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Introduction
With improved diabetes classification tools, it is now appreciated that the onset of type 1 diabetes (T1D) may 
occur throughout the human life span (1, 2), though diagnosis peaks between ages 5 to 7 years and near puberty 
(3). Individuals with high genetic risk for T1D, which is largely driven by the human leukocyte antigen (HLA) 
region, are more likely to receive diagnoses during these peak time periods (4, 5) and exhibit islet cell–reactive 
autoantibodies (AAbs) indicative of disease progression before age 2 (6, 7). Additionally, the cellular compo-
sition of insulitis has been demonstrated to depend upon the age at onset of T1D (5, 8), with a shift from B 
cell–dominated insulitis seen under age 7 to primarily T cells and macrophages over age 13 (9, 10), suggesting 
that the immune populations involved in disease pathogenesis vary by age at diagnosis.

The quest for cellular biomarkers of  T1D pathogenesis is limited to recirculating immune cells that do 
not perfectly reflect the populations in priming lymph nodes and autoimmune lesions (11) and is further 
confounded by age- and environment-driven variations in peripheral blood immune cell subset composition 
(12). To address these confounding technical and biological factors masking disease-related changes in the 
immune system, the Human Immunophenotyping Consortium (HIPC) developed a recommended set of  
flow cytometry panels aiding aggregation and comparison of  data across studies (13). The HIPC panels 
were designed to quantify memory T cell, regulatory T cell (Treg), effector T cell, B cell, dendritic cell (DC), 
monocyte, and natural killer (NK) cell subset proportions and phenotypes (13). These standardized panels 
have been successfully used to identify immune modulation due to vaccination (14, 15), infection (16, 17), 
autoimmunity (18, 19), and cancer (20, 21), though to our knowledge, full HIPC phenotyping of  T1D has 
not been previously performed.

The proportions and phenotypes of immune cell subsets in peripheral blood undergo continual 
and dramatic remodeling throughout the human life span, which complicates efforts to identify 
disease-associated immune signatures in type 1 diabetes (T1D). We conducted cross-sectional 
flow cytometric immune profiling on peripheral blood from 826 individuals (stage 3 T1D, their 
first-degree relatives, those with ≥2 islet autoantibodies, and autoantibody-negative unaffected 
controls). We constructed an immune age predictive model in unaffected participants and observed 
accelerated immune aging in T1D. We used generalized additive models for location, shape, and 
scale to obtain age-corrected data for flow cytometry and complete blood count readouts, which can 
be visualized in our interactive portal (ImmScape); 46 parameters were significantly associated with 
age only, 25 with T1D only, and 23 with both age and T1D. Phenotypes associated with accelerated 
immunological aging in T1D included increased CXCR3+ and programmed cell death 1–positive 
(PD-1+) frequencies in naive and memory T cell subsets, despite reduced PD-1 expression levels 
on memory T cells. Phenotypes associated with T1D after age correction were predictive of T1D 
status. Our findings demonstrate advanced immune aging in T1D and highlight disease-associated 
phenotypes for biomarker monitoring and therapeutic interventions.
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The impact of  aging on immune phenotypes is well established (22, 23); environmental exposures, par-
ticularly infection by CMV, are known to drive expansion of  a large circulating pool of  antigen-specific 
memory T cells (24, 25). However, previous investigations have primarily been limited to cohorts of  adults. 
Here, we studied a more expansive age range (2–83 years) to capture the immune dynamics of  childhood 
and adolescence, wherein the majority of  T1D diagnoses occur. In order to study disease-mediated perturba-
tions of  the immune system, our cross-sectional cohort (n = 826) was designed to include unaffected controls 
(CTR, n = 252), unaffected first-degree relatives of  individuals with T1D (REL, n = 310), rare at-risk partici-
pants who have 2 or more islet AAbs (RSK, n = 24), and those diagnosed with T1D (n = 240).

In this study, we categorized major patterns of  immune subset trajectories in unaffected individuals over 
the pediatric and adult age range, allowing for detection of  modulated trajectories in T1D. We further mod-
eled the immunophenotyping data to estimate immunological age (26) as compared with chronological age 
in individuals with T1D versus those without diabetes. Age-corrected individual phenotypes contributing to 
differences in immunological age were compared across all participants binned by progressive T1D risk or 
status (27) to understand whether each was likely to contribute to immune activation and disease pathogenesis 
as opposed to a consequence after onset (e.g., dysglycemia-induced inflammation; ref. 28). Last, we assessed 
associations between T1D genetic risk (29–31) and immunophenotypes and found limited genetic associa-
tions with accelerated immune aging in T1D. Notably, all immunophenotyping data generated herein are 
available for visualization and analysis via an interactive R/Shiny application (ImmScape; https://ufdiabetes.
shinyapps.io/ImmScape/).

Results
Impact of  age on immune population dynamics. We used 6 flow cytometry panels adapted from HIPC recommen-
dations (13), as previously published (18, 32), to generate detailed immunophenotyping data encompassing 
proportions of  innate and adaptive immune cells (Figure 1A, detailed gating in Supplemental Figures 1–6; 
supplemental material available online with this article; https://doi.org/10.1172/jci.insight.170767DS1). 
Assay reproducibility was demonstrated in an initial cohort of  12 individuals wherein the biological coeffi-
cient of  variance (CV) largely outweighed variance between technical duplicates (45.23% ± 25.66% vs. 8.87% 
± 7.56%, Figure 1B), in agreement with previously established guidelines for replicability in flow cytometric 
studies (33). These studies were then extended to characterize flow cytometric immunophenotypes with 
accompanying CBC measurements, for a total of  192 total outcome measures, on a large cross-sectional 
cohort of  n = 826 persons (Table 1). The majority of  CBC values were within normal range, with the fol-
lowing exceptions: low mean corpuscular hemoglobin concentration, low neutrophil percentage, and high 
lymphocyte percentage were observed across CTR, REL, and T1D groups, presumably related to transport 
and storage time (Supplemental Table 1). The T1D group displayed increased proportions of  individuals 
with hematocrit percentage and platelet count above the normal range, potentially reflecting dehydration 
and hyperglycemia, respectively (34) (Supplemental Table 1). Covariates including age, sex, BMI percentile, 
and race differed between groups (27) (Table 1). The AAb- and T1D cohorts both had bimodal age distribu-
tions with different proportions in each component, as is common in pediatric T1D cohorts with unaffected 
individuals comprised largely of  siblings and parents. Upon noting this age discordance, we quantified how 
each immune phenotype changed with age. We performed Spearman’s correlation analyses between age and 
all peripheral blood phenotypes obtained by CBC and flow cytometry in AAb-negative (AAb-) unaffected 
individuals (CTR and REL), demonstrating that the majority of  age-related associations appeared in the 
adaptive immune compartment (Figure 1, C and D). Visualization of  the dynamics of  major subsets defined 
by our flow cytometry panels revealed relatively consistent proportions of  innate cells across age, including 
monocytes, DCs, and NK cells, in contrast to distinct age-related contraction of  naive and expansion of  
memory subsets within the adaptive B cell and T cell compartments (Figure 1, E–L).

