2C), and when extending to all predicted lncRNAs, we found they had consis-
tently and significantly (after Bonferroni correction) higher mean correlation with protein-coding genes connect-
ed with the cytokines they are predicted for compared with those from other cytokines (Supplemental Table 19). 
Interestingly, in the IL-4/IL-13 pathway, AC005288.1 has a strong positive correlation with GRB2 and a weaker 
negative correlation with the other 2 protein-coding genes (F13A1 and COL1A2), while for lncRNAs G18244 and 
DNM3OS, it is the opposite. IL-4 and IL-13 antagonize IFN-γ and TNF via GATA3 and STAT6 (47); accordingly, 
we found AC005288.1 to be negatively correlated with GATA3 and STAT6, while G18244 and DNM3OS were 
positively correlated. There is also some overlap in the correlations between the different cytokine pathways, 
with lncRNAs predicted for IFN-α also being correlated with protein-coding genes involved in TNF and vice 
versa. To evaluate the clinical implication of our analysis, we studied whether the top-prediction results would be 
biomarkers for disease severity. Interestingly, we observed multiple instances where the expressions of lncRNAs 
in AD lesional skin are significantly correlated with SCORAD, a clinical tool used to assess extent and severity 
(48), including AC090198.1 (P = –0.48; P = 1 × 10–4) and AC005332.6 (P = –0.42; P = 1 × 10–4).

Another lncRNA of interest, LINC02541, predicted by our machine-learning approach to be involved in the 
IFN-γ pathway (mean score = 0.822), was significantly negatively correlated (r = –0.628, P = 9.5 × 10–93) with 
STAT3, a gene known to be involved in the pathogenesis of psoriasis (49), among other inflammatory skin dis-
eases. Using scRNA-Seq, Figure 3, A and B, we show that LINC02541 is specifically expressed in keratinocytes, 
and we found it to be significantly downregulated (P = 1.6 × 10–20, FC = 0.48) in keratinocytes upon stimulation 
with IFN-γ (Figure 3C), while STAT3 was significantly upregulated (P = 2.1 × 10–38, FC = 3.31). We used spatial 
transcriptomic data to further assay the expression profile of LINC02541 in skin, highlighting that its expression 
is mostly in the basal/differentiated compartments in epidermis (Figure 3, D and E). Furthermore, LINC02541 
was consistently downregulated in psoriasis (P = 2.6 × 10–20, FC = 0.54), AD (P = 4.0 × 10–10, FC = 0.54), and 
Netherton syndrome (P = 1.0 × 10–3, FC = 0.55), while STAT3 was upregulated in all 3 diseases. These results 
suggest a potential regulatory role in skin inflammation for LINC02541 through STAT3-mediated IFN-γ signal-
ing and demonstrate the utility of our approach to reveal previously unknown roles of lncRNAs.

The highest correlation we observed was between one of  our skin-expressed lncRNAs, G18244, and the 
protein-coding gene F13A1 (r = 0.978, P < 5 × 10–324) in the IL-4/IL-13 pathway. F13A1 encodes subunit A 
of  factor XIII, which plays important roles in skin pathophysiology (50). F13A1 is involved in macrophage 
regulation (51, 52), which can be stimulated by IL-4 (53, 54). To further investigate the link between G18244 
and F13A1, we applied the Triplex Domain Finder (TDF) from the Regulatory Genomics Toolbox (RGT) 
(55), which tests for DNA binding domains (DBDs) between lncRNAs and DNA promoter regions. Apply-
ing this approach to G18244, we identified a significant DBD (OR = 171.8, P = 4 × 10–2) that encompasses 
the promoter for F13A1. Significantly, when screening putative DBD for G18244 against promoters for 500 
randomly selected protein-coding genes, there were no significant DBDs. We expanded our RGT-TDF anal-
ysis to the lncRNAs predicted for each pathway (under the F-statistic thresholds), using the protein-coding 
genes from each respective cytokine pathway for the target promoters, and we found significant DBDs for 
38 lncRNAs predicted for the IL-4/IL-13 cytokine pathway, 2 for IFN-γ, and 1 for TNF, with 39 unique 
lncRNAs in total (Supplemental Table 20). Five of  the lncRNAs predicted for IL-4/IL-13 (AC022098.1, 
AL139423.1, KCNQ1OT1, LINC00861, and MEG3) had multiple significant DBDs (Figure 4).

