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Introduction
Despite the development of  a substantial infrastructure for influenza strain surveillance and annual vaccine 
manufacture, seasonal influenza still causes millions of  cases of  severe illness and 290,000–650,000 deaths 
per year worldwide (1). Although vaccination is the primary means of  preventing influenza infection, over-
all influenza vaccine effectiveness is only moderate and varies highly from year to year, ranging from 10% 
to 60% (2). The National Institute of  Allergy and Infectious Diseases (NIAID) recently established a plan 
for universal influenza vaccine development, aiming to provide effective and durable protection against 
diverse influenza strains without the annual vaccination requirement (3).

To this end, most universal vaccination approaches aim to elicit broadly reactive antibodies (4, 5) and 
T cells (6) that recognize cross-reactive influenza epitopes. However, understanding why some individuals 
develop protective immunity after infection or vaccination while others do not is just as crucial. For exam-
ple, only half  of  young adults infected with influenza were protected from reinfection by the same viral 
strain approximately 1 year later (7). Many host factors such as aging, comorbidities, nutrition, microbiota, 
and genetics greatly influence the immune system and impact influenza disease severity and vaccine effi-
cacy (8–10). Aging, in particular, leads to increased susceptibility to infections due to immunosenescence 
(11), and those above 65 often have difficulty mounting protective immune responses after vaccination 
and consequently account for 70%–90% of  all influenza-related deaths (12). Beyond aging, vaccine effec-
tiveness is still surprisingly modest in low-risk age groups for well-matched vaccines (13), suggesting that 
other host factors affect the immune response. In particular, genetic variation has been shown to play an 
important role in the susceptibility of  both humans and mice to a variety of  diseases, including influenza 
(14–16). Thus, a deeper understanding of  how host factors shape immune responses is critical for develop-
ing equitable vaccines and treatments that are effective across all demographics.

Influenza poses a persistent health burden worldwide. To design equitable vaccines effective 
across all demographics, it is essential to better understand how host factors such as genetic 
background and aging affect the single-cell immune landscape of influenza infection. Cytometry 
by time-of-flight (CyTOF) represents a promising technique in this pursuit, but interpreting its 
large, high-dimensional data remains difficult. We have developed a new analytical approach, 
in silico gating annotating training elucidating (iGATE), based on probabilistic support vector 
machine classification. By rapidly and accurately “gating” tens of millions of cells in silico into 
user-defined types, iGATE enabled us to track 25 canonical immune cell types in mouse lung over 
the course of influenza infection. Applying iGATE to study effects of host genetic background, 
we show that the lower survival of C57BL/6 mice compared with BALB/c was associated with a 
more rapid accumulation of inflammatory cell types and decreased IL-10 expression. Furthermore, 
we demonstrate that the most prominent effect of aging is a defective T cell response, reducing 
survival of aged mice. Finally, iGATE reveals that the 25 canonical immune cell types exhibited 
differential influenza infection susceptibility and replication permissiveness in vivo, but neither 
property varied with host genotype or aging. The software is available at https://github.com/
UmichWenLab/iGATE.
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https://doi.org/10.1172/jci.insight.172140
https://doi.org/10.1172/jci.insight.172140
https://github.com/UmichWenLab/iGATE
https://github.com/UmichWenLab/iGATE


2

R E S O U R C E  A N D  T E C H N I C A L  A D V A N C E

JCI Insight 2024;9(12):e172140  https://doi.org/10.1172/jci.insight.172140

However, due to the incredible complexity of  the immune landscape, it has been challenging to com-
prehensively characterize the immune response following infection with influenza or other pathogens, let 
alone the effect of  host factors. Technological limitations have restricted studies to either bulk measure-
ments (e.g., serum antibody levels) or highly focused investigations into specific immune components (e.g., 
individual cellular subsets). The recent advent of  omics approaches now allows high-dimensional measure-
ments to be performed on an unprecedented number of  biological variables (9). These powerful systems-im-
munology approaches, combined with computational and machine-learning tools to extract meaning from 
the resulting high-dimensional data sets, have revealed new insights into methods of  stimulating and shap-
ing the immune response (17, 18), ultimately enabling a more predictive approach to vaccine design.

In this work, we apply cytometry by time-of-flight (CyTOF) to comprehensively investigate how host 
genetic background (C57BL/6 vs. BALB/c) and aging (2 vs. 18 months) affect the immune response to 
influenza infection in the mouse lung. CyTOF is a promising single-cell immune profiling technique that 
allows for simultaneous detection of  approximately 40 markers on single cells (19). However, due to data 
set complexity and computational limitations, the field has largely avoided conventional Boolean gating, 
turning instead toward unsupervised approaches (20). While excellent for exploratory, big-picture analyses, 
it is often challenging to connect the results of  these unsupervised approaches back to canonical cell types, 
which is necessary to fully interpret immunological mechanisms (20–22). To improve the interpretability 
of  large, high-dimensional CyTOF data sets, we developed in silico gating annotating training elucidating 
(iGATE), a new analytical approach that enabled rapid, automated classification of  29 million cells into 
25 canonical immune cell types with high accuracy (98.1% on average). By tracking not only the activation 
markers and cytokines, but also intracellular and surface expression of  the influenza viral protein hemag-
glutinin (HA) across all cell types, this study presents the most comprehensive cytometry-based single-cell 
analysis of  the influenza immune landscape in mice to date. Analysis of  the resulting data reveals marked 
discrepancies in immune cell infiltration, activation, cytokine environment, and viral activity due to host 
genetic background and aging. Taken together, our results show that CyTOF, combined with iGATE, per-
mits a systems-level exploration of  canonical immune cell types, providing cellular and molecular insights 
into the role of  host factors during influenza infection.

Results
iGATE enables automated and accurate classification of  large high-dimensional CyTOF data into user-defined canon-
ical immune cell types. To better understand how host genetic background and aging affect the influenza 
immune response, we compared influenza infection in young (2 month) C57BL/6 mice (C57Y) to both 
young (2 month) BALB/c (BalbY) and aged (18 month) C57BL/6 (C57A) mice (Figure 1A). Viral chal-
lenge experiments showed that infection with 2.0 × 104 PFU of  influenza H1N1 A/PR/8/34 (PR8) virus 
resulted in 0% survival for C57A, 14% for C57Y, and 29% for BalbY (Supplemental Figure 1; supplemental 
material available online with this article; https://doi.org/10.1172/jci.insight.172140DS1). Using different 
influenza virus strains and a range of  doses, many prior studies also showed increased mortality of  C57A 
(23–26) and better survival of  BalbY (27–31) compared with C57Y. To investigate the mechanisms of  this 
differential protection, lungs from PBS-treated mice (n = 10) and PR8-infected mice (1.2 × 104 PFU) at 3 
days post infection (3DPI) or 6DPI (n = 10 for each day) were perfused, harvested, processed (see Meth-
ods), and stained with a 40-marker panel that was designed and validated to identify 25 canonical immune 
cell types as listed in Table 1 from both myeloid and lymphoid lineages along with their expression of  
various intracellular and surface markers for activation, cytokines, and influenza-specific proteins (Supple-
mental Table 1). After gating to remove debris, dead cells, and doublets (Supplemental Figure 2A), a total 
of  29 million CD45+ live singlet cells remained across all mouse samples for single-cell analysis.