Age-associated immune trajectories in T1D. To assay the impact of age on the composition of the peripheral 
immune system, we characterized major trajectory patterns of the 172 flow cytometry outcome measures in 
unaffected islet AAb- CTR and REL 5–75 years of age. Smoothing splines were fit to model each phenotype’s 
trajectory over age. Hierarchical clustering analysis of normalized, centered, and scaled phenotype trajectories 
(Figure 2A) revealed 4 distinct patterns: 1) increasing linear (n = 66 phenotypes), 2) upward parabolic (n = 20), 3) 
decreasing linear (n = 74), and 4) stable (n = 12) relationships with age (Figure 2B). Using these defined cluster 
assignments (Supplemental Figure 7), we also fit smooth trajectories on T1D samples and overlaid these on 
AAb- CTR and REL (Figure 2, C and D). When organized using the clustering structure from the unaffected 

https://doi.org/10.1172/jci.insight.170767
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individuals, the T1D immune trajectories appeared to have similar overall trends (Figure 2C). Indeed, trajec-
tory-specific difference revealed that the vast majority (86%) of phenotype trajectories initially trended in the 
same direction (increasing or decreasing), and those with differing initial trends crossed at least twice, indicating 
sampling variation in the trajectory rather than disease-driven divergence. However, direct comparison revealed 
an average upward shift in cluster 1 (P < 0.001) and a downward shift in cluster 3 (P = 0.034, Figure 2D) for T1D 
versus AAb- trajectories. Over time, trajectories tended to shift farther apart (Supplemental Figure 8), together 
suggesting that individuals with T1D exhibit distinct age-dependent alterations in immune trajectories.

Accelerated immune aging in T1D. To quantify the extent to which T1D immune profiles deviate from unaf-
fected individuals across chronologic age, we created a model to estimate an “immunological age” parameter 
from our CBC and flow cytometry data. Due to hierarchical dependence and correlation among flow cytom-
etry readouts (Supplemental Figure 9), we trained a random lasso (35) model on islet AAb- CTR to identify 
phenotypes predictive of  age in individuals without autoimmunity. Our approach retained 69 immune fea-
tures (Figure 3A) with a test set prediction performance of  R2 = 0.70. Model consistency was observed by 
training on a combined AAb- cohort in which 45 variables were commonly retained and R2 = 0.70. Providing 
support for this immune age model, we saw expected shifts from naive to memory populations in both T and 
B cells over the life span (36–38). CD4+ T cells increased concomitant with a decline in CD8+ T cell frequency, 
consistent with the CD4/8 ratio increasing with age (39).

We then applied our model to the full AAb- CTR, AAb- REL, and T1D cohorts to examine differences in 
predicted age and chronological age. We observed the highest predictive performance of the immune age mod-
el among younger individuals regardless of risk cohort, which we validated by training 2 separate random lasso 
models for AAb- CTR younger than the age of 30 (R2 = 0.66) and those older (R2 = 0.56). Given that the model 

Figure 1. Immune population dynamics and QC of outcome measures. (A) Schematic representation of hierarchical gating strategy used to identify 172 
immune cell subsets evaluated from human peripheral blood. An additional 20 parameters were derived from CBC. (B) Low technical variation observed 
from peripheral blood samples (n = 12) stained in duplicate for assessment by flow cytometry. (C) –log10(p) (D) and correlation strength (absolute value of ρ) 
from Spearman’s correlation between phenotypes (each phenotype is a data point) and age showing strongest associations in the adaptive compartment as 
compared with innate or CBC. Kruskal-Wallis test with Dunn’s multiple-comparison test results denoted above bars. (E–L) Phenotype proportions estimat-
ed using a smoothing spline model as a function of age in AAb- individuals. (See Supplemental Figures 1–6 and Supplemental Tables 1 and 7.) QC, quality 
control; CBC, complete blood count; Tcm, T central memory; Tem, T effector memory; Temra, T effector memory CD45RA+; Tfh, T follicular helper; Tconv, T 
conventional; MNC, mononuclear cells; PBPC, plasmablasts/plasma cells; DN, double negative; DP, double positive.

https://doi.org/10.1172/jci.insight.170767
https://insight.jci.org/articles/view/170767#sd
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plateaued after age 30 (Figure 3B), we focused the rest of the analysis for Figure 3 on participants under 30 
years of age (Supplemental Table 2), where we observed the T1D group displayed accelerated immune aging 
relative to both AAb- CTR and REL, with an average increase of 3.36 years (P < 0.001, Figure 3B). Immu-
nological age was increased by 1.71 years on average (P = 0.016) in the recent-onset T1D subset of our cohort 
under 30 years of age (Supplemental Figure 10A), consistent with observations in the overall T1D group. 

Table 1. Demographic and clinical information

Cohort AAb- controls (CTR) AAb- first-degree  
relatives (REL)

≥2 AAb+ (RSK) T1D P value

Total participants, n 252 310 24 240
Sex, n (%)A 0.003
   Male 119 (47.22) 117 (37.74) 14 (58.33) 125 (52.08)
   Female 133 (52.78) 193 (62.26) 10 (41.67) 115 (47.92)
Age (yr)B <0.001
   Mean ± SD 25.51 ± 15.9 31.22 ± 15.68 24.62 ± 16.08 21.34±12.98
   Median (Q1–Q3) 21.26 (13.72–30.55) 35.74 (14.75–44.14) 18.61 (13.86–35.39) 17.02 (13.19–22.81)
BMI (kg/m2)B,C 0.025
   Mean ± SD 25.1 ± 6.88 26.3 ± 7.46 22.91 ± 5.67 24.25 ± 5.64
   Median (Q1–Q3) 24.2 (20.03–29.02) 25.08 (20.92–29.86) 22.27 (17.79–25.52) 23.61 (20.22–26.95)
BMI percentileB,C 0.012
   Mean ± SD 58.16 ± 33.38 56.69 ± 29.89 44.38 ± 28.96 65.03 ± 28.51
   Median (Q1–Q3) 62.71 (29.64–90.42) 58.38 (34.16–84.83) 37.48 (20.42–69.69) 73.9 (44.36–90.14)
Ethnicity, n (%)A 0.140
   HSP 16 (6.35) 38 (12.26) 4 (16.67) 20 (8.33)
   NHS 172 (68.25) 242 (78.06) 18 (75.00) 202 (84.17)
   Not reported 64 (25.40) 30 (9.68) 2 (8.33) 28 (7.50)
Race, n (%)A <0.001
   AFR 52 (20.63) 46 (14.84) 1 (4.17) 44 (18.33)
   ASN 24 (9.52) 1 (0.32) 1 (4.17) 1 (0.42)
   CAU 160 (63.49) 240 (77.42) 19 (79.17) 180 (75.00)
   Mul 2 (0.79) 10 (3.23) 3 (12.50) 9 (3.75)
   NAM 1 (0.40) 0 (0.00) 0 (0.00) 1 (0.42)
   PAC 4 (1.59) 0 (0.00) 0 (0.00) 0 (0.00)
   Not reported 9 (3.57) 13 (4.19) 0 (0.00) 5 (2.08)
Diagnosis age (yr)B,D N/A
   Mean ± SD N/A N/A N/A 12.61 ± 9.24
   Median (Q1–Q3) N/A N/A N/A 10.92 (7.51–15.22)
Disease duration (yr)B,D N/A
   Mean ± SD N/A N/A N/A 8.5 ± 9.87
   Median (Q1–Q3) N/A N/A N/A 4.91 (1.32–11.49)
HbA1c (%)B,E <0.001
   Mean ± SD 5.27 ± 0.78 5.24 ± 0.66 5.89 ± 2.37 8.63 ± 2.2
   Median (Q1–Q3) 5.2 (5–5.4) 5.2 (5–5.4) 5.2 (5–5.43) 8.1 (6.9–9.9)
Glucose (mg/dL)B,F <0.001
   Mean ± SD 73.08 ± 28.43 73.08 ± 22.79 99.83 ± 68.9 159.72 ± 102.21
   Median (Q1–Q3) 68.1 (63.15–75.45) 68.05 (62.7–75.7) 65.9 (64.6–98.25) 140.25 (86.26–213.38)
GRS1B,G <0.001
   Mean ± SD 0.23 ± 0.03 0.25 ± 0.03 0.27 ± 0.04 0.26 ± 0.04
   Median (Q1–Q3) 0.22 (0.2–0.25) 0.25 (0.22–0.27) 0.26 (0.25–0.31) 0.27 (0.24–0.29)