Inspired by previous work (30), which suggests that short motif  sequences of  lncRNAs (k-mers) may 
provide clues for their function, we counted the number of  different 6-mers for each lncRNA in our 
combined catalog. Then, we performed community detection using SEEKR (30), an efficient tool that 
performs hierarchical clustering based on the Pearson correlation metric. SEEKR identified 6 distinct 
clusters of  lncRNAs (Figure 2D), one of  which (cluster 2) is enriched among lncRNAs predicted for all 
5 cytokine pathways. By contrast, cluster 3 appears to be specific to TNF and IL-4/IL-13, while cluster 4 
was more enriched among lncRNAs predicted to be involved in IL-17 and IFN-γ. This supports previous 
research claims that sequence motifs in lncRNAs can affect their function, confirms the distinctiveness of  

https://doi.org/10.1172/jci.insight.172956
https://insight.jci.org/articles/view/172956#sd
https://insight.jci.org/articles/view/172956#sd


7

R E S E A R C H  A R T I C L E

JCI Insight 2023;8(24):e172956  https://doi.org/10.1172/jci.insight.172956

lncRNAs predicted by our approach, and suggests some grouping among lncRNAs involved in different 
cytokine pathways.

Discussion
Previous work has demonstrated that lncRNAs can play important roles in inflammatory skin diseases (20); 
however, little is known regarding the specific immune functions of these genes. By combining multiple gene 
catalogs with our own skin-expressing transcripts from the largest available data set (>200 RNA-Seq lesional 
and normal skin samples), we increased the number of lncRNAs to investigate by 30%. Other sources of poten-
tially novel lncRNA annotations are available; however, many of these overlap with our data set (e.g., >99% for 
LNCipedia; ref. 56); we decided to focus primarily on established and skin-expressing lncRNAs in this study; 
we also acknowledge that newer versions of GENCODE are available since the time of our analysis. Interest-
ingly, we found that a higher proportion of skin-expressing lncRNAs was significantly differentially expressed 
for skin diseases compared with protein-coding genes, whereas, for cytokine stimulations in keratinocytes, the 
converse was true. This simultaneously highlights the importance of lncRNAs for skin diseases and the difficul-
ties in interpreting their function. lncRNAs are especially difficult to analyze because they tend to have lower 
expression levels than protein-coding genes, and their expression patterns are highly context specific. We coun-
tered these difficulties by preparing a large data set of RNA-Seq gene expression (834 samples in total) across 
4 skin diseases and 7 cytokine stimulations; we then applied advanced machine-learning techniques to predict 
lncRNA functions, using promoter binding analysis and sequence motifs (k-mers) to interpret the results.

We applied a machine-learning approach to predict lncRNAs involved in pathways of  response to 
IFN-α, IFN-γ, IL-4/IL-13, IL-17 and TNF, using protein coding genes from these pathways as training 
data, since lncRNAs’ expression has been found to correlate positively with their coding targets (57–59). 
The highest-performing classifier in our benchmarking analysis across the different cytokines was random 
forest, and we further improved its performance (from 0.75 to 0.79 AUROC) by requiring all the trees 
in the classifier to be balanced — i.e., having an equal number of  cases and controls. This helps account 
for bias in the proportion of  cases and controls, with far fewer protein-coding genes being annotated as 
involved in a cytokine pathway than not. In addition to splitting the data 70/30 for training and testing, we 
confirmed the robustness of  our approach and addressed the potential risk of  overfitting by using 10-fold 
cross-validation, repeating the classification analysis 100 times to obtain an average prediction score for 
each lncRNA in each cytokine pathway. We also observed consistently high performance for the different 
classifiers, with 8 of  10 having AUROC > 0.6 for all 5 pathways. Nevertheless, there may be measurement 
errors due to the methodology employed, and the outcome cannot be considered a ground truth.