Since unsupervised data analysis approaches (e.g., Phenograph, SPADE, and CITRUS) are not based 
on predetermined, well-defined phenotypes, they can instead identify intermediate populations that are 
difficult to interpret or miss small but relevant subpopulations (20–22). Therefore, supervised analyses can 
be advantageous for better extracting biological meaning in well-defined systems by tracking changes in 
canonical cell populations. Given that our panel was designed to identify cellular subsets known to play 
crucial roles in the immune response to influenza infection, we pursued a supervised approach to data 
analysis. The most traditional form of  supervised analysis, manual Boolean gating of  cells on biaxial plots 
into user-defined subsets, is highly time consuming, subjective, and not scalable to very large data sets such 
as those generated by CyTOF. To address these shortcomings, we developed iGATE to achieve automated 
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cell labeling based on a support vector machine (SVM) classifier (32). SVM learns hyperplanes (i.e., linear 
decision boundaries) that optimally divide the data by user-defined classes. Following training and valida-
tion, the classifier can be deployed on large data sets in a computationally efficient manner, enabling rapid 
classification into cellular subsets. The complex nature of  the single-cell immune landscape inevitably leads 

Figure 1. Automated classification of 29-million-cell data set using iGATE. (A) Young C57BL/6 (C57Y), aged C57BL/6 (C57A), and young BALB/c (BalbY) mice 
were intranasally infected with H1N1 A/PR/8/34 virus or treated with PBS. Perfused lungs were harvested 3 or 6 days post infection (DPI) (n = 10 per group), 
stained with a 40-marker panel, and analyzed by CyTOF. After pregating to obtain live singlets, CD45+ cells were classified into 25 immune cell types using a 
probabilistic SVM classifier. See Table 1 for cell type definitions and Supplemental Material for a complete list of abbreviations. (B) Analysis pipeline for the 
iGATE probabilistic SVM classifier. (C) Confusion matrix comparing probabilistic SVM classification to manual gating using a 250,000 cell validation data set 
sampled from all groups. The accuracies shown on the right were calculated as the proportion of correctly classified cells out of the total cells for each cell 
type (per-class accuracy) or for all cells (overall accuracy). (D) Comparison of manual gating and SVM classifier gating reveals high accuracy of SVM classifier. 
(E) Principal component analysis (PCA) of the 25 cell type frequencies differentiates samples based on infection status, age, and genotype.

https://doi.org/10.1172/jci.insight.172140
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to the presence of  numerous noncanonical and boundary cell populations, a situation that is exacerbated in 
mass cytometry due to the large number of  detected markers. To accommodate this complexity, we modi-
fied the conventional SVM classifier by incorporating a rejection option (33) following classification based 
on posterior probabilities (see Supplemental Methods). In this scheme, the posterior probability of  each cell 
belonging to its predicted class is computed, and cells not meeting a predefined threshold are rejected and 
placed into an “other” class. Such an approach allows enhanced classification control by fine-tuning the 
probability threshold to balance accuracy and the rate of  rejected cells (Supplemental Figure 3).

To establish a data set for classifier training and validation, 350,000 cells were first randomly sam-
pled from the entire data set of  29 million cells such that an equal number of  cells were taken from each 
treatment group. This small data set was then manually gated to define the 25 immune cell types (Sup-
plemental Figure 2B), and randomly sampled to generate the training (100,000 cells) and validation 
(the remaining 250,000 cells) data sets (Figure 1B). The trained classifier achieved an average validation 
accuracy of  98.1%, and the confusion matrix reveals that most per-class accuracies are above 95%, with 
most large off-diagonal terms corresponding to misclassifications between similar cellular subsets such 
as Ly6C+ monocytes (Ly6C+ Mos), Ly6C– Mos, and exudative macrophages (eMs) (Figure 1C). Note 
that no cells were rejected based on posterior probabilities in these validation results. Comparison of  
cell-type frequencies from manual gating and probabilistic SVM classification revealed that the classifier 
achieves a high degree of  accuracy across a frequency range encompassing more than 2 orders of  mag-
nitude (Figure 1D), validating its use for identifying both abundant and rare cell populations. Deploy-
ing the trained classifier on the entire 29 million cells with a posterior probability threshold of  0.995 
yielded a cell rejection rate of  approximately 6% (Supplemental Figure 3), which is consistent with the 

Table 1. Definitions of 25 canonical immune cell types

Cell type Phenotypic markers
Eosinophil SiglecF+CD24+CD11b+

Neutrophil Ly6G+CD11b+CD24+Ly6C+/–

Ly6C+ Mo Ly6C+CD11b+CD64+/–IA-IE–

Ly6C– Mo Ly6C–CD11b+CD64+/–IA-IE–

Interstitial Mɸ (iM) Ly6C–CD11b+CD24–IA-IE+

Exudative Mɸ (eM) Ly6C+CD11b+CD24–IA-IE+

Alveolar Mɸ (AM) CD11c+CD64+CD206+SiglecF+

Innate lymphoid cell (ILC) CD127+Lin–

CD11b+ DC CD11b+CD11c+CD24+IA-IE+

CD103+ DC CD103+CD11c+CD24+IA-IE+

NK CD3–CD49b+

NKT CD3+CD49b+

CD4+ CD4+

CD8+ CD8+

DN CD4–CD8–

CD8+ T cell CD3+CD8+

Naive CD62L+CD44–

CM CD62L+CD44+

EM CD62L–CD44+

CD4+ T cell CD3+CD4+

Naive CD62L+CD44–

CM CD62L+CD44+

EM CD62L–CD44+

Tγδ CD3+Tγδ+

B cell CD19+

IgM+ IgD+ IgM+IgD+

IgM+ IgD– IgM+IgD–

IgM– IgD+ IgM–IgD+

IgM– IgD– IgM–IgD–

Lin–: CD4–CD8–CD3–Tγδ–Ly6G–SiglecF–IgM–IgD–IA-IE–.

https://doi.org/10.1172/jci.insight.172140
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5%–10% rejection rate from manual gating. Rejected cells were found to exist predominantly on gate 
boundaries (Supplemental Figure 4), suggesting that the probabilistic approach can effectively identify 
transitional or noncanonical cell populations. When the same data set was analyzed using the unsuper-
vised method Phenograph (performed in Cytobank, https://cytobank.org), it failed to identify 10 out of  
the 25 canonical cell types identified by iGATE and instead identified many intermediate populations 
that were difficult to interpret (Supplemental Figure 5, A–C). Moreover, comparing cell types that were 
identified by both Phenograph and iGATE, the latter yielded more homogeneous populations, with far 
fewer incorrectly classified cells (Supplemental Figure 5, D and E). Therefore, the capability of  iGATE 
to rapidly and accurately classify large data sets into user-defined cell types can improve the interpret-
ability of  complex single-cell immune landscapes.

To gain a preliminary, systems-level understanding of  the data, the frequencies of  the 25 cell types 
identified by the probabilistic SVM classifier for all samples were subjected to principal component anal-
ysis (PCA). As shown in Figure 1E, principal component 1 (PC1), which explains nearly 50% of  the data 
variation, correlates with infection status, while PC2, accounting for an additional 19% of  data variation, 
broadly correlates with age. Furthermore, variance is seen in the clustering of  young mouse samples due to 
genotype (Supplemental Figure 6). These results demonstrate that the combination of  the chosen antibody 
panel, manual gating scheme, and probabilistic SVM classifier effectively identifies cell populations rele-
vant to genotype, aging, and infection status in the influenza immune landscape, while the tight intragroup 
clustering of  samples attests to the reproducibility of  our experimental methods.

Deep profiling of  immune subsets during influenza infection in C57Y mouse lung. We first comprehensively 
characterized the immune response in the lung of  C57Y mice as a baseline for subsequent comparison to 
that of  BalbY and C57A mice. A systems-level map of  the immune landscape was generated via viSNE (34) 
(Figure 2A) based on preselected phenotypic markers (Supplemental Figure 7). When the viSNE map is 
colored by the probabilistic SVM cellular classifications, the cell types separate into distinct areas, demon-
strating that these 2 approaches are in concordance with each other. To gain a preliminary understanding 
of  cellular composition changes over the course of  influenza infection, the viSNE map was overlaid with 
cell density contour plots representing PBS-treated, 3DPI, or 6DPI C57Y samples (Figure 2B). While tis-
sue-resident alveolar macrophage (AM) frequencies (dark green) were substantially diminished over the 
course of  influenza infection, neutrophils (purple) and non–tissue-resident monocytes/macrophages (dark 
blue) were substantially increased, indicating rapid lung inflammation.

