
A lipid-associated macrophage lineage rewires the spatial
landscape of adipose tissue in early obesity

Cooper M. Stansbury, … , Indika Rajapakse, Lindsey A. Muir

JCI Insight. 2023;8(19):e171701. https://doi.org/10.1172/jci.insight.171701.

 

Graphical abstract

Technical Advance Metabolism

Find the latest version:

https://jci.me/171701/pdf

http://insight.jci.org
http://insight.jci.org/8/19?utm_campaign=cover-page&utm_medium=pdf&utm_source=content
https://doi.org/10.1172/jci.insight.171701
http://insight.jci.org/tags/67?utm_campaign=cover-page&utm_medium=pdf&utm_source=content
http://insight.jci.org/tags/28?utm_campaign=cover-page&utm_medium=pdf&utm_source=content
https://jci.me/171701/pdf
https://jci.me/171701/pdf?utm_content=qrcode


1

R E S O U R C E  A N D  T E C H N I C A L  A D V A N C E

Conflict of interest: The authors have 
declared that no conflict of interest 
exists.

Copyright: © 2023, Stansbury et 
al. This is an open access article 
published under the terms of the 
Creative Commons Attribution 4.0 
International License.

Submitted: April 24, 2023 
Accepted: August 29, 2023 
Published: October 9, 2023

Reference information: JCI Insight. 
2023;8(19):e171701. 
https://doi.org/10.1172/jci.
insight.171701.

A lipid-associated macrophage lineage 
rewires the spatial landscape of adipose 
tissue in early obesity
Cooper M. Stansbury,1,2 Gabrielle A. Dotson,1 Harrison Pugh,1 Alnawaz Rehemtulla,3  
Indika Rajapakse,1,4 and Lindsey A. Muir1

1Department of Computational Medicine and Bioinformatics, 2The Michigan Institute for Computational Discovery and 

Engineering, 3Department of Radiation Oncology, and 4Department of Mathematics, University of Michigan, Ann Arbor, 

Michigan, USA.

Introduction
Obesity is associated with chronic inflammation and metabolic dysfunction in mice and humans (1–4). 
Increased metabolic demand requires remodeling of  white adipose tissue (WAT) that results in changes 
to WAT structure and function (5, 6). Normal WAT function requires coordination between multiple 
cell types, including stromal vascular cells, immune cells, and adipocytes, which are the largest cellular 
constituent of  WAT by volume (5, 7). In obesity, WAT composition is dramatically altered and cells 
undergo dynamic changes to their morphology and phenotype that culminate in adipocyte hypertrophy 
and cell death (5, 8). The dynamics of  WAT immune cells during obesity are well documented, but the 
molecular mechanisms regulating immune and metabolic dysfunction and their spatial organization 
within WAT remain poorly understood.

Immune cells help maintain healthy WAT homeostatic function and participate in WAT remodeling 
in response to changes in metabolic demand. The hallmark of  obesity-induced immune dysregulation 
is increased abundance and diversity of  macrophages in WAT (9–11). Both tissue-resident macrophages 
and macrophages derived from recruited monocytes (MNs) acquire poorly understood activation states 
during obesity-induced WAT remodeling (9, 10, 12, 13). Changes in the macrophage transcriptional 
program are critical milestones in the development of  insulin resistance, type 2 diabetes, and other met-
abolic disorders (9, 13) and persist after weight loss (11, 14, 15).

Previous single-cell studies have cataloged WAT cellular composition, thus refining our understand-
ing of  immune-cell phenotypes in obesity (7, 9, 10, 12). However, single-cell molecular profiling does not 
allow for analysis of  the spatial patterning of  tissue structure. Recent studies in humans have mapped 
single-cell genomic profiles onto spatial transcriptomics data to characterize spatial patterning of  WAT 
cellular composition (5, 16). However, a spatial understanding of  obesity-induced WAT-remodeling over 
the course of  metabolic disruption is lacking.

Adipose tissue macrophage (ATM) infiltration is associated with adipose tissue dysfunction 
and insulin resistance in mice and humans. Recent single-cell data highlight increased ATM 
heterogeneity in obesity but do not provide a spatial context for ATM phenotype dynamics. We 
integrated single-cell RNA-Seq, spatial transcriptomics, and imaging of murine adipose tissue 
in a time course study of diet-induced obesity. Overall, proinflammatory immune cells were 
predominant in early obesity, whereas nonresident antiinflammatory ATMs predominated in 
chronic obesity. A subset of these antiinflammatory ATMs were transcriptomically intermediate 
between monocytes and mature lipid-associated macrophages (LAMs) and were consistent with 
a LAM precursor (pre-LAM). Pre-LAMs were spatially associated with early obesity crown-like 
structures (CLSs), which indicate adipose tissue dysfunction. Spatial data showed colocalization 
of ligand-receptor transcripts related to lipid signaling among monocytes, pre-LAMs, and LAMs, 
including Apoe, Lrp1, Lpl, and App. Pre-LAM expression of these ligands in early obesity suggested 
signaling to LAMs in the CLS microenvironment. Our results refine understanding of ATM diversity 
and provide insight into the dynamics of the LAM lineage during development of metabolic disease.
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Here, we sought to spatially contextualize immune-cell dynamics in early and chronic obesity. We 
sequenced single cells from murine WAT at different stages of  diet-induced obesity and characterized 
transcriptional dynamics associated with the development of  insulin resistance. To characterize the 
spatial context of  obesity-driven immune-cell dysregulation, we mapped tissue-specific genomic signa-
tures to the WAT landscape using spatial transcriptomics. We developed a network approach to ana-
lyze the spatial organization of  immune dysregulation and used graph-theoretic measures to quantify 
changes to WAT structure.