Data are presented as n (%) or mean ± SD and median (Q1–Q3). (See Supplemental Table 2.) Provision of height, weight, ethnicity, and race were voluntary; 
thus, these data are available for some but not all study participants as detailed in notes below. AFisher’s exact test. BKruskal-Wallis test. C94 participants 
in CTR, 76 participants in REL, 9 participants in RSK, 52 participants in T1D are missing. D3 participants in T1D are missing. E58 participants in CTR, 19 
participants in REL, 2 participants in T1D are missing. F189 participants in CTR, 161 participants in REL, 15 participants in RSK, 128 participants in T1D 
are missing. G113 participants in CTR, 26 participants in REL, 4 participants in RSK, 36 participants in T1D are missing. GRS1, genetic risk score; HbA1c, 
hemoglobin A1c; HSP, Hispanic or Latino; NHS, not Hispanic or Latino; NAM, American Indian/Alaskan Native; ASN, Asian; AFR, Black or African American; 
Mul, more than 1 race; PAC, Native Hawaiian or other Pacific Islander; CAU, White.

https://doi.org/10.1172/jci.insight.170767
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The observed accelerated immune aging in T1D did not appear to be related to history of CMV infection, 
which, perhaps surprisingly (24, 40), was not a significant driver of accelerated immune aging in our young 
cohort (average increase of 1.62 years associated with CMV infection history, P = 0.086, Supplemental Figure 
10, B and C). We also explored 9 disease-relevant features for potential associations to the residual predicted 
age in T1D (Figure 3C). The average increase of 3.36 years was not associated with HbA1c, polygenic T1D 
risk (GRS1; ref. 5), or demographic variables such as sex, race, or ethnicity (Supplemental Table 3). Disease 
duration and clinical covariates BMI percentile and rested blood glucose were significantly associated with 
accelerated immune aging in T1D (P = 0.003, P < 0.001, and P = 0.029) (Figure 3, D–F) but not in AAb- CTR 
or REL (Supplemental Figure 11). The standardized regression coefficients in a multivariable regression model 
of predicted age indicated that BMI percentile had the largest contribution (β = 1.75), followed by disease dura-
tion (β = 1.47) and rested blood glucose level (β = 1.10). The increased residual age variations observed, and 
their association with clinical features, reflect the additional immunological burdens of T1D.

Age correction of  immunophenotyping data in a T1D prediction model. Given the diverse and heterogeneous 
phenotypic distributions across the 192 flow and CBC measures, along with their nonlinear association with 
age, we chose to use a semiparametric modeling framework to investigate the specific flow cytometric read-
outs contributing to the accelerated immune aging observed in T1D. We obtained age-corrected phenotype 

Figure 2. Immunophenotype trajectories in T1D. (A) Heatmap of smoothed phenotype trajectories as a function of age in AAb- individuals with analysis restrict-
ed between the ages of 5 and 75 years to avoid predicting from sparse data. The age distribution of the cohort within this age range is shown (top histogram). 
Immune cell phenotypes were clustered into 4 distinct groups (axis colors, right) using hierarchical clustering (dendrogram, left). (B) Line plots of each smoothed 
phenotype as a function of age demonstrate distinct dynamic behavior within the 4 clusters. (C) Heatmap of smoothed phenotype trajectories as a function of 
age in T1D individuals with the rows arranged as in A. (D) Line plots of each smoothed phenotype as in B with the T1D smoothed phenotypes overlaid in red. (See 
Supplemental Figures 7 and 8.) Shifts in cluster trajectories for T1D versus AAb- were compared using a 2-tailed t test (cluster 1, P < 0.001; cluster 3, P = 0.034).

https://doi.org/10.1172/jci.insight.170767
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data for all further analyses by using generalized additive models for location, shape, and scale (GAMLSS) 
(41, 42). Using this approach, we modeled each phenotype as a smooth function of  age using the combined 
AAb- CTR and REL cohorts, obtained fitted distribution parameters for all ages, and then obtained the cen-
tiles of  their phenotypes from the estimated cumulative distribution function. The advantage of  this approach 
is that in addition to age-adjusted comparison testing, it provides the framework for an immunophenotype 
centile reference range. We built an R/Shiny user interface (ImmScape; https://ufdiabetes.shinyapps.io/
ImmScape/) for interactive exploration and visualization of  study data as illustrated in Figure 4, A–C. After 

Figure 3. Immunophenotype age modeling reveals accelerated aging in T1D. (A) Averaged coefficients from the random lasso model for all phenotypes 
above an empirically estimated threshold, showing those increasing with age (yellow) and decreasing with age (gray). (B) The random lasso model was 
used to estimate immunological predicted age in CTR (gray), T1D (red), and REL (blue). The correspondence of predicted age with chronological age is 
shown using a piece-wise regression model with a break at chronological age 30. (C) Residual immunological age is calculated from a linear regression of 
predicted age and chronological age (<30 years, n = 193). Partial regression plots between residual age and (D) BMI percentile, (E) T1D duration, and (F) 
rested blood glucose are shown for the multivariable regression model, along with the standardized coefficient and P value (<30 years of age, n = 90). (See 
Supplemental Table 3, Figure 5, and Supplemental Figures 10 and 11.)

https://doi.org/10.1172/jci.insight.170767
https://ufdiabetes.shinyapps.io/ImmScape/
https://ufdiabetes.shinyapps.io/ImmScape/
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applying GAMLSS age correction, none of  the phenotypes associated with BMI percentile or T1D duration 
using FDR correction for multiple testing. With these age-corrected data, we were able to identify 48 total 
features that were significantly different in T1D as compared with CTR participants following multiple-testing 
correction (26 increased and 22 decreased) (Figure 4D and Supplemental Table 4), including features from 
all flow cytometry panels and CBC data (Supplemental Figure 9 and Supplemental Table 1). To quantify 
the usefulness of  the age adjustment in identifying disease-relevant phenotypes, we used logistic regression 
to predict disease status (T1D versus AAb- CTR) from the 48 phenotypes and obtained an area under the 
receiver operating characteristic curve (AUROC) of  82.3%. This is an improvement over similarly constructed 
prediction models on all age-corrected phenotypes (AUROC = 79.6%) and on all uncorrected phenotypes 
(AUROC = 76.8%).