Since RNA-Seq samples from cytokine stimulations were used in the training data, we tried exclud-
ing them to test whether they could give an unfair advantage to predictions for cytokine pathways 
(Supplemental Table 21); however, the new prediction scores were highly correlated (r > 0.8 for every 
cytokine) with those that include these samples, suggesting that inclusion of  the cytokine stimulations 
did not overly bias the results. Furthermore, we trained the balanced random forest classifier using 
200-dimension gene embeddings created from 984 data sets in GEO (60) and compared the prediction 
results with our own for the 1,166 lncRNAs available in that data set. Although the Pearson correla-
tions were significant for IFN-γ, IL-4/IL-13, and TNF (but not IFN-α or IL-17), they were much 
smaller in size (r < 0.3 for every cytokine) and smaller also than those for the protein-coding genes 

Table 2. Summary of machine-learning prediction results for each cytokine

Cytokine pathway No. of genes in 
pathway

AUROC Maximum  
F-measure

Prediction  
threshold

No. of  
protein-coding

No. of lncRNA

IFN-α 135 0.797 0.207 0.840 129 27
IFN-γ 239 0.800 0.225 0.812 385 148

IL-4/IL-13 195 0.804 0.107 0.726 1,264 683
IL-17 120 0.770 0.188 0.791 193 25
TNF 330 0.771 0.155 0.759 628 35

The number of protein-coding genes in the training set for each pathway is shown, along with the AUROC and maximum F-measure, which is used to 
calculate a prediction score threshold for the lncRNA. We then indicate the number of protein-coding and lncRNA genes that pass this threshold.
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(which were all significant), highlighting the tissue specificity of  lncRNAs and the utility of  our own 
large skin/keratinocyte RNA-Seq data set.

The lack of  previous research into lncRNAs in skin diseases can be a limitation on interpreting the 
findings of  our study. Most previous studies have focused on specific lncRNAs (15, 19), so when research-
ing the highest predicted lncRNAs for each cytokine, literature was limited to reports of  putative roles in 
cancer. These previous studies confirm that lncRNAs can have an immune role, but their involvement in 
skin biology is a potentially novel finding. Some of  the lncRNAs we identified (e.g., G18244) are new to 
our knowledge, but we can understand their mechanisms of  action through correlation with protein-coding 
genes (for example, F13A1) and provide further confirmation through promoter testing using RGT-TDF 
analysis. In addition, k-mer clustering and correlation analysis was used to help reveal patterns and provide 
insight into the role of  sequence motifs. Overall, our study provides a large body of  functional predictions 
and research findings, which can be used to guide future research into the roles of  lncRNAs in inflamma-
tory skin diseases.

Methods
Merged gene catalog. We compiled a comprehensive gene catalog, including 18,517 lncRNAs, by combining 
data from GENCODE v29 (6) with Broad’s Human Body Map (21) and the skin-expressing transcripts 
identified in our previous study (20). This increased the number of  lncRNAs by 31% compared with using 
GENCODE alone (Supplemental Figure 1), bringing it closer to the 20,110 protein-coding genes. Our gene 

Figure 3. Investigation of LINC02541. (A) UMAP plot of scRNA-Seq analysis, with color scale representing normalized gene expression in each cell. (B) Dot 
plot of scRNA-Seq analysis, with color scale representing average expression and size representing percentage of cells in which the gene is expressed. (C) 
Coverage plot comparing read counts for a keratinocyte sample stimulated with IFN-γ against control, illustrating downregulation upon cytokine stimu-
lation. (D) Spatial plot of keratinized keratinocyte predicted proportions shows the approximate location of keratinocytes within the tissue sample. (E) 
Histology image, confirming LINC02541 (indicated in yellow) is expressed mostly by the keratinocytes.
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https://insight.jci.org/articles/view/172956#sd


9

R E S E A R C H  A R T I C L E

JCI Insight 2023;8(24):e172956  https://doi.org/10.1172/jci.insight.172956

catalog also includes 14,881 pseudogenes; 7,517 short noncoding RNAs; and 1,424 other genes, which we 
group together into the “other” category.

Gene transfer format (GTF) files were merged across the 3 data sets using our custom software, GTFmerge 
(https://github.com/CutaneousBioinf/GTF; commit ID 44a323b), which is written in C++ for efficiency. 
GTFmerge only adds genes that are nonoverlapping, by checking whether any of the exons from the target 
GTF overlap with an exon from the reference GTF. First, we set GENCODE as the reference and the Human 
Body Map as the target; then, we set the merged GTF as the reference and our skin-expressing transcripts as the 
target, so as to create a new merged GTF comprising all 3 sources.