We quantified the spatiotemporal dynamics of WAT macrophage infiltration and differentiation and iden-
tified cellular signaling mechanisms implicated in WAT remodeling. We describe diversity in the Trem2+ lipid- 
associated macrophage (LAM) phenotype, whose transcriptional profile, molecular signaling mechanisms, and 
spatial context suggest a critical role in the formation of crown-like structures (CLSs) in early obesity.

Results
Dynamic remodeling of  adipose tissue is concurrent with glucose intolerance in early obesity. Our model of  diet-in-
duced obesity included mice fed a normal chow diet (ND) or a 60% high-fat diet (HFD) for 8 weeks as a 
model of  early obesity during rapid adipose tissue growth (3, 17) or for 14 weeks as a model of  chronic 
obesity (Figure 1A). HFD feeding increased BW and epididymal WAT (eWAT) mass as expected (Figure 
1, B–D). Mean adipocyte area and frequency of  large adipocytes increased at 8 and 14 weeks (Figure 1, 
G and H, and Supplemental Table 1; supplemental material available online with this article; https://doi.
org/10.1172/jci.insight.171701DS1). Glucose tolerance tests (GTTs) showed increased AUC starting at 
week 1, with the largest AUC and variability at weeks 7 and 8 (Figure 1, E and F), suggesting development 
of  insulin resistance.

Single-cell profiling. It is well established that obesity induces changes in adipose tissue immune cells (7, 
9), including accumulation of  adipose tissue macrophages (ATMs) that promote metabolic dysfunction (1, 
2). However, the dynamics of  these phenotypes remain incompletely understood. To examine immune-cell 
dynamics in early and chronic obesity, we performed single-cell RNA-Seq (scRNA-Seq) on CD45+ cells 
from eWAT of  mice fed an ND or an HFD for 8 or 14 weeks (n = 4 per cohort).

Clustering and annotation of  13,820 single cells identified 6 broad immune-cell populations: MNs, T 
cells, B cells, DCs, ATMs, and NK cells (Figure 2A and Supplemental Table 2). Ab feature barcodes for 
select surface proteins that were used with scRNA-Seq confirmed immune-cell annotations (Supplemen-
tal Figure 1 and Supplemental Table 3). Annotations were additionally confirmed by comparison to cell 
type–specific gene expression profiles from public databases and published single-cell genomic data sets 
(Supplemental Figures 2–4).

Immune cells were then evaluated for changes across diet conditions. ATMs increased as expected with 
obesity, comprising 28%, 36%, and 60% of CD45+ cells in mice fed the ND, 8 weeks of the HFD, and 14 weeks 
of the HFD, respectively (Figure 2B and Supplemental Figure 5A). DC and MN populations also increased with 
HFD feeding, whereas the T cell population was highest at 8 weeks and decreased by 14 weeks of HFD feeding.

Altogether, our data capture expected eWAT immune-cell population dynamics in obesity progression 
and highlight myeloid cell accumulation in chronic obesity.

ATM heterogeneity spans 5 subtypes across early obesity. To define ATM heterogeneity, clustering was per-
formed on ATMs from all diet conditions. Five ATM subclusters were identified corresponding to resident 
(Mac1), proinflammatory (Mac2, Mac3), and lipid-associated (Mac4, Mac5) macrophages (Figure 2C). 
Consistent with previous reports, Mac1 expressed Lyve1, Timd4, Mrc1/Cd206, and Stab1 (Figure 2, C–E, 
and Supplemental Figures 6 and 7) (10, 18, 19).

Mac2 and Mac3 were identified on the basis of  expression of  genes encoding proinflammatory cyto-
kines, including Il1b, Tnf, and Il6, and of  low expression of  efferocytosis markers (Mertk, Axl, Cd163, and 
Trem2) (Supplemental Figure 8). Among proinflammatory ATMs, Mac2s were enriched for the following 
additional proinflammatory genes: Tnf, Il1b, Ccl2, Nlrp3, and the M2 marker Mrc1. Mac3 had high expres-
sion of  Itgax/Cd11c and antigen-presentation genes (H2-Ab1, H2-Eb1, Cd74) and was low in Adgre1 (F4/80), 
suggesting an antigen-presenting ATM similar to that reported by Lantz et al. (20). Importantly, Mac3s 
were low in ATDC markers including Zbtb46, Clec9a, and Cd24a (Supplemental Figure 9) (10).

Finally, Mac4 and Mac5 ATMs emerged with HFD feeding and expressed genes consistent with 
LAMs, including Trem2, Cd9, and Gpnmb (Figure 2E) (9). Despite transcriptional similarities, Mac4 and 
Mac5 differed in magnitude of  LAM marker expression (Figure 2G and Supplemental Figure 10).
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Overall, these data highlight increased ATM diversity with HFD feeding.
Lipid-associated ATMs overtake proinflammatory ATMs in chronic obesity. Next, we examined ATM phe-

notype dynamics during HFD feeding. To assess broad changes in the ATM transcriptional program, we 
examined expression of  gene sets associated with phenotypic shifts in macrophages. ATMs showed pro-
gressively increased gene expression related to lipid metabolism, migration, catabolism, and cell death 
(Figure 2G), supporting altered metabolism and survival processes in response to obesity.

We found that resident ATMs maintained a stable population over the course of  HFD feeding (Fig-
ure 2, D and F). Proinflammatory macrophages were present in lean eWAT through 8 weeks of  HFD 
feeding but decreased substantially after 14 weeks of  HFD feeding (Figure 2, D and F, and Supplemental 
Figure 11, A and B). In contrast, LAMs emerged with HFD feeding and continued to accumulate in 
chronic obesity (Figure 2, D and F).