Our immune age model also shows consistency with the previously developed IMM-AGE score in Alpert 
et al. (26), which fits a trajectory through a low dimensional representation of the data and estimates a pseudo-
time or relative order of individuals as an indicator of immune aging. Applying the IMM-AGE procedure to all 
192 phenotypes, we observed a similar pattern of increased correlation between biological age and estimated 
pseudotime before age 30, followed by no correlation at later ages. We also found T1D individuals were shifted 
significantly in pseudotime relative to CTR (P = 0.022; Supplemental Figure 12A). When restricting our anal-
ysis to only the phenotypes identified by our random lasso model, the consistency between the analyses grew 
stronger, with a Spearman correlation of 0.92 between the IMM-AGE score and our predicted immune aging 
(Supplemental Figure 12B). However, it is important to acknowledge that the IMM-AGE score provides only 
a relative age value and does not correspond to a predicted age. In contrast, our model directly estimates an 
immune age while identifying relevant phenotypes and their impact on immune aging.

Immune features influenced by age and T1D status. Together, 46 features were significantly modulated with age 
alone versus 25 with T1D status, while 23 features had shared contributions from both age and T1D (Figure 5). 
Several observations within our age-corrected data validate previously reported findings in T1D. For example, 
the age-corrected proportion of naive CD8+ T cells increased, while the CD8+ Tem cell population exhibited 
decreased age-corrected frequency in T1D (43) (Supplemental Figure 13, A and B). We observed reduced 
frequencies of CD8+ T cells lacking both activation markers CD38 and HLA-DR in T1D with concomitant 
increase in CD8+CD38+HLA-DR– cells (44) (Supplemental Figure 13, C and D). CD56dim NK cells decreased 
with expected concomitant increase in CD56bright NK cells in T1D participants, in agreement with 2 publica-
tions (44, 45), but in conflict with another (46), as well as a trend (P = 0.095) in ≥2AAb+ RSK participants 
(Supplemental Figure 13E). Furthermore, T1D participants showed reduced frequency of transitional B cells 
as compared with AAb- CTR and REL (Supplemental Figure 13F) (47). As summarized in Figure 5, we found 
an association of increasing non-class-switched memory B cells with age, while transitional B cells declined 
with both aging and T1D (48, 49). Finally, CBC parameters showed both age- and T1D-dependent shifts: 
MCV and MCH increased with age and T1D, while hemoglobin and hematocrit increased in T1D, findings 
supported by existing literature (50). With the above supporting our approach, we identified themes pertinent 
to immune dysregulation in T1D: altered expression of the Th1-associated chemokine receptor CXCR3 and 
coinhibitory receptor PD-1 on multiple T cell subsets, as well as increased monocyte expression of HLA-DR 
(Figure 5), which we explored further as described below.

Increased CXCR3 expression on T cell subsets of  T1D participants. Of all parameters measured, the greatest 
mean difference between T1D and CTR (without a significant age association) was substantially increased fre-
quency of  CXCR3 expression among naive CD8+ T cells (Figure 5), due to increased CXCR3lo and decreased 
CXCR3– subset percentages (Figure 6, A and B, and Supplemental Figure 14, A and B). CD8+ Temra exhib-
ited the same patterns of  increased CXCR3lo and decreased CXCR3– frequencies in T1D (Figure 6, C and 
D, and Supplemental Figure 14, C and D). Individuals with T1D also demonstrated elevated frequencies 
of  CXCR3+ Tfh (Figure 6E and Supplemental Figure 14E) as previously reported (44). Together, these data 
show a shift toward increased CXCR3-expressing populations across T cell subsets in T1D.

Altered PD-1 expression on T cells from T1D participants. We observed altered expression of  the coinhibi-
tory receptor, PD-1, on T cell subsets (Figure 5). Despite significantly increased frequency of  PD-1+ cells 
within naive CD4+, naive CD8+, and CD8+ Temra subsets from T1D participants (Figure 6, F–H, and 
Supplemental Figure 14, F–H), PD-1 expression intensity (MFI) was decreased in T1D participants on the 
majority of  subsets analyzed: CD4+ Tem, CD4+ Temra, CD4+ Tcm, and CD8+ Tcm (Figure 6, I–L, and 
Supplemental Figure 14, I–L). Importantly, due to age-associated changes in PD-1 expression across all 
clinical groups (Figure 3A), a number of  these T1D-associated differences were most apparent following 
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age correction (Figure 6, G and J–L, and Supplemental Figure 14, G and J–L). Interestingly, PD-1 MFI 
was also significantly decreased on memory CD4+ and CD8+ T cell subsets of  AAb- REL as compared 
with CTR (Figure 6, I–L, and Supplemental Figure 14, I–L), suggesting a potential genetic predisposition 
to altered expression of  PD-1.

While some studies in small, racially homogenous cohorts have associated single nucleotide polymor-
phisms (SNPs) in the PDCD1 locus with T1D (51–54), large genome-wide association studies (GWAS) in 
European cohorts have failed to replicate these findings (31, 55). We surmised that a PDCD1 SNP that has 
not been identified in GWAS efforts may be enriched in T1D, AAb+, and AAb- REL participants from 
our trans-ancestral cohort (Table 1). To test this hypothesis, we downloaded PDCD1 expression quantita-
tive trait loci for whole blood from the Genotype-Tissue Expression project (GTEx) (56) and tested for 
increased presence of  each SNP in T1D versus CTR groups via logistic regression. The top enriched SNP 
was rs6422701, with the T allele being overrepresented in the T1D cohort (Supplemental Table 5). The 
T allele of  rs6422701 was associated with decreased PDCD1 mRNA expression in whole blood in GTEx 
(Supplemental Figure 15A). We saw significantly decreased PD-1 expression on CD4+ Tem and CD4+ 
Temra, but not CD4+ Tcm or CD8+ Tcm, in CTR and AAb- REL with the T allele (Supplemental Figure 
15, B–E), partially mirroring observations in REL versus CTR overall (Figure 6, I–L, and Supplemental 
Figure 14, I–L).