Next, cell-type frequencies were combined with lung cell counts to obtain absolute changes in lung cel-
lular makeup over the indicated time points (Figure 2C). Significant immune cell infiltration was observed, 
with CD45+ cells doubling by 3DPI (P < 0.05) and nearly tripling by 6DPI (P < 0.0001) compared with 
PBS-treated mice. Inflammatory monocytes, macrophages, and neutrophils primarily drove the increase in 
cellularity, whereas lymphoid lineage cells contributed relatively little to the total cellular accumulation. 
Furthermore, we observed that the kinetics of  cellular accumulation differ by cell type. For example, the neu-
trophil count peaked at 3DPI, while monocytes and macrophages continued to accumulate through 6DPI.

Following this high-level analysis, the immune landscape was divided into the 25 canonical cellular 
subsets (definitions in Table 1) to gain a high-resolution snapshot of  the changing immune landscape 
during influenza infection. The absolute cell subset counts per mouse lung spanned nearly 4 orders of  
magnitude, and the increased resolution revealed several additional cellular subsets undergoing dynamic 
changes in response to influenza infection such as CD4+ and CD8+ effector memory (EM) T cells, eosin-
ophils, and dendritic cell (DC) subsets (Figure 2D). To better observe changes in cellular accumulation or 
depletion, the fold changes in absolute cell counts compared to PBS-treated mice (hereafter referred to as 
the accumulation score) were computed for all subsets (Figure 2E). At 3DPI, inflammatory phagocytic cell 
types showed high accumulation scores (Figure 2E, light blue), with eMs increasing 38-fold, Ly6C+ Mos 
increasing 15-fold, and neutrophils increasing 9-fold. More modest increases were observed in other innate 
immune cell subsets, including interstitial macrophages (iMs), Ly6C– Mos, and natural killer (NK) cells. In 
contrast, many cellular subsets involved in the adaptive immune response were diminished in the lung, such 
as T cell subsets (except EM populations), DCs, and IgD+ B cells.

At 6DPI, accumulation of  inflammatory cell types waned, whereas strong increases in Ly6C– Mos 
(5-fold), iMs (6-fold), and CD8+ EM T cells (7-fold) were observed (Figure 2E, dark blue). Ly6C– Mos 
and iMs have been suggested to play a role in tissue repair, as opposed to their inflammatory Ly6C+ Mo 
and eM counterparts (35), and therefore indicate a transition to an inflammation resolution response. The 
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accumulation of  CD8+ EM T cells indicates an influenza-specific adaptive immune response. While the 
aforementioned changes in cellular subsets are largely consistent with the literature (36), we unexpectedly 
observed large changes in Tγδ cells and eosinophils (Figure 2E), cell types not traditionally associated 
with clearance of  viral infections. In particular, eosinophils displayed complex behavior, decreasing nearly 
10-fold at 3DPI before rebounding back to basal levels by 6DPI (Figure 2E).

In addition to the granular changes in cellular composition, cellular populations undergo dynamic alter-
ations in marker expression to interact and respond to their environment. Thus, we next evaluated changes 
in activation (CD69 and CD25), cytokine (granzyme B [GzmB], TNF-α, IFN-γ, IL-10, IL-4), and IFN-in-
ducible (CD317, i.e., tetherin) markers in bulk CD45+ cells (Figure 3A). Positive gates were set according 
to functional marker expression in PBS-treated samples (Figure 3A, top row). As expected, the frequency 
of  CD69+, CD25+, GzmB+, and CD317+ cells significantly increased at 3DPI and 6DPI compared with 
PBS-treated mice, demonstrating cellular activation and the initiation of  effector functions in response 
to viral infection. Notably, we did not stimulate these cells ex vivo (see Methods); thus, these results pro-
vide a real-time snapshot of  in vivo cytokine production in single cells, which has rarely been investigat-
ed. PBS-treated C57Y mice predominantly expressed IL-4, indicating the basal level lung environment is 
skewed toward a Th2-type bias in C57Y mice. Upon infection, IL-4+ cells decreased precipitously, giving 
rise to increased levels of  the Th1 inflammatory cytokines TNF-α and IFN-γ. IL-10, an antiinflammatory 
cytokine, was largely absent until 6DPI. Given that IL-10 is known to play a critical role in protecting the 
host from tissue damage (37), its upregulation at 6DPI further indicates the induction of  the inflammation 
resolution response. Notably, the frequency of  cytokine-positive cells measured by CyTOF largely mirrors 
cytokine levels in bronchoalveolar lavage (BAL) measured by ELISA (Supplemental Figure 8 and ref. 24), 

Figure 2. Dynamic changes in immune cell makeup during influenza virus infection in C57Y mouse lung. (A) Immune landscape of influenza-infected 
lung in C57Y mice revealed by viSNE analysis. (B) Density plots representing cellular distribution of PBS-treated, 3DPI, and 6DPI C57Y mice overlaid on 
viSNE plot reveal substantial changes in immune cell composition over the course of infection. (C) Absolute cell counts of broad cell classifications indi-
cate substantial immune infiltration. (D) Mean absolute cell counts of 25 cellular subsets at indicated conditions. Cell types are ordered based on PBS 
samples. (E) Mean fold change in absolute cell counts for each cell type at 3DPI or 6DPI compared to PBS (accumulation score). Cell types are ordered 
based on accumulation score at 6DPI. All data represent n = 10 per group. All error bars represent ±SEM.

https://doi.org/10.1172/jci.insight.172140
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Figure 3. Dynamic phenotypic and functional changes in 25 canonical immune cell types during influenza virus infection in C57Y mouse lung. (A) Biaxial plots 
of CD45 expression versus functional marker expression for CD45+ live singlets. Bar charts summarize mean marker frequency out of total CD45+ cells. (B) Contri-
bution of each cell type to total cytokine positive cells. Contributions of less than 4% are grouped into “other.” (C) Mean fraction of functional marker expression 
on each cell type. (D) Coproduction of cytokines by CD4+ and CD8+ EM T cells at 6DPI. All data represent n = 10 per group. All error bars represent ±SEM. Statistical 
comparisons were computed by 1-way ANOVA followed by post hoc Tukey’s pairwise comparisons (A) or 2-sided Student’s t test with FDR = 10% (D). *q < 0.10; **q 
< 0.01; ***q < 0.001; ****q < 0.0001.

https://doi.org/10.1172/jci.insight.172140


8

R E S O U R C E  A N D  T E C H N I C A L  A D V A N C E

JCI Insight 2024;9(12):e172140  https://doi.org/10.1172/jci.insight.172140

confirming that TNF-α, IFN-γ, and IL-10 remain near basal levels until 6DPI. Thus, cytokine detection via 
CyTOF intracellular staining accurately reveals the cytokine milieu of  the infected lung, with the added 
ability detailed below to identify the cellular sources of  cytokine production.

As shown in Figure 3B, monocytes, macrophages, and neutrophils made up the majority of  TNF-α+, 
IFN-γ+, and IL-10+ cells at 3DPI. In contrast, CD8+ EM and CD4+ EM T cells took over as the major 
producers of  TNF-α (47%), IFN-γ (90%), and IL-10 (94%) at 6DPI, demonstrating a transition in cytokine 
production from the innate to the adaptive arm of  the immune response. To identify changes in functional 
marker expression in rarer cell types, we next assessed the fraction of  each of  the 25 canonical immune 
cell types expressing each functional marker (Figure 3C). Activation markers CD69 and CD25 and type I 
IFN–inducible marker CD317 were promiscuously expressed, undergoing upregulation in virtually all cell 
types following infection. Increases in GzmB expression were also detected in nearly all immune subsets 
by 6DPI, with the highest fractions (>10%) occurring in NKT, NK, and T cell subsets. Note that GzmB 
expression, while traditionally believed to be exclusive to NK and cytotoxic T cells, has recently been dis-
covered in many immune and nonimmune subsets, with newly identified roles in cellular signaling, che-
motaxis, and cytokine release, among others (38). More studies are needed to corroborate the findings that 
nearly all immune subsets express GzmB and further investigate the roles of  GzmB during viral infection. 
In contrast with GzmB, only a few cell types, including CD4+ and CD8+ EM T cells and CD4+ and CD8+ 
NKT cells, had fractions greater than 0.1% expressing TNF-α, IFN-γ, or IL-10, suggesting a much more 
restricted expression profile. Although representing a relatively small frequency of  all cells (Figure 3A), a 
large fraction (>80%) of  eosinophils (Figure 3, B and C) produced IL-4 throughout the course of  infection 
despite the clear Th1-type cytokine environment. While the significance of  this is unknown, the observed 
IL-4 production may help regulate the strong Th1-type response in conjunction with IL-10 (39).