Given that other immune cells also have imbalanced subtypes in obesity and to provide additional con-
text for ATM phenotypes during the time course, we further analyzed the single-cell data for subtypes of  T 
cells, MNs, and DCs. Known subtypes that change in adipose tissue with obesity were identified, including 
decreased numbers of  regulatory T cells, increased conventional T cells (T convs), and increased type 2 

Figure 1. Diet-induced obesity and adipose tissue remodeling. (A) Time course for mice fed a 60% HFD for 8 weeks (8w) or 14 weeks (14w) versus ND 
controls. (B) Total BW by week on HFD. (C) Final BW at time of tissue collection. (D) eWAT weight (top) and eWAT as a percentage of BW (bottom). (E) 
Glucose measurements in cohorts 1 week prior to endpoint tissue collection. (F) GTT data showing AUC. (G) H&E-stained adipose tissue sections of eWAT 
from cohorts. (H) Frequency distribution and average adipocyte size in eWAT from cohorts. (B–E) For each group, n = 4. (F) For HFD-fed mice, n = 4–8 mice 
per group; for ND, n = 15 mice.
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conventional DCs (Supplemental Figure 12) (9, 10). Extended analysis of  T cells using classical marker 
gene sets also showed an increased proportion of  T convs and increased Mki67 expression among T cells, 
reflecting proliferation of  an activated phenotype (Supplemental Figure 13)

Taken together, these data show that although the population of  proinflammatory ATMs increases 
during adipose tissue hypertrophy, LAMs become the most prominent ATM subtype in chronic obesity.

Figure 2. Single-cell data on macrophage phenotypes in obesity. (A) Immune-cell population changes over the course of diet-induced obesity. (B) The num-
ber of cells per gram of adipose tissue for each cell type in each diet condition. (C) UMAP visualization of ATM clusters from scRNA-Seq data. (D) Proportions 
of each ATM cluster at each time point. (E) Expression of key genes across ATM subtypes. Large points represent mean expression for the subtype. (F) ATM 
subtypes per gram of tissue sampled for each diet condition. (G) Changes in mean expression of genes in select Kyoto Encyclopedia of Genes and Genomes 
pathways in the macrophage subpopulations. Black lines represent mean macrophage expression of pathway genes in each diet condition. 8w, 8 weeks; 14w, 
14 weeks; ECM, extracellular matrix.
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LAM subtypes form a monocytic lineage. We observed that between Trem2+ LAMs, Mac4 cells outnum-
bered Mac5 cells at 8 weeks (Figure 2, D and F), but Mac5 numbers were higher at 14 weeks of  HFD feeding 
(Figure 2, D and F). Because LAMs are reported to be MN derived (9), we hypothesized that cells in the 
Mac4 cluster were in transition along a MN–LAM lineage. When we examined differentially expressed 
genes, 287 distinguished Mac4 cells and MNs, and 834 distinguished Mac5 cells and MNs (Supplemental 
Figure 6 and Supplemental Table 4), suggesting increasing divergence across MNs, Mac4 cells, and Mac5 
cells. We then queried MNs, Mac4 cells, and Mac5 cells for expression of  genes related to MN differentia-
tion and macrophage maturity. The MN markers Cx3cr1 and Ly6c2 were decreased in the Mac4 cluster but 
were consistently higher in Mac4 compared with Mac5 (Figure 3A). Cells in the Mac4 cluster also showed 
intermediate expression of  LAM marker genes Lgals3, Trem2, and Ctsl (Figure 3B). Mac4 cells also expressed 
Ms4a7, a marker of  MN–macrophage differentiation, more highly than both MNs and Mac5 cells (21).

To further examine the hypothesis that Mac4 cells are pre-LAMs, we correlated them with resident 
ATMs (Mac1 in the ND-fed mice), early-onset MNs (in the ND and 8-week HFD groups), and chronic 
obesity LAMs (Mac5 in the 14-week HFD group) using the top 50 uniquely differentially expressed genes 
for each group. We found that Mac4 cells have intermediate correlation with the LAM and MN signatures. 
(Figure 3, C and D, and Supplemental Table 5).

Taken together, our data support that Mac4 cells are recently differentiated macrophages that are in 
process of  acquiring the LAM phenotype.

Spatial transcriptomics captures LAM dynamics in obesity. The spatial context of  ATM reprogramming with-
in eWAT remains poorly understood. Thus, to establish the spatial dynamics of  LAM emergence with obe-
sity, we performed spatial transcriptomics on eWAT sampled from mice fed the ND or fed the HFD for 8 or 
14 weeks (Supplemental Figure 14). We analyzed a total of  7424 tissue-capture spots across diet conditions.

Immune-cell transcriptome profiles were mapped onto tissue-specific locations using conditional autore-
gressive-based deconvolution (CARD) (22, 23). We found strong emergence of  the LAM phenotype across 
tissue spots in chronic obesity, consistent with our single-cell data (Figure 4, A and B, and Supplemental 
Figure 15, A and B). MNs also increased in spatial transcriptomics data in early obesity (Figure 4, A and B, 
and Supplemental Figure 15, A and B). Although pre-LAM spots were highest in early obesity, LAM spots 
were highest in chronic obesity (Supplemental Figure 15B). Furthermore, pre-LAMs and LAMs were highly 
spatially correlated at 8 weeks (r = 0.6) but not at 14 weeks (r = 0.2) (Supplemental Figure 16), suggesting that 
LAM dynamics are spatially coordinated. Taken together, these results support LAM accumulation in eWAT 
via differentiation from circulating MNs.

LAM networks are hubs of  cell death. LAMs are associated with development of  CLSs, which, in turn, 
are correlated with development of  insulin resistance (13, 24, 25). CLS are well studied (8, 26), though a 
spatiotemporal understanding of  the drivers of  CLS formation is lacking. We observed CLSs as early as 8 
weeks, which prompted us to characterize the transcript patterns associated with early CLS formation. We 
developed cell type–specific network models based on spatial gene expression patterns and used the models 
to understand the dynamics of  adipose tissue organization in obesity (Figure 5A).