Figure 4. Age-corrected phenotypes reveal T1D-specific differences. As an example of the utility of our model, (A) in uncorrected data, there is no signifi-
cant difference detected between T1D (n = 232) and CTR (n = 240). (B) Using the GAMLSS-corrected data, there is a significant difference between T1D and 
CTR. (C) All age-corrected data are available for download and analysis via the ImmScape R/Shiny application. (D) Age-corrected quantile values for T1D 
versus CTR were compared using nonparametric Kruskal-Wallis test and post hoc Dunn’s test with Benjamini-Hochberg multiplicity adjustment. Pheno-
types increased (red) and decreased (blue) in T1D (regardless of age) are shown. (See Supplemental Table 4, Figure 5, and Supplemental Figures 9–11.) MCV, 
mean corpuscular volume; MCH, mean corpuscular hemoglobin; RDW, red cell distribution width; PD1, programmed cell death 1.

https://doi.org/10.1172/jci.insight.170767
https://insight.jci.org/articles/view/170767#sd
https://insight.jci.org/articles/view/170767#sd
https://insight.jci.org/articles/view/170767#sd
https://insight.jci.org/articles/view/170767#sd
https://insight.jci.org/articles/view/170767#sd
https://insight.jci.org/articles/view/170767#sd
https://insight.jci.org/articles/view/170767#sd
https://insight.jci.org/articles/view/170767#sd
https://insight.jci.org/articles/view/170767#sd
https://insight.jci.org/articles/view/170767#sd


9

R E S E A R C H  A R T I C L E

JCI Insight 2023;8(17):e170767  https://doi.org/10.1172/jci.insight.170767

Increased HLA-DR expression on monocytes with T1D-associated HLA-DR4 genotype. While most of the immune 
features associated with T1D (Figure 5) were comparable between AAb- CTR and AAb- REL (Figure 3B and 
Figure 6, A–H), some phenotypes showed distinct differences between these groups (Figure 6, I–L). As genetic 
loci contributing to risk for T1D are enriched in REL (5), we performed QTL analysis on genetically unrelated 
participants to test for associations between age-corrected flow cytometric phenotypes and genotypes at 240 
T1D risk variants (29–31) found at ≥5% minor allele frequency (MAF) in our cohort, with RSK or T1D status, 
sex, and population stratification as covariates. Following adjustment for multiple testing of genotypes and phe-
notypes, a significant association (FDR < 0.05 corrected by Benjamini-Hochberg multiplicity adjustment) was 
observed between the rs7454108 T1D risk genotype and increased HLA-DR MFI on monocytes (Figure 7A 
and Supplemental Table 6). As rs7454108 tags the high-risk HLA-DR4-DQ8 haplotype (29, 57, 58), we asked 
whether other HLA haplotypes carrying strong risk or protection from T1D likewise impacted this phenotype. 
However, we did not find evidence of association with monocyte HLA-DR MFI for the high-risk HLA-DR3-
DQ2 haplotype (rs2187668; refs. 5, 29) or the dominant protective HLA-DR15-DQ6 haplotype (rs3129889; 
refs. 5, 29) (Figure 7A). Monocyte HLA-DR expression showed no age dependence (Figure 7B). The GAM-
LSS-corrected data demonstrated evidence of a genotype-dosage effect (Figure 7C). Specifically, HLA-DR MFI 
was increased in participants heterozygous for HLA-DR4 as compared with those carrying other HLA class II 
genotypes (DRX/X) and further increased in participants homozygous for HLA-DR4 (Figure 7C). Notably, 
the association between HLA-DR4 genotype and HLA-DR MFI on monocytes was present in all groups, sug-
gesting that this genetic driver of immune phenotype may act independently of AAb positivity or disease status 
(Figure 7, D–G).

Discussion
We conducted flow cytometric analysis of  peripheral blood from a well-characterized cross-sectional cohort 
(n = 826), to understand how risk for autoimmune diabetes intersects with age, impacting the broad immune 
landscape. These data revealed striking dynamics of  immune age within the adaptive compartment, which 
could be used to predict chronological age with a high degree of  accuracy in CTR under 30 years of  age. 
This resulting data set corroborates a list of  cellular features that change dramatically as a function of  age 
(e.g., increased CD4+ T cells and decreased B cells and CD8+ T cells, with shifts from naive to memory 

Figure 5. Age- and T1D-associated phenotypes. Rectangular Venn diagram summarizes phenotypes with unique association to age (left, blue shading) or 
T1D (right, yellow shading), with common phenotypes displayed in the overlapping area (center, green shading). The total number of phenotypes that are 
“unique” or “common” to age or T1D are indicated in parentheses. A color bar illustrating the magnitude and direction of effect for age or T1D is to the left 
of each phenotype (bar length represents the effect size; bar color indicates the phenotype is upregulated [yellow or red] or downregulated [gray or blue] in 
age or T1D, respectively). (See Figure 3A and Figure 4D.)
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populations in adaptive immune cells over the life span; refs. 36–39). This complements prior descriptions 
of  age-associated serological changes (59) and alterations in the epigenetic DNA methylation “clock” (60). 
Moreover, our data fill important gaps from prior studies (13, 61–63) to understand changes in the pediatric 
immune system — a critical period for understanding normal frequencies and cellular distributions.

Our model revealed accelerated immune aging across the first 30 years of  life and numerous cellular 
features associated with T1D after GAMLSS age correction. Our age correction model thus enabled the 
assessment of  phenotypic changes as influenced by T1D, overcoming a challenge of  cross-sectional studies 
where donor age distributions are often skewed. This is of  particular value to biomarker studies in pediat-
ric diseases, where sampling of  age-matched CTR is often limited. Beyond this, using our cross-sectional 
immunophenotyping data set, we built a model capable of  predicting T1D status with internal prediction 
performance at 82.3% accuracy. Evaluation of  this model in larger pre-T1D cohorts and longitudinal sam-
pling will be necessary to validate its possible utility for T1D prediction and monitoring.

Considering age is a key aspect of  understanding T1D pathogenesis. The first hallmark of  β cell auto-
immunity (i.e., emergence of  multiple islet AAbs) often occurs within the first 2 years of  life (6). Younger 
age of  onset has also been associated with the highest risk HLA-DR3/4 diplotype (5), a prominent T and B 
cell insulitic lesion in the pancreas of  T1D organ donors (9, 10), a bias toward IFN-γ:IL-10 T cell autoreac-
tivity (64), and more acute clinical loss of  endogenous C-peptide (29). While other studies have considered 
the impact of  age on the changing immune system in T1D (65), we believe our study is unique by covering 
a large, multidecade age cohort, including a small group of  ≥2AAb+ (i.e., stage 1–2 T1D; ref. 27) partici-
pants, and implementing a strategy to account for age differences.

In an effort to explain the observed accelerated aging, we examined T1D GRS1 (5) and clinical covari-
ates associated with disease duration and glycemic dysregulation. Modest associations emerged with BMI 
percentile, disease duration, and rested blood glucose level but not with polygenic risk. Thus, we posit that 

Figure 6. Increase in CXCR3-expressing T cell subsets and increased frequency, albeit lower intensity, of PD-1 expression in T1D. Age-corrected quantile 
values for (A–E) CXCR3lo, CXCR3–, or CXCR3+ frequency; (F–H) PD-1+ frequency; and (I–L) PD-1 MFI on T cell phenotypes (CTR n = 240, REL n = 293, RSK n = 
23, T1D n = 232) for A–D; (CTR n = 247, REL n = 299, RSK n =24, T1D n = 235) for E; (CTR n = 247, REL n = 298, RSK n = 23, T1D n = 237) for F–L. Significant P 
values shown on graph (Kruskal-Wallis test with post hoc Dunn’s test and Benjamini-Hochberg multiplicity adjustment). (See Supplemental Figure 14.)
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accelerated immune aging observed may result from chronic inflammation, as has been described previous-
ly (66–70), and/or hyperglycemic stress, as key features of  T1D. High-risk participants who progressed to 
disease in The Environmental Determinants of  Diabetes in the Young cohort displayed chronic enteroviral 
shedding (71), evidence of  persistent infection and inflammation. In addition, increased risk of  infection 
in all diabetes, but also in T1D when compared with type 2 diabetes, highlights that individuals with T1D 
have multiple impacts on overall immune function (72).