RNA-Seq data processing. RNA-Seq samples were processed, as described in their respective papers, for 
AD (61), psoriasis (20), Netherton syndrome (62), and HS (34), using STAR for alignment and HTSeq to 

Figure 4. Circos plot showing RGT-TDF predictions for IL-4/IL-13. The outer circle indicates the different lncRNA predicted by our machine-learning 
approach and the protein-coding genes annotated as being involved in the pathway. Inside are bar plots showing the –log10 P values from the differential 
expression for atopic dermatitis (red), IL-4 stimulation (blue), and IL-13 stimulation (green). The innermost part of the plot shows the links between the 
lncRNAs and the protein-coding genes for the predicted DNA binding domains (DBDs), color-coded to distinguish the different lncRNAs.

https://doi.org/10.1172/jci.insight.172956
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count the number of  reads for each gene in our merged gene catalog. In addition to the lesional/control 
samples used in differential expression analysis (Table 1), additional samples were included in machine 
learning: 6 acute AD, 27 nonlesional AD, 28 psoriasis lesional, and 27 psoriasis nonlesional from ref. 61; 
28 nonlesional psoriasis from ref. 20; and 13 nonlesional Netherton from ref. 62. Differential expression 
analysis was performed using limma (63). We compared lesional skin with control samples from healthy 
patients and included all available covariates (sex for AD; sex and age for Netherton syndrome and HS). 
Genes were considered differentially expressed if  they have |logFC| ≥ 1 and FDR ≤ 0.05. Single-cell and 
spatial data were extracted from a previous study (64) and analysis performed to reveal the cell and spatial 
specificity of  particular lncRNAs. Spatial deconvolution of  cell types was performed using conditional 
autoregressive-based deconvolution (65).

Machine learning. We performed supervised machine learning for functional prediction, using 10-fold 
cross-validation on a range of  different classifiers (rpart, naiveBayes, logreg, ksvm, ctree, gbm, plsdaCaret, 
lda, sda, and randomForest) through the MLR package in R, using default parameters for each. We per-
formed 5 binary classification tasks, 1 for each cytokine pathway (aggregated from gene sets; Supplemental 
Table 15), with genes as the instances and disease/cytokine stimulation expression profiles (samples) as the 
features. Each task was trained using the expression of  all genes on all samples, so the size of  the training set 
was the same for each task: 20,110 protein-coding genes, with 834 samples. For the balanced random forest, 
we sampled all genes involved in the pathway and an equal number not involved. Protein-coding genes anno-
tated as belonging to each cytokine in the aggregated pathways were marked as positive cases, and the other 
protein-coding genes were marked as negative controls for the purposes of  classification; hence, our approach 
can be considered a form of positive-unlabeled (PU) classification. Expression data were inverse normalized 
for use in machine learning. The resulting models were then applied to predict lncRNA for each cytokine 
pathway, using the maximum F-statistic to set thresholds on the prediction score for each cytokine.

Promoter testing and k-mer clustering. We applied the TDF from the RGT (55) using the hg19 reference 
genome and the default input parameters (promoter length: 1,000; minimum length of  triplex: 20; triplex-form-
ing promoter cut-off: 0.1; tolerated number of  consecutive errors: 2). The k-mer clustering tool SEEKR (30) 
was applied using k-mers of  length 6 and the default threshold for the adjacency matrix (0.13). We then calcu-
lated enrichments of  lncRNAs predicted for different cytokine pathways using Fisher’s exact test.

Statistics. We performed various statistical tests, including Spearman/Pearson correlation, Fisher 
enrichment, and Wilcoxon rank-sum tests. Where appropriate, Bonferroni adjustment was used to correct 
for multiple tests.

Study approval. Since our study focused on the analysis and utilization of  previously collected data, no 
prior approval was required.

Data availability. The GENCODE v29 GTF can be downloaded from the GENCODE website 
(https://www.gencodegenes.org/human/release_29.html). The additional lncRNA GTF has been depos-
ited in GEO (GSE63979), as has the AD (GSE224783), psoriasis (GSE63979), Netherton syndrome 
(GSE164285), and HS (GSE154773) expression data. Values for all data points in graphs are reported in 
the Supporting Data Values file.
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