Network models represent local tissue regions where a given cell type is highly localized. In the net-
works, nodes represent tissue-capture spots and edges represent interactions between adjacent nodes. Edges 
were defined by the harmonic mean of  CARD-predicted proportions between all adjacent pairs of  nodes 
for a given cell type. The structural properties of  the cell-type networks were quantified using graph-theoret-
ic measures, which, in turn, revealed properties of  tissue organization (Figure 5A) (27).

Network models showed higher local concentrations of  adaptive immune cells (i.e., B cells, T cells) in 
the week 8 group than in lean tissue or the week 14 group, which coincided with the emergence of  proin-
flammatory ATMs (Figure 5B and Supplemental Table 6). In addition, proinflammatory Mac3 and T cells 
were spatially correlated at 8 weeks (r = 0.6), in contrast to low Mac1 (r = –0.1) and Mac2 (r = 0.2) spatial 
correlation with T cells (Supplemental Figure 16). These results suggest T cell activation, which is consis-
tent with the emergence of  T conv at 8 weeks (Supplemental Figure 12).

In contrast, local LAM concentrations increased monotonically over the course of  HFD feeding, 
further supporting that ATM reprogramming toward the LAM phenotype is spatially coordinated. To 
further investigate LAM spatial patterning, we randomly sampled tissue spots from all 3 diet conditions 
and constructed 150-node networks around the sampled spot (Figure 5C). As expected, high local LAM 
concentrations were absent in lean tissue (Figure 5, B and C). With HFD feeding, LAM concentration 
increased (Figure 5C and Supplemental Figure 17). We then performed differential expression analysis 
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between regions of  high and low LAM concentrations and found that regions of  high LAM concen-
trations were enriched in genes related to phagocytosis, autophagy, and cell death, including Ctsl, Ctss, 
Lamp1, Ctsd, and Ctsb (Supplemental Figure 18). Altogether, these results identify spatially coordinated 
accumulation of  LAMs that are engaged in clearance of  excess lipids and dead adipocytes.

LAM networks map onto histologically identified CLSs. CLSs are defined by an accumulation of  fibrotic 
and necrotic material from dead or dying adipocytes and ATMs (8, 26). To determine the degree to which 
the LAM network was spatially aligned with CLSs, we first developed an image segmentation algorithm to 
classify CLS regions from H&E-stained images captured in parallel with spatial transcriptomics data (Fig-
ure 6A). The algorithm identified CLShi and CLSmid regions of  fibrotic and necrotic material that increased 
with obesity (Figure 6B). Adipocyte area increased with HFD feeding but decreased between 8 and 14 
weeks as a higher proportion of  the area was represented by CLSs and regions of  immune infiltration (Fig-
ure 6C). We then aligned CLS regions with spatial transcriptomics data and found significant colocaliza-
tion of  LAMs with CLSs in both early and chronic obesity (Figure 6D). In contrast, MNs and pre-LAMs 
colocalized with CLS regions only in early obesity (Figure 6D).

Figure 3. Emergence of the LAM phenotype. (A) Normalized expression of MN marker genes for key myeloid cell types. (B) Normalized expression of 
LAM marker genes for key myeloid cell types. (C) 3D profiling of MNs, resident ATMs (Mac1), and LAMs (Mac4, Mac5). Cell position represents simul-
taneous Pearson correlation with gene expression signatures derived from MNs (yellow axis), resident ATMs (rATM; purple axis), and LAMs (green 
axis). (D) Macrophage subtype correlations with MN, rATM, and LAM expression signatures for each diet condition. 8w, 8 weeks; 14w, 14 weeks.
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Beyond correlation, we sought to characterize the physical organization of  immune-cell types with-
in eWAT and their relationship to CLSs. We used eigenvector centrality, a global measure of  nodal 
importance in a network, to quantify cell type–specific structure within the tissue (27). We then correlat-
ed per-spot centrality for each immune cell–type network with per-spot CLS prevalence (Figure 6G). 
We found that critical hubs of  innate immune cells aligned with early CLSs in week 8 (Figure 6G). Cen-
tral nodes in pre-LAM and LAM networks aligned with CLSs both in early and chronic obesity (Figure 
6, E–G). In contrast, adaptive immune-cell types (i.e., B cells, T cells) exhibited negative correlation 
with CLSs in all diet conditions.

Taken together, these results capture the dynamic, large-scale reorganization of  immune cells in early 
obesity and the spatial concentration of  LAMs in CLS regions in chronic obesity.

Myeloid signaling shapes nascent CLSs. Given the early presence of  CLSs and reorganization of  myeloid 
cell types in week 8, we sought to characterize intracellular signaling during formation of  CLSs. Therefore, 
we quantified spatially colocalized expression of  ligand-receptor (LR) pairs throughout eWAT and within 
the MN–LAM lineage.

We first cataloged tissue-wide changes in LR expression. We identified the LR pairs that increased 
in early obesity and chronic obesity (Figure 7, A and B) and the LR pairs that decreased in early and 
chronic obesity (Figure 7, C and D). As expected, global LR analysis revealed increased metabolic 
activation (Lrp1, Lpl, App, Apoe), regulation of  cellular migration (Adipoq, Igf1, Thbs1, Apoe), regula-
tion of  tissue remodeling (Cola1, Cola2), and regulation of  immune response (Cd36, Cd81, C3) (Figure 
7, A–D, and Supplemental Figure 19) as predominant biological processes associated with obesity- 
induced eWAT remodeling.