Within this study, we replicated multiple findings in smaller cohort studies of  T1D participants com-
pared with CTR (43–45, 47–50), as well as immune aging studies (36–39), providing support for both the 
age prediction and T1D prediction capacity of  our models. Moreover, we identified phenotypes of  immune 
system changes with age and T1D, which to our knowledge, have not been previously reported. Our data set 
is readily accessible via ImmPort (accession number: SDY2299) and in an interactive format (https://ufdi-
abetes.shinyapps.io/ImmScape/) for public visualization and comparisons to other diseases and cohorts of  
interest. Phenotypic shifts associated with both aging and T1D generally reflected accelerated aging in their 
directionality. However, 2 age-associated phenotypes were reversed in T1D relative to CTR aging trends: 
naive CD8+ T cell and CD8+CD38+HLA-DR– T cell frequencies were increased in T1D, despite decreasing 
with age in CTR. These phenotypes may reflect the same cell subset, considering that the majority of  naive 
CD8+ T cells are CD38+HLA-DR– (Supplemental Figure 3). Peripheral naive T cells are largely maintained 
through homeostatic expansion and tonic T cell receptor (TCR) signaling (73). CD8+ T cells usually repre-
sent a shrinking proportion of  the T cell pool over time (74). Their increase in the periphery in T1D partici-
pants herein may reflect thymic output, increased expansion, and/or differentiation to stem cell memory T 

Figure 7. Increased HLA expression on monocytes in HLA-DR4 individuals. (A) Volcano plot showing QTL analysis results of all flow cytometry phe-
notypes versus T1D risk loci. Associations shown according to direction and effect size (β) of each SNP on T1D risk. Blue designates higher and black 
designates lower data density. Associations between HLA-DR MFI on monocytes and tag SNPs for HLA-DR4 (rs7454108), -DR3 (rs2187668), and -DR15 
(rs3129889) T1D risk or protective class II HLA alleles highlighted in red. (B) The GAMLSS model fit on all AAb- (CTR and REL combined, n = 562) to correct 
for age. Quantiles of HLA-DR MFI on monocytes in (C) whole cohort (n = 806), (D) CTR (n = 248), (E) REL (n = 302), (F) RSK (n = 24), (G) and T1D participants 
(n = 232) according to number of copies of HLA-DR4. Significant P values shown on graph (Kruskal-Wallis test with post hoc Dunn’s test and Benjami-
ni-Hochberg multiplicity adjustment). (See Supplemental Table 6.) X, any HLA-DR allele other than DR4.
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cells (CD45RA+CXCR3+CCR7+CD27+CD28+CD95+) (75), which could not be distinguished from naive T 
cells in this data set.

The observed increase in CXCR3 expression across multiple T cell subtypes could influence maturation 
potential, trafficking, and/or polarization to promote disease pathogenesis. Findings from murine models 
corroborate a role for CXCR3 in T cell trafficking to the islets and autoimmune diabetes development (76), 
indicating Th1 skewing as a globally dysregulated phenotype in T1D. Higher CXCR3+ memory T cell fre-
quencies were shown in high-risk AAb+ REL compared with low-risk relatives (77), suggesting linkage 
to disease processes (77). CXCR3+ naive T cells are reportedly enriched in autoreactivity in mice and are 
thought to contain higher affinity (CD5hi) autoreactive TCRs (78). Additionally, expression of  CXCR3 on 
naive CD8+ T cells has previously been associated with enhanced effector phenotype differentiation (79, 80).

The observed shifts in PD-1 expression in T1D extend previous findings of  decreased mRNA and 
protein levels in CD4+ T cells of  T1D participants (81) by defining decreased PD-1 on particular subsets 
(CD4+ Tem, CD4+ Temra, CD4+ Tcm, and CD8+ Tcm). These data indicate that the PD-1 pathway may 
serve as a critical negative checkpoint for maintaining tolerance to islet β cells (82). Observing reduced 
PD-1 MFI within REL suggests a potential genetic predisposition toward impaired PD-1 expression and 
should be subjected to validation in larger cohorts. Our finding regarding monocyte HLA-DR overexpres-
sion in HLA-DR4 participants builds upon the prior observation of  this association in cord blood (83). 
Increased activation and/or antigen presentation afforded by the increased expression could theoretical-
ly alter aspects of  T cell selection and cellular differentiation. These phenotypic observations regarding 
expression of  CXCR3, PD-1, and HLA-DR warrant future targeted studies on the mechanism and down-
stream impact of  the observed altered expression levels.

In T1D, we noted amplification of  immune aging trajectories but do not have sufficient data in very 
young participants (e.g., birth to age 7) to understand when this trend is initiated and did not assess lon-
gitudinal samples to compare to preclinical status. As result of  this data sparsity at either end of  the life 
span, our interpretation of  findings applies most directly to the impact of  diagnosed disease on immuno-
phenotypes after age correction of  data, particularly in individuals younger than 30 years. The plateau in 
model performance over age 30 may result from lack of  other indicators of  overall aging and inflammation 
outside the scope of  this study. Given the variable duration of  disease in our cohort, association of  immune 
phenotypes with progression of  T1D in RSK individuals (≥2AAb+) would be best studied in longitudinal 
samples. Potential covariates of  interest include pubertal status and time of  blood sample draw (84), which 
were not recorded or included in the analysis. Beyond the immunophenotypes and effector molecules inves-
tigated herein, other immunological compartments of  potential interest include mast cells, eosinophils, 
and basophils (85, 86), along with tissue-resident populations (11, 87–89). Experiments to address these 
questions are ongoing.

Our efforts to identify a signature of  immune system age, as well as cellular phenotypes associated 
with T1D, provide a number of  additional targets for consideration in precision medicine–based therapies 
(e.g., CXCR3+ T cells, the PD-1 costimulatory axis, antigen presentation on monocytes, specifically in 
individuals with HLA-DR4). Moreover, these results provide cellular and pathway targets for consideration 
in mechanistic studies of  prior trials where efficacy differed according to participant age (e.g., rituximab 
[anti-CD20, TN05], low-dose anti–thymocyte globulin [ATG, TN19], abatacept [CTLA4-Ig, TN09 and 
TN18]) (90, 91) and in future intervention studies. Importantly, immune-directed therapeutic interventions 
aimed at interrupting the autoimmune destruction of  β cells, at or prior to clinical diagnosis of  T1D, often 
have outcomes impacted by the age of  participants at the time of  drug treatment (reviewed in ref. 92). 
We suggest this observation reflects altered immune system constituents that shape therapeutic response 
(or lack thereof), depending on the target and drug mechanism of  action. The approach of  considering 
immune age, phenotype, and chronological age of  trial participants may improve clinical response profiles 
and progress toward precision medicine–based strategies to prevent and reverse T1D.