Given the considerable TNF-α, IFN-γ, and IL-10 cytokine production by both CD4+ and CD8+ EM T 
cells at 6DPI (Figure 3, B and C), we further investigated the combinatorial cytokine production in these 
2 cellular subsets. While CD8+ EM T cells demonstrated greater overall cytokine activity, both subsets 
showed all possible combinations of  TNF-α, IFN-γ, and IL-10 expression (Figure 3D). Considering the 
significant activation (Figure 3C) and accumulation (Figure 2, D and E) of  CD4+ and CD8+ EM T cells, 
it is notable that only a small fraction of  both subsets expressed any of  these 3 cytokines during infection 
(Figure 3D), demonstrating the exceptionally tight regulation of  these potent immune signaling proteins. 
Furthermore, IL-10, considered to be a master negative regulator of  inflammation (37), was coexpressed 
with proinflammatory cytokines IFN-γ and to a lesser extent TNF-α (Figure 3D), indicating an additional 
level of  regulation at the single-cell level (40).

Overall, the aforementioned changes in cellular makeup are indicative of  a strong Th1 inflammatory 
immune response (neutrophils, eMs, and Ly6C+ Mos) through 3DPI that wanes by 6DPI, giving rise to 
cells involved in the adaptive immune response (CD4+ and CD8+ EM T cells) and tissue repair (Ly6C– Mos 
and iMs). Functional marker expression further supports this narrative, with innate immune cells produc-
ing nearly all cytokines at 3DPI, whereas adaptive CD4+ and CD8+ T cells took over the TNF-α, IFN-γ, and 
IL-10 production by 6DPI (Figure 3B). Such results are well in agreement with progression of  influenza 
disease (41), validating our CyTOF approach for comprehensive analysis of  the immune landscape.

Influenza protein expression profile reveals differential susceptibility of  immune subsets to viral infection and permis-
siveness to viral replication. While epithelial cells are considered the primary source of  influenza infection and 
replication, experiments utilizing GFP reporter viruses (42) and single-cell RNA sequencing (43) showed 
that immune cells can also become infected in vivo. However, identification of  susceptible cell types in these 
experiments was limited to crude immune subsets (e.g., bulk B cell, T cell, NK, and granulocyte populations). 
Aside from these studies, the relative susceptibility of  immune cell types to influenza virus infection or their 
permissiveness to viral replication in vivo remains largely unexplored. It is unknown whether these 2 proper-
ties are affected by host genetic background or aging.

To enable the identification and tracking of  infected immune cells, we included 2 channels in the 
CyTOF antibody panel against the influenza HA protein: one for intracellular staining (iHA) and the other 
for cell surface staining (sHA). We hypothesized that iHA signal could result from either viral infection or 
phagocytosis of  infected cells, whereas sHA signal could only result from productive viral replication — at 
least up to the point of  viral protein surface expression (Figure 4A).

To test this hypothesis, we first performed in vitro PR8 infection using MDCK (productive PR8 replica-
tion; ref. 44) and RAW264.7 (abortive PR8 replication; ref. 45) cells at a low multiplicity of  infection (MOI) 
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of  0.05. At 2 hours post infection (2hpi), enough time for viral entry but not for replication (44), iHA was 
detected in approximately 2.3% of  MDCK cells and no sHA signal was observed in any MDCK cells (Fig-
ure 4B). As a control, PBS-treated MDCK cells showed no iHA or sHA signal. Therefore, iHA signal can 
result from infection. At 6hpi, which is enough time for viral replication to occur (44), the iHA level accord-
ingly increased by 10- to 100-fold in some infected MDCK cells as a result of  newly synthesized HA protein 
and approximately 0.10% of  MDCK cells with the highest iHA levels became sHA+, indicative of  successful 
trafficking of  HA protein to the plasma membrane for assembly and budding of  new virions. Compared to 
MDCK, RAW264.7 cells showed a similar level of  PR8 endocytosis at 2hpi (~3.6% iHA+sHA–), but no HA 
protein synthesis and thus no sHA expression at 6hpi (Figure 4C). This iHA/sHA profile further suggests 
that the abortive replication of  PR8 in RAW264.7 cells is due to an obstruction downstream of  virus endo-
cytosis and upstream of  protein synthesis, consistent with the findings of  a previous study using immuno-
fluorescence microscopy (45). Taken together, these data demonstrate that the sHA signal only results from 
viral replication. To test whether iHA signal could also result from phagocytosis of  infected cells, we next 
performed in vitro phagocytosis of  PR8-infected (MOI = 0.05) MDCK cells using RAW264.7 cells (see 
Methods and ref. 46). When mixed with PR8-infected MDCK cells, iHA was detected in approximately 
2.8% of  RAW264.7 cells, but no sHA signal was observed, whereas lower iHA and no sHA signal was 
detected when PBS-treated or no MDCK cells were added (Figure 4D). Therefore, iHA signal can also result 
from phagocytosis of  infected cells. Together with the observation that very few cells had the unexpected 
combination of  iHA–sHA+ (Q1) in all conditions tested above (Figure 4, B–D) and in the lung of  the PR8-in-
fected C57Y mice (Figure 4E), these data validate our hypothesis and support the use of  iHA/sHA staining 
to enable, for the first time to our knowledge, the dynamic examination of  both influenza infection and repli-
cation in a wide range of  immune cells in vivo. In the data analysis below, we interpret that iHA+sHA+ (Q2) 
cells actively support viral replication, while iHA+sHA– (Q3) cells are either infected or have phagocytosed 
infected cells, but have not succumbed to viral replication up to the point of  sHA expression (Figure 4A).

Over the course of  infection, iHA+ immune cell counts indicative of  viral infection or phagocytosis 
peaked (~0.3 million per lung) at 3DPI and decreased by 26% toward 6DPI, with monocytes, macro-
phages, and neutrophils comprising the vast majority (>90%) of  iHA+ immune cells (Figure 4F). We next 
ranked immune cell types by their iHA+ fraction (hereafter referred to as %iHA+) at 3DPI. The %iHA+ of  
the phagocytic cell types (mostly >7%, Figure 5A) were overall much higher than nonphagocytic cell types 
(mostly <4%, Figure 5B). For phagocytes, Ly6C+ Mos and eMs showed significantly higher %iHA+ (q < 
0.10) than all other phagocytic cell types (Figure 5A); however, it is not clear whether the observed high 
%iHA+ in these cells is due to their high levels of  phagocytosis or high infection susceptibility. In contrast 
with phagocytes, the iHA+ signal in nonphagocytic cells primarily results from infection, thus their %iHA+ 
is a quantitative indicator of  their susceptibility to influenza infection. With this in mind, the data in Figure 
5B suggest that the 15 nonphagocytic immune cell types have differential susceptibility to viral infection, 
with IgM–IgD– B cells and central memory (CM) T cells being the most susceptible (highest %iHA+) and 
naive T cells being the least susceptible (lowest %iHA+). Similar findings were also observed at 6DPI (Sup-
plemental Figure 9, A and B). The relative ranking of  %iHA+ of  nonphagocytic cell types at 3DPI is highly 
correlated with that at 6DPI (Supplemental Figure 9C; Spearman’s δ of  0.93, P < 0.0001), suggesting 
their differential susceptibility to viral infection is cell-type specific and independent of  infection time. The 
mechanism underlying this observed phenomenon is unknown, but is likely related to varying degrees of  
cellular exposure to influenza virus in the lung.