Next, we identified colocalized LR pairs with cell type–specific expression (log2 fold change > 1; Sup-
plemental Figure 20). Detection of  LR pairs between myeloid cell types increased with obesity (Figure 7E). 
To identify the myeloid-specific signaling that may contribute to the emergence of  CLSs, we investigated 
LR pairs that were both differentially expressed in a myeloid cell subtype and colocalized with one another 
in the spatial transcriptomics data (Figure 7F). Pre-LAMs expressed multiple ligands for LAM receptor 

Figure 4. Spatial patterning of the MN-LAM lineage. (A) Overview of CARD-predicted cell-type proportions for myeloid cell types over the course of HFD 
feeding. (B) Spatial patterning of MNs, pre-LAMs (Mac4) and LAMs (Mac5) over the course of HFD feeding. Edge weights are the harmonic mean of CARD 
proportions for neighboring capture spots. Histograms show the distribution of edge weights for the whole tissue section and are colored according to the 
mean edge weight on the same color scale. 8w, 8 weeks; 14w, 14 weeks.
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Lrp1, including App, Plau, Lpl, Apoe, Calr, and C1qb. Additionally, pre-LAMs expressed ligands App, Plau, 
and Apoe that had multiple receptors throughout the MN–LAM lineage.

Thus, we identify a set of  signaling molecules expressed in early obesity along the MN–LAM lineage 
that influence the nascent CLS microenvironment.

Figure 5. LAM networks are hubs of cell death. (A) Workflow schematic. Network models are defined on the basis 
of properties of neighboring tissue spots. Analysis of network structure reveals principals of tissue organization. 
Differential expression analysis may be used to characterize the transcriptional signature of niches. (B) Connec-
tivity of tissue-wide networks for all immune-cell types over time. Connectivity is the distribution of network 
edge weights, defined as the harmonic mean of CARD-predicted proportions between neighboring spots. ***P = 
0.01 by Student’s t test for comparison between each time point (i.e., ND vs. 8 weeks [8w], 8w vs. 14 weeks [14w], 
and ND vs. 14w); *P ≤ 0.01 for specific comparison. (C) Nine randomly sampled 150-node networks based on LAM 
signature (Mac5) over time. DEG, differentially expressed gene.
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Discussion
Changes in adipose tissue myeloid cells persist with weight loss and affect future response to overnutrition 
(11, 14), highlighting the need to better understand the mechanisms that promote adipose tissue dysfunc-
tion. Our study elucidates ATM phenotype dynamics in their spatial context in early and chronic obesity by 
combining single-cell RNA-Seq, spatial transcriptomics, and imaging over time.

Our work supports increased phenotypic diversity in ATMs with obesity that is consistent with other 
single-cell work (9, 10, 26, 28). Our data captured a dramatic increase in ATMs that were phenotypically 
distinct from resident ATMs in lean tissue (Figure 3), and ATMs overall showed metabolic and catabolic 
activation in obesity (Figure 3A). Increases in numbers of  proinflammatory macrophages were evident in 
early obesity, consistent with previous reports (29). However, we show that the LAM phenotype became 

Figure 6. Histological quantification of CLSs. (A) H&E-stained images captured during spatial transcriptomics library preparation (top) and segmen-
tation results quantifying CLSs (bottom). (B) Segmentation class label proportions of 100 randomly sampled 500 μm regions from each diet condition. 
(C) Adipocyte area from images regions in B. (D) Spot correlation between myeloid cell-type proportions and segmentation results from a 150 μm region 
around each capture spot. Spots with read counts below the 0.05 quantile were removed. *P ≤ 0.01 by Pearson correlation. (E) Spot importance in global 
cell-type networks (eigenvector centrality) in HFD feeding conditions. Eigenvector centrality highlights regions of densely localized cells in the tissue. (F) 
CLShi segmentation results in 150 μm regions around each capture spot at 8 weeks (8w) and 14 weeks (14w). (G) CLS alignment represents the Pearson 
correlation between CLShi segmentation results and cell type–specific eigenvector centrality for each diet condition. *P ≤ 0.01 by Pearson correlation. 
Spots with read counts below the 0.05 quantile were removed.
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dominant among ATMs in chronic obesity (Figure 2, D and F) (7, 9, 13). These data are consistent with 
other work demonstrating that ATMs acquire nonclassical activation states in obesity and accumulate 
internal lipids (3, 13, 28, 30, 31). We note that increased lipid-uptake and proinflammatory phenotypes are 
not necessarily mutually exclusive.

LAMs are reported to be antiinflammatory, tissue-remodeling macrophages that are highly metaboli-
cally active; their transcriptional signature is associated with phagocytosis and endocytosis (12), and they 
have elevated expression of  markers such as Trem2, Lgals3, and Ctsl (9). Although there is no consensus, a 
growing body of  research supports the hypothesis that LAM function is predominantly protective (9, 12, 
32–35). LAMs are thought to mitigate the adverse effects of  obesity-induced adipose tissue remodeling 
through clearance of  dead adipocytes (9, 12, 32–35). Trem2 KO studies demonstrated that Trem2 was 
required for the emergence of  the LAM phenotype and the formation of  CLSs, and that ablation of  Trem2 
leads to increased levels of  adipocyte hypertrophy and death (9, 32).

Our data agree with these findings and additionally identify a population of  MN-derived pre-
LAMs as a closely related precursor to LAMs, which is supported by both previous lineage-tracing 
experiments (9) and by RNA velocity analysis of  murine scRNA-Seq data (10) (Figure 3). Significant 
appearance of  pre-LAMs precedes accumulation of  LAMs and coincides with initial formation of  
CLSs. Spatial analyses further support pre-LAM localization to CLSs in early obesity and suggest pre-
LAM signaling through App, Apoe, Lpl, and Lrp1 as drivers of  CLS formation.

These molecules implicate disruption of  lipid-processing pathways in development of  tissue dysfunc-
tion. Dysregulated lipid processing is associated with oxidative and ER stress that alters cell survival and 
macrophage phenotype (13, 36–38), which are, in turn, hallmarks of  disease progression in type 2 diabetes 
and Alzheimer’s disease (39, 40). For example, disease-associated microglia in Alzheimer’s disease bear 
similarity to LAMs and show increased expression of  Trem2 ligands Lpl and Apoe (39–42).