Methods

Study design 
Individuals were recruited from the general population and outpatient endocrinology clinics at the Univer-
sity of  Florida (UF; Gainesville, Florida, USA), Nemours Children’s Hospital (Orlando, Florida, USA), 
and Emory University (Atlanta, Georgia, USA). Following procurement of  written informed consent, 

https://doi.org/10.1172/jci.insight.170767


1 3

R E S E A R C H  A R T I C L E

JCI Insight 2023;8(17):e170767  https://doi.org/10.1172/jci.insight.170767

peripheral blood samples were collected into the UF Diabetes Institute (UFDI) Study Bank from 826 non-
fasted participants by venipuncture. Samples were collected in EDTA-coated vacutainer tubes for flow 
cytometry, CBC, HbA1c, TCRβ-sequencing, and genotyping assays; serum separator vacutainer tubes for 
islet AAb and CMV IgG antibody measurement; and sodium fluoride/potassium oxalate–coated tubes 
(BD Biosciences) for rested blood glucose quantification. Samples were shipped or rested overnight in 
order to standardize duration between collection and evaluation at UF (33). Data were collected from all 
incoming blood samples to the UFDI from 2014–2018, hence the lack of  age-matching between clinical 
subgroups based on clinical status. Importantly, participants had no reported infection or malignancy at 
time of  blood draw, and sample collection preceded the COVID-19 pandemic. Demographic and clinical 
information are presented in Table 1.

AAb measurement
Islet Autoantibody Standardization Program–evaluated (IASP-evaluated) ELISAs (93) were performed on 
serum to measure T1D-associated AAbs reactive to glutamic acid decarboxylase 65, insulinoma-associated 
protein-2, and zinc transporter-8, which respectively performed with AUROCs of  0.936, 0.876, and 0.917 
in the most recent IASP workshop. REL and CTR participants were considered RSK if  possessing reactiv-
ity to at least 2 of  the screened AAb specificities (27).

Flow cytometry
Rested whole blood samples were stained with 6 flow cytometry panels, as we have previously described 
(18, 32). Briefly, 200 μL of  whole blood was incubated with antibodies (Supplemental Table 7) for 30 min-
utes at room temperature. Red blood cells were lysed using 1-step Fix/Lyse Solution (eBioscience) and cells 
washed with staining buffer. Data were acquired on an LSRFortessa (BD Biosciences) within 24 hours of  
staining. Analyses were performed in FlowJo software (v9 and v10; BD Biosciences) with gating strategies 
in Supplemental Figures 1–6.

CBC, HbA1c, and blood glucose measurement
Rested whole blood samples were characterized using the Coulter Ac•T 5diff  CP (Cap Pierce) Hematology 
Analyzer (Supplemental Table 1). HbA1c was measured with the DCA Vantage Analyzer (Siemens) and 
rested blood glucose with the Contour Next EZ glucometer (Bayer).

CMV status
A random subset (40.56%) of  the total flow cytometry cohort was assayed for evidence of  prior or primary 
CMV exposure by predicting serostatus from TRBV (TCRβ) sequences (Adaptive Biotechnologies) derived 
from PBMCs (94, 95). CMV status was inferred using methods and trained model described by Emerson et 
al. (96). Upon testing, predictions over 0.5 were deemed CMV positive. Serostatus from a CMV IgG anti-
body ELISA (Zeus Scientific) was available for 71.04% of  all samples that were TCRβ-sequenced from our 
cohort. We noted reliable concordance between the 2 methods of  CMV status classification, as evidenced 
by AUROC of  0.886. In cases of  discrepancy (14.83% of  participants with data from both assays), CMV 
classification from ELISA superseded the TCRβ data as the result used for further analysis.

Genotyping of T1D risk loci and quantitative trait loci analysis
Samples were genotyped using our custom UFDIchip SNP array (97, 98), which includes the Axiom Preci-
sion Medicine Research Array (Thermo Fisher Scientific), all content from the ImmunoChip.v2.0 (99), and 
previously reported credible T1D risk variants (55). QC steps and QTL assessment were performed with 
plink 1.9. T1D GRS1 was calculated as previously established (97).

QC measures were performed prior to association testing, as previously described (100). Participants 
were excluded from analysis if  any of  the following conditions applied: >2% of  directly genotyped SNPs 
were missing, genetically imputed sex did not match reported sex, or heterozygosity rate differed ±3 SD 
from the mean of  all samples (2.91% of  participants excluded based on these criteria). Identity by descent 
calculations were used to remove related individuals with pi-hat > 0.2, randomly retaining 1 participant 
in each related pair (101), resulting in the exclusion of  40.56% of  participants. Genotypes at 277 previ-
ously curated T1D risk loci (29–31) were pulled directly from the UFDIchip or, if  missing from the chip, 
obtained from imputation to 1000 Genomes Phase 3 (v5) or Human Reference Consortium (vr1.1) using 
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the Michigan Imputation Server (102), with imputed genotypes from the reference cohort providing the 
higher imputation quality used for QTL analysis (mean R2 = 0.952). SNPs that were missing in >2% of  par-
ticipants, with a MAF < 5%, or failing Hardy-Weinberg equilibrium at P < 1 × 10–6 were excluded. A linear 
regression analysis was performed using PLINK (103) for genotype association with GAMLSS-corrected 
flow cytometric phenotypes, with clinical group (CTR or REL, RSK, T1D) and sex included as categorical 
covariates and 10 multidimensional scaling components as continuous covariates to account for population 
stratification. P values were adjusted for multiple testing of  genotypes and phenotypes to generate an FDR 
using the Benjamini-Hochberg method with R/p.adjust. A volcano plot was created using GraphPad Prism 
v7.0 depicting –log10(FDR) and the magnitude of  the association between the phenotype and the T1D risk 
allele (β coefficient) (29–31).

Statistics
Phenotype trajectories. Data are presented as mean ± SD, and all tests were 2 sided unless otherwise specified. 
Technical and biological CV in the flow cytometric assay were assessed on a cohort of  12 samples that were 
run in technical duplicates using GraphPad Prism software version 7.0. Spearman’s correlations between 
immune phenotypes and age were computed using R/pspearman.

For characterizing the flow cytometric phenotype dynamics over age in CTR and REL, missing phe-
notype data due to failure of  visual QC validation of  staining (<5.03% of  data per phenotype) were medi-
an-imputed. Smoothing splines of  each phenotype versus age were fit with 3 degrees of  freedom using the 
smooth.spline R function (104).