We next investigated the sHA expression profile to understand which immune cell types support viral 
replication. Surprisingly, we detected iHA+sHA+ cells for every immune cell type, demonstrating that all 
25 cell types have the ability to support viral replication — at least up to sHA expression (Figure 5C and 
Supplemental Figure 9D). Furthermore, the %iHA+sHA+ varies significantly among different immune cell 
types, indicating that certain cell types are more permissive to viral replication than others. Noticeably, 
phagocytic cell types showed overall higher permissiveness to viral replication than nonphagocytic cell 
types (purple vs. orange bars in Figure 5C), which may be a result of  their increased interaction with infect-
ed cells due to their phagocytic function. The relative ranking of  %iHA+sHA+ remained largely the same at 
6DPI (Supplemental Figure 9E; Spearman’s δ of  0.77, P < 0.0001), indicating the differential permissive-
ness to viral replication is also cell-type specific and independent of  infection time.

Finally, we investigated whether functional marker expression varies depending on whether cells are (a) 
supporting viral replication (iHA+sHA+), (b) infected or have phagocytosed infected cells (iHA+sHA–), or 
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(c) uninfected (iHA–sHA–). Most noticeably, the fraction of  each immune cell type expressing CD317 and 
CD69 was substantially increased (q < 0.0001) upon infection or phagocytosis (iHA+sHA–) compared with 
uninfected cells (iHA–sHA–) (Figure 5D). However, once the immune cell types succumb to viral replica-
tion (iHA+sHA+), %CD317+ decreases for the vast majority of  the 25 immune cell types (q < 0.10) (Figure 
5D). These data suggest that cells are more susceptible to viral replication when the expression of  these 
markers is low. Supporting this, CD317 (i.e., tetherin) is an IFN-inducible protein known to play a critical 
role in preventing the release of  enveloped viruses from the cell surface (47).

Taken together, these results demonstrate that analyzing the iHA and sHA expression profile can 
uncover knowledge on viral infection and replication in different immune cell types. Our data suggest that 
immune cell types possess varying in vivo susceptibility to viral infection (Figure 5B) and permissiveness 
to viral replication (Figure 5C). Furthermore, we identified changes in functional marker signatures that 
depended on the viral status in immune cells (Figure 5D). Compared with previous studies on profiling 
the dynamic changes in cell populations and their functional marker expression, the incorporation of  viral 
proteins in CyTOF analysis in this study provides insight into in vivo virus-specific behavior.

Effect of  host genotype on immune cellular makeup and cytokine environment in the lung. We next applied 
iGATE to study the effects of  host genotype on the immune response to influenza infection in the mouse 
lung. Our challenge data (Supplemental Figure 1) and prior studies have demonstrated that BALB/c mice 

Figure 4. Differential iHA and sHA expression profiles in cells with varying abilities for phagocytosis, susceptibility to influenza infection, and permissive-
ness to influenza replication. (A) Intracellular HA (iHA) signal results from either viral infection or phagocytosis of infected cells, whereas surface HA (sHA) 
signal can only result from productive viral replication — at least up to the point of viral protein surface expression. In vitro influenza A/PR/8/34 (PR8) infection 
of (B) MDCK and (C) RAW264.7 cells at an MOI of 0.05. PBS-treated cells were included as controls. (D) In vitro phagocytosis of PBS-treated MDCK cells (middle 
panel) and PR8-infected MDCK cells (right panel) by RAW264.7 cells. PBS-treated RAW264.7 cells were included as another control. (E) Representative biaxial 
plots of sHA and iHA staining of C57Y CD45+ cells. iHA+sHA+ (Q2) cells actively support viral replication, while iHA+sHA– (Q3) cells are either infected or have 
phagocytosed infected cells but have not succumbed to viral replication up to the point of sHA expression. (F) Mean iHA+ cell counts per lung by cell type (n = 10).
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are more resistant to H1N1 influenza infection than C57BL/6 mice (27–29). Thus, these 2 genotypes rep-
resent an ideal model to explore influenza resistance due to host genetic background. To this end, we first 
compared the basal level difference in cell type frequencies between the resting state of  BalbY and C57Y 
mice treated with PBS (Figure 6A). Most noticeably, BalbY mice had significantly higher frequency of  
CD4+ T cell subsets than C57Y mice. While no direct comparison of  C57BL/6 and BALB/c cellular sub-
sets in the lung exists in the literature to our knowledge, the increased level of  CD4+ T cells in BALB/c 
mice has been corroborated in PBMCs and splenocytes (48).

Upon influenza virus infection, the 25 immune cell types exhibited dynamic, differential accumula-
tion and depletion in the lungs of  the 2 genotypes at 3DPI (Figure 6B) and 6DPI (Figure 6C). Compared 
with C57Y, BalbY were less responsive during early stages of  influenza infection, as indicated by signifi-
cantly lower-magnitude changes in cell counts of  both accumulating and depleting cell types in the lung 
at 3DPI (Figure 6B). By 6DPI, the accumulation of  infiltrating immune cell types, namely eMs, Ly6C+ 
Mos, neutrophils, and iMs in C57Y and BalbY reached similar levels (Figure 6C). These results suggest a 
less aggressive inflammatory response in BalbY. Despite the reduced accumulation of  inflammatory cell 
types at 3DPI (Figure 6B), BalbY had significantly more immune cells producing inflammatory IFN-γ and 
cytotoxic GzmB at 3DPI than C57Y (Figure 7, A and B). This strong early IFN-γ response in BalbY likely 

Figure 5. Expression profiling of iHA and sHA in 25 canonical immune cell types. Fraction of intracellular HA–positive (%iHA+) cells by cell type for C57Y 
(A) phagocytes and (B) nonphagocytes at 3DPI. (C) %iHA+sHA+ by cell type for phagocytes (purple) and nonphagocytes (orange) at 3DPI. (D) Mean percent-
age of cell subsets expressing functional marker for iHA+sHA+ cells, iHA+sHA– cells, and iHA–sHA– cells at 3DPI. Each dot represents data for 1 cell type, and 
lines connect dots of the same cell type. Data represent mean ±SEM, n = 10. Statistical comparisons were computed by paired 1-way ANOVA with post hoc 
Tukey’s pairwise comparisons. *q < 0.10; **q < 0.01; ***q < 0.001; ****q < 0.0001.
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contributed to a significantly (q < 0.001) greater frequency of  cells upregulating CD317 (Figure 7B) at 
6DPI. Interestingly, BalbY also mounted a much stronger antiinflammatory IL-10 response at 6DPI than 
C57Y to more rapidly contain the IFN-γ response (Figure 7, A and B).

To determine cell-type-specific contributions to these bulk differences in functional marker signatures, 
we compared marker-positive fractions for each immune cell type (Figure 7C). The greater IFN-γ produc-
tion in BalbY at 3DPI was attributed primarily (~92%) to neutrophils (Supplemental Figure 10). Neutro-
phil IFN-γ production has received little attention, but may be beneficial given the broad-spectrum antiviral 
properties of  IFN-γ (49–52). In contrast, the upregulation of  CD317 was observed in the majority of  the 
25 immune cell types (Figure 7C), indicating enhanced viral sensing and upregulation of  IFN-inducible 
proteins that may be important for influenza resistance. The increased IL-10 production in BalbY at 6DPI 
was also observed in several immune cell types (Figure 7C), with CD4+ and CD8+ EM T cells representing 
the major (~80%) cellular sources of  IL-10 (Supplemental Figure 10). Analysis of  IL-10, IFN-γ, and TNF-α 
combinatorial production by CD4+ and CD8+ EM T cells revealed significantly more IL-10 single-positive 
cells in BalbY compared with C57Y at 6DPI (q < 0.01, Figure 7D), demonstrating a more regulatory envi-
ronment in the lung of  BalbY mice.