We note that the spatial transcriptomics data included 1 tissue section per diet condition with the 
exception of  lean adipose tissue, which had an additional replicate. All measures examined were consis-
tent between lean replicates. Additionally, we used thresholds for the number of  spots required for a given 
observation, such as for colocalized ligand–receptor pairs. The spatial transcriptomics data also presented a 
bioinformatic challenge related to low read depth (Supplemental Figure 21). Matched single-cell data aided 
in this analysis, and we used an inference approach to improve identification of  cell types at each spot (22). 
Improvements in unbiased spatial technology, as well as more targeted transcript and protein-level studies 
(18), will provide additional resolution on the cell types and signaling identified here. Data were only col-
lected from male mice and thus provide no comparisons based on sex, which may be a factor in adipose 
tissue inflammation and development of  insulin resistance in obesity (43, 44).

Conclusions. Our data revise current understanding of  ATM phenotypic shifts in obesity. We identify 
important milestones in MN–LAM development and provide spatial context for myeloid signaling that is 
implicated in metabolic dysfunction. Our study provides clarity on the cell types and signaling involved in 
CLS formation and accumulation, including the spatial dynamics of  LAM development in obesity.

Methods
Animals. C57BL/6J mice were used for all experiments (Jackson Laboratories; catalog 000664). Male 

mice were fed ad libitum a control ND (13.4% fat; LabDiet, catalog 5L0D) or an HFD (60% calories from 
fat; Research Diets, catalog D12492) for the indicated amount of  time starting at age 9 weeks. Animals 
were housed in a specific pathogen-free facility with a 12-hour light/12-hour dark cycle and given free 
access to food and water except for withdrawal of  food for temporary fasting associated with GTTs.

GTTs. For GTTs, starting 4 hours into the light cycle, mice were fasted with ad libitum access to 
water for 6 hours in clean cages. A 100 mg/mL d-glucose (Sigma; catalog G7021) solution was prepared 
in sterile –/– Dulbecco’s PBS (DPBS) and injected at 0.7 g/kg BW. AUC calculations were performed 
using the log trapezoidal method.

Figure 7. eWAT LR signaling dynamics. (A) LR pairs with most increased colocalization during the first 8 weeks (8w) of HFD feeding. Dot sizes are LR colo-
calization per 1000 (1k) capture spots (same as x axis) and dot colors indicate diet condition. (B) LR pairs with most increased colocalization during the last 6 
weeks of HFD feeding. (C) LR pairs with most decreased colocalization during the first 8 weeks of HFD feeding. (D) LR pairs with most decreased colocaliza-
tion during last 6 weeks of HFD feeding. (E) Counts of colocalized cell type–specific LR pairs with log fold change > 1 in each diet condition. (F) Differentially 
expressed myeloid LR pairs using Wilcoxon rank-sum test (α = 0.05, Bonferroni corrected) with nonzero colocalization in spatial data. 14w, 14 weeks.
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Cell isolation and enrichment. Stromal vascular cells (SVCs) were collected from adipose tissues as 
indicated by Muir et al. (3). After cardiac perfusion, adipose tissues were collected, minced finely to 
3–5 mm pieces, and added to ice-cold HBSS plus Ca/Mg. Up to 1.5 g of  tissue per sample was digested 
in 10 mL of  1 mg/mL collagenase II (Sigma; catalog C68850) in HBSS plus Ca/Mg at 37°C for 45 
minutes with vigorous shaking. Digests were filtered through buffer-soaked 100 micron cell strainers 
and centrifuged at 300g at 4°C to pellet SVCs. SVCs were enriched for CD45+ immune cells using 
MojoSort Mouse CD45 Nanobeads (Biolegend; catalog 480027) following the manufacturer’s proto-
col. Briefly, SVC pellets were resuspended in 1 mL of  MojoSort Buffer, pooling the 4 samples from 
each cohort (ND group, and 8-week and 14-week HFD groups) into a single, respective cohort tube, 
then filtered through a 70 μm cell strainer and placed in 5 mL polypropylene tubes. After addition of  
nanobeads, samples were sequentially processed for magnetic separation. Three magnetic separations 
in total were performed on the labeled fractions for increased purity. Final cell suspensions were fil-
tered through 40 μm pipette tip filters. Cell viability was >80% with <15% aggregation.

Library preparation. CD45+ SVCs were feature barcoded using TotalSeqB (Biolegend) Abs. The fol-
lowing Abs were used: CD4 (catalog 100573), CD11b/Itgam (101273), CD19 (115563), F4/80/Adgre1 
(123155), CD3 (100257), and Mac-2 (125425). Library preparation was performed by the University of  
Michigan Single-Cell Sequencing Core using the 10x Genomics Chromium Single Cell Kit (3′ v3; catalog 
220103/PN120262). For single-cell transcript data, 100 million reads from up to 5000 cells were collected, 
and 25 million reads were collected from up to 5000 cells were collected for feature barcoding data.

For spatial transcriptomics, within 30 minutes of  cardiac perfusion, eWAT samples that were contra-
lateral to those used for scRNA-Seq were carefully dissected for placement in cryomolds. For consistent 
sampling, fat pads were aligned anterior (tip) to posterior (proximal to testis), and a razor blade was used to 
cut a strip from just anterior to midline to just posterior to the tip. Samples were presoaked in ice-cold OCT 
compound (VWR; catalog 25608-930) and placed in biopsy cryomolds (VWR; catalog 25608-922) with 
fresh OCT compound, rapidly frozen by immersion in isopentane cooled using liquid nitrogen, and kept on 
dry ice or at –80°C until sectioning. Fresh tissue sections were cut at 10 μm after 20 minutes of  equilibration 
in a cryochamber set to –26°C or below with specimen arm at –40°C. Sections were placed onto the Visium 
Spatial Gene Expression slide and subsequent processing and library preparation were performed by the 
University of  Michigan In Vivo Animal Core pathology laboratory and the Advanced Genomics Core 
according to the manufacturer’s protocol (10x Genomics; catalog PN-1000184).

