STTAR COVID Bioresource members

William McCormack¹, Nicole Wood¹, Aideen Long¹, Orla Shiels¹, Padraic G. Fallon¹, Anne Marie McLaughlin¹, Ross McManus¹, Mark Little¹, Liam Townsend^{1,2}, Colm Bergin^{1,2}, Adam Dyer^{1,3}, Martina Hennessy^{1,3}, Deirdre Reidy³, Cliona Ní Cheallaigh¹⁻³, Ignacio Martin Loeches^{1,4}, Ana Rakovac^{1,5}, Seamas Donnelly^{1,6} and Niall Conlon^{1-3, 7}

Affiliations:

¹ Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute,

Trinity College Dublin, Dublin, Ireland

²Department of Infectious Diseases, St. James's Hospital, Dublin, Dublin, Ireland

³ Clinical Research Facility, St. James's Hospital, Dublin, Dublin, Ireland

⁴ Department of Intensive Care Medicine, St James's Hospital, Dublin, Ireland

⁵ Departments of Clinical Chemistry and Laboratory Medicine, Dublin 24 and School of Medicine,

Tallaght University Hospital, Trinity College Dublin, Dublin, Ireland

⁶ Department of Respiratory Medicine, Tallaght University Hospital, Dublin, Ireland

⁷ Department of Immunology, St James's Hospital, Dublin, Ireland

Contents

Supplementary Table 1: Clinical characteristics of sepsis patient2
Figure S1: FlowSOM-HyperFinder defined automated gating strategy
Figure S2: Single marker phenotypic characterisation of whole blood neutrophils from COVID- 19 patients4
Figure S3: Assessment of ROS and NET production in LDN from COVID-19 patients5
Figure S4: Neutrophil mediated T-cell suppression in severe patients is arginase-1 independent6
Figure S5. Imaging flow cytometry suggests aberrant intracellular arginase-1 expression in COVID-19 neutrophils7
Figure S6. Dexamethasone treatment has no effect on intracellular arginase-1 expression pattern in healthy neutrophils

Characteristics	Sepsis
Participants, n	29
Age, median (range), years	63 (24-82)
Male, n (%)	16 (55)
SOFA Score, median (IQR)	7 (5-8.5)
Shock, <i>n (%)</i>	8 (28)
Disease duration at sampling, median(range), days	1 (0-11)
Lymphocyte count (x10 ⁹ /L), median (IQR)	1.1 (0.45-1.7)
Neutrophil count (x10 ⁹ /L), median (IQR)	11.5 (6.5-17)
CRP (mg/dL), median (IQR)	188 (121-350)
Creatinine (µmol/L), median (IQR)	101 (69-144)
Causative organism, n (%)	
Gram negative bacilli	10 (35)
Gram positive cocci	12 (42)
Fungi	7 (24)
Unknown	10 (35)

Supplementary Table 1: Clinical characteristics of sepsis patient

Figure S1: FlowSOM-HyperFinder defined automated gating strategy

Figure S2: Single marker phenotypic characterisation of whole blood neutrophils from COVID-19 patients. 100ul of fresh whole blood obtained from patients with COVID-19 and healthy control was stained with surface markers for neutrophils, following which RBCs were lysed. (A) Fraction of CD16int/- and (B) CD10- neutrophils from HC (n= 7), patients with mild COVID-19 (n= 31) and severe COVID-19 (n= 17). MFI ratio of surface expression of (C) CD62L (HC, n=7; Mild C-19, n=24; Sev C-19, n=17), (D) CD63 (HC, n=7; Mild C-19, n=24; Sev C-19, n=10), (E) CXCR2 (HC, n=7; Mild C-19, n=18; Sev C-19, n=7), (F) CXCR4 (HC, n=7; Mild C-19, n=24; Sev C-19, n=17), (G) LOX-1 (HC, n=7; Mild C-19, n=27; Sev C-19, n=15), and (H) PD-L1 (HC, n=7; Mild C-19, n=31; Sev C-19, n=18). Statistical analysis was performed using Kruskal-Wallist test with Dunn's multiple comparisons test (B) and One-way ANOVA with Tukey's multiple comparison's test (E). Box and whiskers represent median with Tukey method (individual points are outliers). *p<0.05; **p<0.01.

Figure S3: Assessment of ROS and NET production in LDN from COVID-19 patients.

Fresh neutrophils were isolated from healthy controls and patients with COVID-19 and stimulated with PMA or fMLP to induce ROS and NET production. (A) Basal ROS MFI and (B) Basal % NETosis in LDN and NDN from healthy controls (HC, n=5), mild (n=6) and severe (n=6) patients with COVID-19. (C) Fold increase in ROS production in stimulated LDN over unstimulated LDN (HC, n=4; mild, n=7 and sev C19, n=5), (D) Percent increase in NETosis in stimulated LDN (HC, n=4; mild, n=6 and sev C-19, n=5) from healthy controls and patients with COVID-19. Median with IQR is shown.

Figure S4: Neutrophil mediated T-cell suppression in severe patients is arginase-1 independent. Neutrophil derived supernatants were harvested from healthy controls (HC, n= 6), mild (n=4) and severe (n= 6) patients with COVID-19. (A) Rate of T cell proliferation upon co-culture with neutrophil supernatant in the absence (same as Figure 7A) or presence of the arginase 1 inhibitor nor-NOHA. Correlation of % T-cell proliferation with (B) arginase-1 activity (n=16) and (C) arginase-1 concentration (n=16) in neutrophil supernatants. Statistical analysis was performed using one-way ANOVA and spearman correlation. *p<0.05. Median with IQR is shown.

Figure S5. Imaging flow cytometry suggests aberrant intracellular arginase-1 expression in COVID-19 neutrophils. Fresh whole blood neutrophils were stained for intracellular arginase-1 and acquired on an imaging flow cytometer to determine the cellular localisation of arginase-1 in a healthy control and a patient with mild and severe COVID-19. Granule count was performed using the spot count feature of the IDEAS analysis software. Representative images of whole blood neutrophils from a (A) healthy control, (B) mild and (C) severe COVID-19 patient with DAPI stained nuclei (blue) and intracellular arginase-1 staining (yellow). Images were obtained at 60x magnification on ImageStream X MKII. Histograms showing arginase-1 granule count distribution in neutrophils of a (D) healthy control, (E) mild and (F) severe patient. (G) Plot of arginase-1 granule count from a healthy control, and a patient with mild and severe COVID-19. Each dot represents an individual cell. Statistical analysis was performed using Kruskal-Wallis test with Dunn's multiple comparisons test. ***p<0.001; ****p<0.0001. Median with IQR is shown.