To model the dynamics of  each phenotype across age, we log-transformed the imputed data, adding 
a constant equal to 1 or, for phenotypes with possible values less than 1, we added an additional constant 
to shift all values larger than or equal to 0. We then z-transform scaled each phenotype prior to fitting a 
smoothing spline, as described above, across age with 3 degrees of  freedom. The smoothed trajectory pre-
dictions were restricted to an age range of  5–75 years to avoid predicting outside the observed age range 
of  our other cohorts present. The phenotype trajectories were then clustered using hierarchical clustering 
with the complete method and the Canberra distance metric to group phenotypes with similar trajectory 
patterns over age. Heatmaps of  processed data from AAb- CTR and REL samples, ordered by participant 
age on the x axis and dendrogram clustering on the y axis, were created using R/gplots. R/ggplot2 and 
R/ggpubr were used to create figures of  overlaid smooth splines of  phenotypes for 4 clusters. The same 
procedures were applied to obtain T1D phenotype trajectories, and the T1D smoothed trajectories were 
plotted keeping the same y axis order for comparison with age-related trajectories in CTR and REL.

Comparing smooth trajectory fits. To compare the spline fits for the 2 cohorts (CTR and REL combined 
vs. T1D), we computed the trajectory shift as the difference in the overall average trajectory value between 
cohorts. A 2-tailed t test was used to test for significant shifts for each of  the 4 clusters. To determine the 
initial trajectory direction, for each phenotype in each cohort, we calculated the mean value of  successive 
differences in the trajectory over years 5–15, with a positive value indicating an increasing trajectory and 
negative value a decreasing trajectory. We estimated the number of  times the trajectories crossed by exam-
ining the number of  sign changes along the successive differences across the entire age range obtained.

Immunophenotype age model. We used the random lasso (35) method on CTR to identify features asso-
ciated with immune aging. We first imputed missing values within each feature to its median and then 
z-transform scaled. With chronological age as the response and all features as predictors, we repeated our 
random lasso procedure on 1,000 random train-test subsets with 80% of  the individuals in a training set and 
the remaining 20% as a held-out test set. The first stage of  the random lasso consisted of  1,000 bootstrap 
samples of  the training set, with each bootstrap estimating the coefficients on 15%–20% randomly selected 
features. The initial variable importance score for all phenotypes was calculated as the average coefficient 
value. The second stage of  the random lasso used another 1,000 bootstrap samples from the training set, 
and 10% of  the features were fit in a lasso model using the initial importance score as the selection proba-
bility. For each data split, the overall variable importance score was obtained by averaging the bootstrapped 
coefficients. A final variable importance score represented the average of  1,000 random data splits.

Of  the 192 features evaluated, 182 had non-zero average coefficients from the random lasso procedure; 
thus, we further implemented a procedure to obtain an importance score cutoff. All variables higher than 
our cutoff  threshold were considered predictive of  age. To determine the optimal cutoff  value, we ran 5-fold 
cross-validation and evaluated the root mean squared error (RMSE) for each cutoff  in the random lasso 
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procedure. We estimated an elbow point per fold to minimize RMSE. We repeated this 5-fold cross-vali-
dation 20 times, and the mean of  elbow points was the final cutoff. The final linear model is the averaged 
coefficients from the random lasso models, which we then applied to the CTR, REL, and T1D cohorts to 
predict immunological age.

To internally validate our age prediction model, we similarly trained a random lasso model on addi-
tional cohorts: 1) combined CTR and REL, 2) CTR younger than 30, and 3) CTR older than 30.

Age prediction within T1D and control participants. A linear regression model of  predicted age was fit on 
the chronological age and a factor for clinical group (T1D versus combined CTR and REL). We then fit a 
multivariable model of  predicted age on chronological age, sex, ethnicity, reported race, BMI percentile cal-
culated as previously described (105), HbA1c, rested blood glucose, and GRS1. Continuous variables were 
z-transform scaled to obtain standardized coefficients. To ensure a sufficient number of  individuals were 
represented across groups, the model was limited to participants with reported race of  African American 
or Caucasian (Table 1).

Within the T1D cohort, we again fit a multivariable model for the variables described above in addition 
to disease duration and diagnosis age. Due to the correspondence in our cohort between diagnosis age and 
age at sampling time, Δage between chronological and predicted age was not used as the outcome vari-
able in this analysis. Instead, we used residuals determined from a linear regression of  predicted age and 
chronological age to explain factors associating with differences between chronological and predicted age 
in T1D. The standardized multivariable model was fit to the CTR and REL cohorts separately.

Adjusting for age using GAMLSS model. In order to obtain age-adjusted centiles of  immunophenotypes 
in CTR and T1D cohorts, we employed a weighted GAMLSS (41, 42). In CTR and REL, each phenotype 
was modeled as a cubic spline function of  age using either a Box-Cox-t (BCT) distribution or normal (NO) 
distribution, depending upon the skewness of  the phenotype distribution. A skewness cutoff  of  0.5 was 
determined empirically, with distributions having skew larger than 0.5 fit using the BCT distribution. For 
phenotypes using the BCT distribution, values were shifted by a constant value to ensure positivity as neces-
sary. Weights were assigned according to the age distribution density such that ages younger than 10 years 
were assigned a relative weight of  10, ages older than 70 years were assigned a relative weight of  0.1, with all 
other ages assigned a weight of  1. We then used the distribution function (pBCT or pNO in the GAMLSS 
R package) and the predicted parameter values from the weighted GAMLSS model to obtain age-corrected 
quantile values for all individuals. We note 2 exceptions to the above: 1) memory Treg CD25 index had a 
skewness of  0.54 but was better fit using the normal distribution, and 2) CXCR3hi (CD8 Temra) was fit using 
the unweighted GAMLSS model (all weights equal to 1) because of  errors using the weighted model.

Identifying T1D-associated immunophenotypes. The age-corrected quantile values were used to compare 
T1D versus RSK, REL, and CTR individuals. A nonparametric Kruskal-Wallis test was performed for 
each phenotype followed by a post hoc Dunn’s test with a Benjamini-Hochberg multiplicity adjustment. 
Multiplicity-adjusted P < 0.05 was considered significant.

Immunophenotype prediction model. We first imputed missing values within each phenotype to its median 
and then z-transform scaled each phenotype. To handle correlations and dependencies in the phenotypes, 
we used principal component analysis. The first 30 components were selected based on an elbow plot of  
explained variance and used as predictors in generalized linear model of  T1D versus CTR status. The 
AUROC was averaged over 1,000 independent samplings of  an 80:20 train-test set split.

Comparison to IMM-AGE score. We applied the same approach described in Alpert et al. (26) to estimate 
an immune pseudotime using the diffusion maps algorithm. Specifically, we used the default options in the 
DiffusionMap function in the R/destiny package on our phenotype matrix.

Study approval
Participants provided written informed consent prior to study enrollment and sample collection, in accor-
dance with IRB-approved protocols at the UF, Nemours Children’s Hospital, and Emory University.

Data availability
Flow cytometric data are available at ImmPort (https://www.immport.org, accession number: SDY2299). 
Supporting Data Values associated with this manuscript are provided in the supplement. Data are also avail-
able for visualization and analysis via an interactive R/Shiny application (ImmScape; https://ufdiabetes.
shinyapps.io/ImmScape/) and from the corresponding author upon reasonable request.

https://doi.org/10.1172/jci.insight.170767
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