Tissue histology and immunostaining. H&E and immunostaining were performed in the Unit for Labo-
ratory Animal Medicine In Vivo Animal Core pathology laboratory at the University of  Michigan. After 
fixation for 48 hours in 10% neutral buffered formalin, tissues were trimmed, cassetted, and processed to 
paraffin in an automated tissue processor (Tissue-Tek; Sakura). Processed tissues were embedded in paraf-
fin and sectioned at 4 μm on a rotary microtome (Leica Biosystems). Tissues were mounted on glass slides 
and stained with H&E using routine protocols on an automated histostainer (Leica ST5010 Autostainer; 
Leica Biosystems), followed by coverslipping.

Data processing. scRNA-Seq files were processed using the 10x Genomics CellRanger (version 4.0.0) 
pipeline. The resulting filtered matrices were analyzed using the Python library SCANPY (45). Briefly, we 
filtered out cells that did not express at least 500 genes and genes that were not expressed in at least 10 cells, 
resulting in 13,820 cells and 31,053 genes across all diet conditions (n = 1,261 ND cells; n = 6,123 8-week 
HFD cells; and n = 6,436 14-week HFD cells). We normalized read counts per cell after filtering. Spatial 
sequencing data were processed using the 10x Genomics SpaceRanger (version 1.0.0) pipeline with mouse 
reference GRCm38, and resulting feature-barcode matrices were loaded into SCANPY (45) for further 
analysis. We filtered out capture spots that expressed fewer than 5 genes from all subsequent analysis. We 
normalized read counts per capture spot after filtering.

scRNA-Seq clustering and visualization. Clustering was performed on cells from each time point inde-
pendently using Algorithm 1 (Supplemental Algorithm 1). Preprocessing and clustering were performed 
using Python and the single-cell gene expression package SCANPY (45). scRNA-Seq data were normal-
ized and log-transformed before dimension reduction using principal component analysis with r = 50. We 
constructed the similarity matrix A using k = 9 neighbors and Euclidean distance prior to clustering with 
the Leiden clustering method (46) with resolution parameter = 0.95. This analysis resulted in 18 clusters in 
the ND group, 25 in the 8-week HFD-fed mice, and 20 in the 14-week HFD-fed mice. Visualization of  data 
was performed using uniform manifold approximation and projection (UMAP) (47). Dimensionality was 
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reduced using principal component analysis (r = 10) on the combined set of  genes with nonzero expression 
at all 3 time points. Cells were passed to UMAP with the following parameters: n neighbors = 50, mini-
mum distance = 0.25, and metric = ‘euclidean’.

scRNA-Seq cell-type annotation. Annotation of  cell types after clustering was performed using ranked 
expression of  cell type–specific mouse markers genes from PanglaoDB (48). The top 50 most unique 
marker genes were used for each cell type, sorted by their ubiquitousness index. Each cluster was 
assigned to a cell type on the basis of  the maximum mean rank of  marker genes among the differentially 
expressed genes for that cluster. A small set of  165 CD45+ cells was also identified that did not align 
with major immune-cell populations but partially aligned with stromal cells and preadipocytes (Supple-
mental Figure 3). This population was excluded from subsequent analyses. We performed differential 
expression analysis on clusters and sorted genes by their Student’s t test statistic computed using the 
scanpy.tl.rank genes groups() function with method = ‘t-test’.

Deconvoluting spatial data. We used a CARD model (https://github.com/YMa-lab/CARD/com-
mit/469704f6031d3286bfedccb037c9b041c72b7892) to spatially deconvolute cell-type signatures of  
our data and estimate the strength of  cell-type proportions across tissue-capture spots (22). CARD 
was chosen over other deconvolution methods for its ability to leverage nearby spatial information 
during cell-type proportion estimation using a conditional autoregressive modeling assumption, which 
imposes spatial correlation structure on the outputs. Briefly, each single cell was annotated for cell type 
and scRNA-Seq count matrices, and spatial transcriptomics count matrices were structured according 
to CARD documentation. Deconvolution was performed using createCARDObject() with parameters 
minCountGene = 10, and minCountSpot = 20. Outputs were stored as tabular files for downstream 
analysis. CARD estimates the cell-type proportions for k cell types defined given g genes at n tissue 
spots using the following nonnegative matrix factorization model:

X = BVT + E  (Equation 1)
where X ∈ Rg×n represents the spatial transcriptomics data matrix, B ∈ Rg×k is a matrix of  aggregate 
cell-type signatures derived from the scRNA-Seq data, V ∈ Rn×k is a matrix of  cell-type proportions at 
each tissue spot, E ∈ Rg×n is a normally distributed error matrix, and T denotes the matrix transpose. For 
further details, see Ma and Zhou (22).

Macrophage continuum analysis. A linear model was used to quantify cells along a user-defined con-
tinuum as in Li et al. (28, 49). The procedure from Li et al. (28) is generalized in Algorithm 2 (Supple-
mental Algorithm 2). Briefly, we used ordinary least squares (OLS) to linearize the correlation between 
2 states of  interest in a given cell population (e.g., ATM–LAM or MN–LAM). We quantified each 
cell’s position relative to the states of  interest by computing the distance between the cell and each state 
along the OLS solution. We defined a gene set using differential expression between the 2 states with a 
Bonferroni correction for multiple tests to α = 0.05 (  = 1.65 × 106) and chose top genes for each pole, 
ranked by their fold change.