Effect of  host genotype on immune cell susceptibility to influenza infection and permissiveness to influenza 
replication. Compared with C57Y, BalbY demonstrated both a significantly lower number (q < 0.001, 
Figure 8A) and frequency (q < 0.0001, Supplemental Figure 11A) of  iHA+ immune cells at 3DPI 
before reaching similar levels by 6DPI. These results suggest an overall reduced viral activity (infection 
and phagocytosis) in BalbY compared with C57Y at the early stage of  viral infection, corroborated by 
the stronger antiviral cytokine (IFN-γ and GzmB) environment observed at 3DPI in the BalbY lung 
(Figure 7, A and B).

Interestingly, the relative ranking of  %iHA+ values for the 25 immune cell types at 3DPI were highly 
correlated between BalbY and C57Y for both phagocytic (Spearman’s δ of  0.92, P = 0.0003) and non-
phagocytic cell types (Spearman’s δ of  0.91, P < 0.0001) (Figure 8, B and C). Similar results were obtained 
at 6DPI (Supplemental Figure 11, B and C). These results suggest that host genotype does not substantially 
alter the relative phagocytic ability or infection susceptibility of  the 25 immune cell types.

Next, we investigated the effect of  host genetic background on viral replication in immune cell types. 
Compared with C57Y, BalbY demonstrated a significantly lower number and frequency of  iHA+sHA+ 
immune cells over the course of  infection (Figure 8D and Supplemental Figure 11D). This result indicates 
an overall reduced viral replication in BalbY, which is an expected outcome of  the reduced viral activity 
as described in Figure 8A. Spearman’s correlation analysis also revealed statistically correlated ranking of  

Figure 6. Effect of genotype on immune cell makeup in response to influenza virus infection. (A) Volcano plot indicates the fold difference in cell type 
frequency between C57Y and BalbY mice treated with PBS (n = 10). Accumulation scores of C57Y and BalbY mice at (B) 3DPI and at (C) 6DPI. C57Y data in 
B and C are also shown in Figure 2E. Accumulation scores were calculated as the mean fold change in absolute cell counts for each cell type 3DPI or 6DPI 
compared with PBS. Cell subtypes are ordered based on C57Y ranking. Significantly different subsets are indicated in red. Data represent mean ± SEM, n = 
10. Statistical comparisons were computed by 2-sided Student’s t test with FDR = 10%.
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Figure 7. Effect of genotype on phenotype and function of immune cell types in response to influenza virus infection. (A) Comparison of func-
tional marker positive cells on the viSNE map. Refer to Figure 2A for cell type distribution on viSNE map. (B) Bar charts comparing marker positive 
cell frequency out of total CD45+ cells between C57Y (blue) and BalbY (green). C57Y data are also shown in Figure 3A. (C) Log(fold change) of the 
percentage of marker expression for each cell type. (D) Comparison of cytokine coproduction by CD4+ and CD8+ EM T cells at 6DPI. C57Y data are also 
shown in Figure 3D. Data represent mean ± SEM, n = 10. Statistical comparisons were computed by 2-sided Student’s t test with FDR = 10%. *q < 
0.10; **q < 0.01; ***q < 0.001; ****q < 0.0001.
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%iHA+sHA+ values for the 25 immune cell types between BalbY and C57Y over the course of  infection 
(Figure 8E and Supplemental Figure 11E), suggesting that genotype does not substantially alter the relative 
permissiveness of  immune cell types to viral replication.

To further explore potential mechanisms of  the observed overall higher resistance of  BalbY to viral 
infection/phagocytosis (Figure 8A) and replication (Figure 8D) at the individual immune cell-type level, 
we investigated changes in functional marker expression in BalbY cells in Q2 (iHA+sHA+), Q3 (iHA+-

sHA–), and Q4 (iHA–sHA–) for each cell type (Figure 8F). Overall, changes in functional marker expression 
were similar to those in C57Y, as described in Figure 5D. In particular, immune cell types that succumbed 
to viral replication (iHA+sHA+) had an overall lower fraction of  cells expressing functional markers, includ-
ing CD317, CD69, and IFN-γ compared with iHA+sHA– cells. In addition, the fraction of  cell types in Q2 

Figure 8. Effect of host genotype on iHA and sHA expression in immune cell types. (A) Comparison of iHA+ cell counts between C57Y and BalbY mice (n = 10). 
Comparison of mean %iHA+ for each cell type between C57Y and BalbY mice for (B) phagocytes and (C) nonphagocytes. (D) Comparison of iHA+sHA+ cell counts 
between C57Y and BalbY mice. (E) Comparison of mean %iHA+sHA+ of all immune cell types between C57Y and BalbY. (F) Mean percentage of BalbY cell 
subsets expressing functional markers for iHA+sHA+ cells, iHA+sHA– cells, and iHA–sHA– cells at 3DPI. Each data point represents 1 immune cell type and lines 
connect cells of the same type. Statistical comparisons in B, C, and E were computed by Spearman’s correlation, and a linear regression line is also shown. All 
data represent mean ± SEM, n = 10; statistical comparisons in A and D were computed by 2-sided Student’s t test with FDR of 10%; statistical comparisons in 
F were computed by paired 1-way ANOVA with post hoc Tukey’s pairwise comparisons. *q < 0.10; **q < 0.01; ***q < 0.001; ****q < 0.0001.
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and Q3 expressing functional markers did not greatly change with genotype (Supplemental Figure 11, F 
and G). While these results further reinforce the finding that viral status alters cellular functional marker 
expression in both BalbY and C57Y, they provide no clear evidence that this change at the individual 
immune cell–type level may explain the observed higher resistance of  BalbY mice to influenza infection.

Aging alters the makeup and cytokine profile of  immune cells, but not their relative susceptibility to influenza 
infection or permissiveness to influenza replication. We next investigated how aging, a well-known host factor 
associated with greater influenza disease severity, affects the immune responses by comparing the immune 
landscape of  C57Y mice to that of  C57A. To understand basal level differences between young (2 month) 
and aged (18 month) mice, we compared cell type frequencies between the 2 PBS-treated groups (Figure 
9A). Thirteen of  the 25 immune cell types exhibited significant changes in frequency upon aging. The 
greatest variation resided in the T cell compartment, where C57A had significantly greater frequencies of  
CD4+ and CD8+ EM T cells, while C57Y had significantly more naive T cells, an expected outcome that 
has been well reported (48). In addition, we identified greater AM frequencies in C57Y, which has also 
been observed by others (53, 54).

Following influenza virus infection, the accumulation scores of  all immune cell types at 6DPI were 
compared between C57Y and C57A, with significantly different subsets (q < 0.10) highlighted in red (Fig-
ure 9B). While the overall trends are similar between the 2 groups, C57A generally displayed less respon-
siveness, with only marginal increases in immune cell types with positive accumulation scores and much 
smaller decreases in those with negative accumulation scores compared with C57Y. In particular, C57A 
had significantly lower accumulation of  CD8+ EM T cells and Tγδ cells, the former being a critical cell 
type known to directly participate in the killing of  virus-infected cells (55). In addition, C57A showed 
significantly greater depletion of  eosinophils, but less depletion of  CD11b+ DCs. While the mechanisms 
underlying this observation are unknown, it has been reported that DCs in aged mice are defective in their 
migration to draining lymph nodes (56). Taken together, these results suggest that aging leads to an altered 
immune cell makeup in the lung in response to influenza infection, possibly through altered trafficking 
and/or defective cellular proliferation.

To gain insights into how aging affects functional marker expression in immune cell types, mark-
er-positive cells were overlaid on the viSNE map (Figure 9C). While C57A had similar marker expres-
sion profiles compared to C57Y, some notable differences were observed (arrowed populations, Figure 
9C). Specifically, PBS-treated C57A mice had increased frequencies of  immune cells expressing CD69, 
CD25, TNF-α, IFN-γ, and IL-10 (Figure 9D), consistent with reports of  elevated basal level activation 
and inflammation associated with aging (i.e., inflammaging) (57). However, this basal level of  activity in 
C57A did not translate into efficient activation during infection. On the contrary, C57A at 6DPI actually 
showed reduced activation, with lower frequencies of  CD69+ and CD25+ immune cells as well as lower 
expression of  IFN-γ, GzmB, and IL-10 cytokines compared with C57Y. The reduction in IFN-γ and 
IL-10 in aged mice was consistent with their decreased levels measured in BAL (Supplemental Figure 8). 
To further determine the affected immune cell types, we compared the marker-positive fraction of  each 
immune cell type in C57A to that in C57Y (Figure 9E). Hierarchical clustering clearly separated T cells 
and NKT cells of  both CD4+ and CD8+ lineages (boxed in Figure 9E) from other cell types, indicating 
that these subsets are particularly affected by aging. Indeed, aged mice exhibited severe functional defects 
in response to influenza infection, showing significantly reduced activation and cytokine production at 
6DPI compared with their young counterparts (Figure 9F).

Finally, we investigated the HA expression profile at 6DPI in C57A compared to that in C57Y. Overall, 
no significant difference was observed in the total number of  iHA+ immune cells (Supplemental Figure 
12A), the relative phagocytic ability or susceptibility of  individual cell types to influenza infection (Sup-
plemental Figure 12, B and C), the total number of  iHA+sHA+ immune cells (Supplemental Figure 12D), 
or the relative permissiveness of  individual cell types to influenza replication (Supplemental Figure 12E). 
These results indicate that the relative susceptibility of  immune cell types to viral infection and permissive-
ness to viral replication are largely unaffected by aging.

Discussion
With the 40-marker CyTOF antibody panel and iGATE developed in this study, 29 million CD45+ live 
single cells were rapidly and accurately classified in an automated process into 25 canonical immune cell 
types, improving the interpretability of  the immune landscape during early-stage influenza infection in 
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Figure 9. Effect of aging on immune response to influenza virus infec-
tion. (A) Volcano plot indicates the fold difference in cell type frequency 
between C57Y and C57A mice treated with PBS (n = 10). (B) Comparison of 
accumulation scores at 6DPI between C57Y (n = 10) and C57A (n = 9) mice. 
Immune cell types are ordered based on C57Y. C57Y data are also shown in 
Figure 2E. Significantly different subsets are indicated in red. (C) Compar-
ison of functional marker–positive cells on viSNE. Refer to Figure 2A for 
cell type distribution on viSNE map. C57Y plots are also shown in Figure 
7A. (D) Bar charts comparing C57Y and C57A marker frequency out of total 
CD45+ cells. C57Y data are also shown in Figure 3A. (E) Log(fold change) 
of marker expression frequency for each cell type at 6DPI. (F) Functional 
marker expression in NKT and T cell subsets. Data represent mean ± SEM. 
Statistical comparisons were computed by 2-sided Student’s t test with 
FDR = 10%. *q < 0.10; **q < 0.01; ***q < 0.001; ****q < 0.0001.
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mouse lung. Specifically, in C57Y mice, we detailed the early inflammatory response at 3DPI followed by 
the initiation of  the adaptive arm by 6DPI (Figures 2 and 3). In addition to expected changes in cellular 
frequencies, we observed unanticipated changes in immune cell types not typically investigated in the con-
text of  viral infections, including Tγδ and eosinophils (Figure 2, D and E), suggesting they play underap-
preciated roles in antiviral immunity. While research is limited, a few studies have shed some light on their 
potential antiviral mechanisms. Tγδ cells were shown to participate in both innate and adaptive influenza 
immune responses via their diverse abilities to be innately activated by influenza HA (58), present influenza 
viral peptides to αβT cells via MHC-II (59), and kill virus-infected cells (60). For eosinophils, it has been 
demonstrated that mouse eosinophils become activated in the presence of  influenza virus (61), secrete 
RNases that decrease viral infectivity in vitro (62), undergo piecemeal degranulation upon viral exposure 
(61), and present influenza antigen via MHC-I and MHC-II that results in activation and proliferation 
of  CD8+ and CD4+ T cells (61, 63). Therefore, Tγδ cells and eosinophils represent promising therapeutic 
targets for influenza treatment. Indeed, a high-fat ketogenic diet led to increased Tγδ cell counts in mouse 
lungs, improving H1N1 protection (64), while transfer of  lung eosinophils from allergen-sensitized mice 
into H1N1-infected mice reduced viral burden and morbidity (61).

Our ability to profile the iHA and sHA expression enabled a comprehensive evaluation of  2 properties 
of  25 immune cell types in vivo: susceptibility to influenza infection and permissiveness to influenza repli-
cation. Note that this study only considered immune cells, excluding nonimmune cells. We demonstrate for 
the first time to our knowledge that, not only are all 25 immune cell types susceptible to influenza infection, 
but they are also permissive to influenza replication in vivo — at least up to the point of  surface HA expres-
sion (Figure 5C and Supplemental Figure 9D). We further showed that both properties are cell-type specific 
and conserved over the course of  infection (Supplemental Figure 9, C and E) and across mice with differing 
genotypes (Figure 8, B, C, and E) and ages (Supplemental Figure 12, B, C, and E). Interestingly, CD4+ and 
CD8+ CM T cells were among the most susceptible to infection (high %iHA+) of  all nonphagocytic cells, 
while naive CD4+ and CD8+ T cells were the least susceptible (low %iHA+, Figure 5B and Supplemental 
Figure 9B). This result demonstrates intracompartmental (T cell subsets) heterogeneity in susceptibility 
to influenza infection. Together with the observation that phagocytes were generally more permissive to 
influenza replication than nonphagocytes (Figure 5C), these data suggest that both properties generally cor-
relate with the expected exposure of  cell types to influenza virus in vivo while carrying out their functions. 
For example, phagocytes engulf  infected cells and memory T cells home to sites of  inflammation, but naive 
cells largely bypass tissues en route to draining lymph nodes (65). B cells, in particular the IgM–IgD– subset, 
take up antigens through endocytosis or phagocytosis (66–68).

The ability to simultaneously detect iHA and sHA expression on a single cell further enabled us 
to differentiate cells into 3 categories (Figure 4, A–E): (a) uninfected (iHA–sHA–), (b) cells that are 
infected or have phagocytosed infected cells but have not succumbed to viral replication up to the 
point of  sHA expression (iHA+sHA–), and (c) cells that support viral replication (iHA+sHA+). Our data 
provide insight into the effect of  viral status on functional marker expression in immune cells. Most 
notably, across 25 immune cell types, we noted a significant decrease in %CD317+ in the iHA+sHA+ 
subpopulation compared with the iHA+sHA– subpopulation (Figure 5D and Figure 8F). Given that 
CD317 prevents the release of  enveloped viruses from the cell surface (47), these results suggest that 
the downregulation of  CD317 — and likely other type I IFN–inducible proteins as well — is important 
for supporting influenza replication in immune cells in vivo. Indeed, several type I IFN–inducible genes 
have direct antiviral properties (i.e., viperin) (69), and influenza and other viruses have evolved mecha-
nisms to actively suppress the type I IFN response to promote viral replication (51). Further supporting 
the importance of  the type I IFN response in fighting influenza infection, BalbY mice with the best 
survival showed increased CD317 expression in a majority of  the 25 immune cell types when compared 
with C57Y (Figure 7C). In contrast, C57A mice with the worst survival showed similar CD317 expres-
sion to that of  C57Y in the majority of  the 25 immune cell types (Figure 9E). This result suggests that 
the reduction in survival associated with aging is not due to the cellular mechanisms for upregulating 
CD317, but rather due to other deficiencies.

Indeed, we observed several other defects in the C57A immune response that may explain their reduced 
survival. Compared with C57Y, C57A mice were systematically less responsive to influenza infection, display-
ing lesser-magnitude changes in immune cell populations (Figure 9B) as well as reduced cellular activation in 
the lung (Figure 9D). In fact, the overall frequency of  cytokine-positive immune cells was largely unchanged 
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at 6DPI in C57A compared to the PBS-treated C57A (Figure 9D). Most notably, C57A displayed severe 
defects in the T cell and NKT cell compartments. In particular, CD8+ EM T cells had approximately 2-fold 
lower accumulation (q < 0.10) compared with C57Y at 6DPI (Figure 9B) and had markedly reduced or nearly 
undetectable levels of  GzmB+, TNF-α+, IFN-γ+, and IL-10+ T cells and NKT cells (Figure 9F). Due to the crit-
ical roles of  effector T cells and these cytokines in combatting viral infection, aged mice are deficient in a key 
component of  antiviral immunity. Thus, we conclude that decreased survival due to aging is associated with 
marked deficiencies in immune cell accumulation, cellular activation, and cytokine production. While it is 
well known that aging leads to reduced functionality in effector T cells (70), it is noteworthy that our in-depth 
analysis identified T cell defects as the most striking deficiency in the early immune response of  aged mice.