LR colocalization. Our list of  mouse LR pairs was based on Baccin et al. (50). We defined colocalization 
as the simultaneous expression of  ligand l and receptor r at a given tissue-capture spot t. The colocalization 
strength, or l and r at t, was quantified using the geometric mean of  normalized expression, as follows:

  (Equation 2)
where lt and rt are the expression of  l at t and r at t, respectively. By using the geometric mean, we ensure that 
c(l,r) = 0, where either lt = 0 or rt = 0. LR pairs are said to be colocalized wherever c(l,r)t > 0. Time-depen-
dent colocalization between LR pairs was taken as a necessary, but not sufficient, condition in determining 
possible signaling pathways. We computed the proportion of  spots where l and r were localized and nor-
malized the proportion to 1000 spots to account for differences in tissue-section sizes.

Network models. We aim to construct a network model that preserves spatial relationships in tissue 
structure. Let G be a finite, simple, and undirected graph with node set V (G) = {1,2...,n} and edge set 
E(G) C V (G) × V (G). Let eij be an edge between node i and node j. The n nodes of  G are chosen from the 
set of  tissue-capture spots from the spatial transcriptomics data matrix. Thus, each node i has a specified 
spatial position in a 2-dimensional Euclidean plane, pi 2R2. Edges are defined between nodes as a func-
tion of  (a) their Euclidean distance and (b) their nodal properties determined by the biological question 
of  interest. In the simplest case, we may define a radius r, which is the maximum physical interaction 
distance between 2 nodes. The strength of  the relationship between node i and node j is encoded in the 
edge weight wij. Edge weights are defined by a function, f: V (G) × V (G) → R.
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  (Equation 3)
A network defined this way captures the spatial patterning of  f  in the local neighborhood constrained by 
r. It is also useful to define the weighted adjacency matrix of  G to be the n × n matrix A(G) with rows and 
columns indexed by V (G). We will denote A(G) as A and the entry (i, j) of  A as A(i,j) = aij. The weighted 
adjacency matrix otherwise may be defined as follows:

  (Equation 4)
For example, we define LAM networks on the basis of  the harmonic mean of  Mac5 CARD estimated pro-
portions over neighboring tissue spots (22). In this case, the choice of  the harmonic mean is based on the 
interpretation of  CARD outputs as proportions of  the tissue spot explained by a given cell-type signature 
(22). Let mi be the proportion of  Mac5 cell type at tissue spot i:

  (Equation 5)
The concept of  network centrality is motivated by identification of  “important” nodes of  a network (27). 
We focus on 2 measures of  network centrality: degree centrality (Equation 6) and eigenvector centrality 
(Equation 7). Degree centrality is a “local” measure of  connectivity, whereas eigenvector centrality is a 
“global” measure of  centrality. Let cd

i denote the degree centrality of  node i. Degree centrality is the sum of  
all the edge weights of  node i, as follows:

  (Equation 6)
The eigenvector centrality of  each node, defined here up to a scale factor, is proportional to the sum of  the 
eigenvector centralities of  its neighbors, that is:

  (Equation 7)
where ce is an eigenvector of  A and is the corresponding eigenvalue. The centrality is taken to be an eigen-
vector that corresponds to the largest eigenvalue of  A.

Adipocyte sizing. Images of  H&E-stained adipose tissue were analyzed for adipocyte size using the 
Python package skimage (51). Briefly, images were converted to grayscale and subjected to an unsharp 
masking filter with the following parameters: amount = 75 and amount = 100. Filtered images were filtered 
again using a median filter with default parameterization followed by morphological reconstruction using 
method = ‘erosion’ to enhance contrast between neighboring cells. Finally, images were filtered using a 
Gaussian kernel with sigma = 3. Processed images were thresholded at the 25th percentile before segmen-
tation using the watershed method. Properties of  each segmented cell were obtained using measure.region-
props(). We computed the circularity C of  all segmentation using Equation 8:

  (Equation 8)
where A is the estimated area and p is the estimated perimeter of  the segmented cell. We filtered regions 
with 0.4 < C < 0.9 and regions with areas above or below 2.32 from the time-dependent mean.

Image processing. Tissue images captured during spatial transcriptomics tissue preparation were 
analyzed using a segmentation algorithm to classify each pixel into 1 of  4 categories: CLShi, CLSmid, 
Other, and Adipocyte, on the basis of  3-channel pixel intensity values. Briefly, we used the Python 
package skimage to perform multi-Otsu thresholding on the 14-week red-green-blue (RGB) image ten-
sor (51). We then extracted basic features using feature.multiscale basic features() with the following 
parameters: intensity = True, edges = False, texture = True, sigma min = 1, and sigma max = 16. We 
developed a random forest segmentation model with 50 estimators using the Python package sklearn. 
We then used the segmentation model to analyze the remaining diet conditions. Regions surrounding 
spatial capture spots were segmented, and the proportion of  pixels in each category were computed 
and compared.
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Statistics. Statistical tests included Pearson correlation, unpaired 2-tailed Student’s t test with Welch’s 
correction, and 2-tailed Wilcoxon rank-sum tests for differential gene expression, using P values adjusted 
for multiple testing using Bonferroni correction. A corrected P < 0.01 was considered statistically signifi-
cant unless otherwise specified. Statistical tests were performed in Python using the scipy.stats library.

Study approval. All mouse procedures were approved by the IACUC at the University of  Michigan 
(Animal Welfare Assurance D16-00072 [A3114-01], PRO00008583), and care was taken to minimize suf-
fering adhering to the Institute of  Laboratory Animal Research Guide for the Care and Use of  Laboratory 
Animals (National Academies Press, 2011).

Data availability. The spatial transcriptomics and scRNA-Seq data sets generated in this study have 
been deposited in the Gene Expression Omnibus and can be accessed via accession number GSE198012. 
Source code for this investigation is available at the following link: https://github.com/CooperStansbury/
spatial_transcriptomics/commit/9831b777673dbb2880df54a951f9c3d2ed15fe4e. Figure data values can be 
found in the Supporting Data Values in supplemental materials.
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