Regarding host genotype, we identified several factors contributing to the enhanced survival of  BalbY 
over C57Y mice. Aside from the aforementioned increased frequencies of  Tγδ, eosinophils, and CD317+ 
immune cells in BalbY, BalbY mice had a more measured inflammatory response, with less infiltration at 
3DPI (Figure 6B) and increased levels of  antiinflammatory IL-10 at 6DPI (Figure 7, A and B). While the 
mechanism of  increased IL-10 production in BalbY is unknown, there is evidence in the literature that a 
greater type I IFN response leads to increased production of  IL-10 (71). This is in agreement with the high-
er frequencies of  CD317+ immune cells observed in BalbY (Figure 7C) compared with C57Y. Despite the 
importance of  IL-10 in anti-influenza immunity suggested by this study, a review of  the literature reveals 
that the IL-10 production in these 2 mouse strains is stimuli dependent (71, 72) and can lead to opposing 
outcomes in different diseases (73). Thus, we conclude that an appropriately regulated immune response, 
rather than high levels of  the IL-10 cytokine itself, is essential to achieving positive outcomes.

The results of  this study have several implications. Our data suggest the perils of  both overreactive (in 
the case of  C57Y) and underreactive (in the case of  C57A) inflammatory responses during early stages 
of  influenza infection, suggesting the need for different vaccine and therapeutic approaches for different 
age groups. For example, the deficiencies we observed in C57A T cell functional marker expression (Fig-
ure 9F) and the lower accumulation score for CD8+ EM T cells in C57A compared with C57Y (Figure 
9B) indicate that vaccines that induce T cell responses might be particularly advantageous to the elderly. 
In the case of  genetic background, we clearly demonstrate that genotype affects cellular infiltration and 
cytokine environment, ultimately leading to differences in survival that could also inform vaccine design. 
Since higher levels of  functional markers associated with IFN-γ expression (IL-10, CD317) are seen in 
BalbY with the best survival, it could be beneficial to design influenza vaccines that target a Th1 immune 
response, particularly in individuals who lack robust Th1 immunity. These data highlight the need to test 
vaccines broadly across diverse genetic backgrounds for better efficacy evaluation.

Beyond providing insights into the effects of  aging and genetics on the immune response to influen-
za infection, our experimental design and iGATE establish a framework for several future directions. Our 
approach can be directly applied to investigate how other host factors like comorbidities, nutrition, and micro-
biota impact the influenza immune landscape (10). Most importantly, the techniques developed in this work 
will prove useful for evaluating vaccines. For example, iGATE can be applied to identify user-defined cell 
types in vivo that are interacting with the vaccine immunogen and how they are responding in terms of  cyto-
kine and functional marker expression at the single-cell level. This information, in particular, is difficult to 
obtain using other high-dimensional analysis techniques, such as RNA sequencing. Ultimately, such data can 
help elucidate the protective mechanisms of  vaccines, enabling a more predictive approach to vaccine design.

Methods
Sex as a biological variable. Our study exclusively examined female mice as a case study for developing and 
applying iGATE. Further investigation is required to evaluate whether the findings are relevant for male mice.

Animal handling, infection, and sample collection. Female C57BL/6 (2 or 18 months old) and BALB/c 
mice (2 months old) were obtained from The Jackson Laboratory and 10 mice were used per treatment 
group. For survival study, mice were anesthetized with isoflurane and instilled intranasally with 2.0 
× 104 PFU of  influenza virus PR8 (ATCC, VR-1469). For CyTOF experiments, mice were infected 
as described above with a dose of  1.2 × 104 PFU, corresponding to approximately the LD50 of  BalbY 
mice (data not shown). Following infection, mice were monitored daily for health status. One aged 
mouse that showed contrary weight response after infection was omitted from analysis. At indicated 
time points, the mice were euthanized, their lungs perfused and harvested, and stored in PBS with 
Golgi block consisting of  brefeldin A (BioLegend) and monensin (BioLegend). These lungs were then 
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minced, digested, and processed into single-cell suspension using 1 mg/mL Collagenase D (Roche), 1 
mg/mL DNase I (Roche), and Golgi block. Live cells were further isolated over Ficoll-Paque (Cytiva) 
and resuspended in PBS with Golgi block prior to CyTOF analysis.

CyTOF antibody conjugation, staining, and acquisition. CyTOF antibody conjugation, staining, and 
data acquisition were performed as previously described (74), with the following modifications: the 
antibody cocktail for intracellular staining was prepared in the eBioscience permeabilization buffer 
(10×, 00-8333-56); the samples were acquired on a CyTOF Helios system (Fluidigm Corp.) at approx-
imately 300–400 events/s; and the mouse samples were acquired on the Helios in batches. Within 
each batch, a control sample of  influenza-infected C57Y mouse lung homogenate was included. No 
substantial variation in identified cell populations in the control sample was observed in any batch 
(Supplemental Figure 13A and Supplemental Table 2).

Data analysis. Following acquisition, signal spillover correction was applied, using measured metal 
impurities as described previously (75). The probabilistic SVM classifier was trained and validated using the 
iGATE_train software and deployed on the 29-million-cell data set using the iGATE_predict software. The 
numerical values of  the threshold for the functional marker expression in classified immune subsets were 
determined by manual gating (Figure 3A) and then applied to all cells in the iGATE analysis. After iGATE 
had classified all cells, no substantial biological variation in cell populations was observed between mice in 
the same treatment group (Supplemental Figure 13B). Event counts for all the populations referenced in 
this study can be found in Supplemental Tables 3–11.

In vitro infection and in vitro phagocytosis. MDCK (ATCC, CCL-34) and RAW264.7 (ATCC, TIB-71) 
cells were infected with PR8 at an MOI of  0.0 (i.e., PBS) or 0.05 for 2 and 6 hours. Cells were trypsinized, 
washed, and stained to detect iHA and sHA using the CyTOF protocol described above. For in vitro phago-
cytosis, MDCK cells were infected with PR8 at an MOI of  0.0 (i.e., PBS) or 0.05 for 18 hours. After 
infection, the MDCK cells were trypsinized, washed, and fed to RAW264.7 cells at a ratio of  1:2. The 
phagocytosis was carried out in an incubator at 37°C with 5% CO2 for 90 minutes. Following phagocytosis, 
the cells were washed, trypsinized, scraped from the wells, and stained to detect iHA and sHA using the 
CyTOF protocol described above.

Statistics. Statistical analyses were done using Mathworks MatLab or GraphPad Prism v10. Variables 
were analyzed by either 2-sided Student’s t test or 1-way ANOVA as specified in figure legends. For single 
tests, a P value of  less than 0.05 was considered statistically significant. For multiple tests, the Benjami-
ni-Hochberg correction was used, and a q value of  less than 0.10 was considered statistically significant. 
Correlation analysis was performed using Spearman’s correlation.

Study approval. Mice were housed in an AAALAC-accredited facility, in compliance with the Public 
Health Service Policy on Humane Care and Use of  Laboratory Animals and the NIH Guide for the Care and 
Use of  Laboratory Animals (76). All procedures were approved by the IACUC at the University of  Michigan.

Data availability. iGATE software, documentation, and test data set are available for noncommercial 
use only at https://github.com/UmichWenLab/iGATE. Commercial use will require a license — please 
contact feiwenum@umich.edu for further information. Values for all data points in graphs are reported in 
the Supporting Data Values file. Any additional information is available from the corresponding author 
upon reasonable request.
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