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Dissemination within the peritoneal cavity is a main determinant of poor patient outcomes from high-grade serous
carcinomas (HGSCs). The dissemination process is poorly understood from a cancer evolutionary perspective. We
reconstructed the evolutionary trajectories across a median of 5 tumor sites and regions from each of 23 patients based
on deep whole-exome sequencing. Polyclonal cancer origin was detected in 1 patient. Ovarian tumors had more complex
subclonal architectures than other intraperitoneal tumors in each patient, which indicated that tumors developed earlier in
the ovaries. Three common modes of dissemination were identified, including monoclonal or polyclonal dissemination of
monophyletic (linear) or polyphyletic (branched) subclones. Mutation profiles of initial or disseminated clones varied
greatly among cancers, but recurrent mutations were found in 7 cancer-critical genes, including TP53, BRCA1, BRCA2,
and DNMT3A, and in the PI3K/AKT1 pathway. Disseminated clones developed late in the evolutionary trajectory models
of most cancers, in particular in cancers with DNA damage repair deficiency. Polyclonal dissemination was predicted to
occur predominantly as a single and rapid wave, but chemotherapy exposure was associated with higher genomic
diversity of disseminated clones. In conclusion, we described three common evolutionary dissemination modes across
HGSCs and proposed factors associated with dissemination diversity.
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Introduction
High-grade serous carcinomas (HGSC) have a unique pattern of  tumor development and cancer dissemi-
nation. The cancers originate in the serous epithelial cell layer of  the distal fallopian tube in approximately 
80% of  the cases (1, 2) and more rarely in the ovaries or the peritoneum. HGSCs have the propensity for 
early and direct seeding of  exfoliated tumor cells via the ascites in the peritoneal cavity (3). Patients are 
therefore commonly diagnosed with disseminated disease and locoregional involvement of  the ovaries, 
other intraperitoneal organs, and the omentum. Approximately two-thirds of  the cancers are stage III or 
IV at diagnosis (1), and these patients have a median overall survival of  only approximately 40 months (4).

TP53 mutation is an early event in almost all HGSCs (5–7). The “p53 signature” of  abnormal TP53 
immunostaining in the morphologically normal tubal epithelium is considered the earliest precancer lesion 
(6). TP53 aberrations contribute to a permissive state, with frequent DNA damage (8), development of  
high genomic complexity, and simultaneous coevolution of  multiple mutational processes (9). Homolo-
gous recombination deficiency (HRD) occurs in approximately half  of  the cancers (10); it is caused by 
germline mutations of  BRCA1 or BRCA2 in at least 15% (1). Cancers with HRD are particularly sensitive 
to platinum-based chemotherapy and PARP inhibition, providing an opportunity for molecularly guided 
treatment (11, 12). However, most (80%) of  the cancers progress after initial response to such treatment, 
and molecular tumor heterogeneity is a major contributing factor to treatment failure (13–15).

Dissemination within the peritoneal cavity is a main determinant of poor patient outcomes from 
high-grade serous carcinomas (HGSCs). The dissemination process is poorly understood from a 
cancer evolutionary perspective. We reconstructed the evolutionary trajectories across a median 
of 5 tumor sites and regions from each of 23 patients based on deep whole-exome sequencing. 
Polyclonal cancer origin was detected in 1 patient. Ovarian tumors had more complex subclonal 
architectures than other intraperitoneal tumors in each patient, which indicated that tumors 
developed earlier in the ovaries. Three common modes of dissemination were identified, including 
monoclonal or polyclonal dissemination of monophyletic (linear) or polyphyletic (branched) 
subclones. Mutation profiles of initial or disseminated clones varied greatly among cancers, but 
recurrent mutations were found in 7 cancer-critical genes, including TP53, BRCA1, BRCA2, and 
DNMT3A, and in the PI3K/AKT1 pathway. Disseminated clones developed late in the evolutionary 
trajectory models of most cancers, in particular in cancers with DNA damage repair deficiency. 
Polyclonal dissemination was predicted to occur predominantly as a single and rapid wave, but 
chemotherapy exposure was associated with higher genomic diversity of disseminated clones. 
In conclusion, we described three common evolutionary dissemination modes across HGSCs and 
proposed factors associated with dissemination diversity.
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Molecular reconstruction of  cancer evolution has supported the notion of  a highly diverse dissemi-
nation pattern of  HGSCs. Most possible routes to cancer dissemination have been described, including 
monoclonal and polyclonal seeding as well as both unidirectional seeding and reseeding among tumor 
sites in the peritoneum (16, 17). Both the clonal diversity of  the cancers and the dissemination process are 
likely shaped by the tumor microenvironment, and there is a propensity for dissemination to the adipose 
tissue of  the omentum (18, 19). However, most phylogenetic studies have been based on a small number of  
patients (6 to 15) (5, 16, 17, 20–25), and this has precluded conclusions regarding the general patterns of  
clonal dissemination among HGSCs. In view of  the prognostic impact, there is a need to better understand 
the molecular determinants and patterns of  cancer dissemination. In this study, we modeled the clonal 
evolution of  dissemination across multiple tumors and tumor regions from each of  23 patients with HGSC.

Results
Somatic mutation profiles of  HGSCs are shaped by DNA damage repair deficiency. A median of  5 multisite or 
multiregional tumor samples from each of  23 patients with disseminated HGSC (Supplemental Table 1; sup-
plemental material available online with this article; https://doi.org/10.1172/jci.insight.170423DS1; total 
n = 108 cancer samples; Supplemental Figures 1–3) were analyzed by deep whole-exome sequencing (mean 
depth of  coverage 668×; Supplemental Table 2). The median tumor mutation burden (TMB) per sample was 
1.1 nonsilent mutations per megabase (10–90 percentile range 0.6–2.3 mutations). The TMB was not associ-
ated with the tumor purity, tumor site (ovarian, extraovarian, or ascites), the depth of  sequencing coverage, 
previous exposure to chemotherapy (Supplemental Figure 4), patient age (Spearman’s rank correlation = 
–0.1, P = 0.8), or cancer stage at diagnosis (P = 0.8 from Wilcoxon’s test of  FIGO stage II or III versus IV). 
There was little intrapatient heterogeneity of  the TMB, with the notable exceptions of  the 2 patients with the 
highest median TMB (Figure 1 and Supplemental Figure 5).

The TMB was highest in patients with mutation signatures of  deficient DNA damage repair. HRD 
scoring, based on the Catalogue of  Somatic Mutations in Cancer (COSMIC) base substitution signature 
3 (26), is proposed to have superior performance in predicting survival benefit from PARP inhibition 
compared with HRD genomic instability scores and germline mutations of  BRCA1 and BRCA2 (27). Sig-
nature 3–associated HRD was identified in 7 (30%) of  the patients, 3 (43%) of  whom had pathogenic 
germline mutations and concomitant somatic loss of  heterozygosity of  BRCA1 or BRCA2 (Figure 1). Defi-
cient DNA mismatch repair (COSMIC signature 26) was found in the ovarian tumor samples from the 
patient with the highest median TMB but not in the extraovarian sample. This was consistent with the 
hypermutation phenotype (>12 mutations per megabase) and with results from PCR-based microsatellite 
instability (MSI) testing, confirming intrapatient heterogeneity of  MSI. The patient had a pathogenic ger-
mline mutation of  BRCA2 but not of  genes involved in DNA mismatch repair. Notably, there was no loss 
of  heterozygosity at the BRCA2 locus in the DNA damage repair–proficient extraovarian sample. Strong 
base excision repair deficiency (COSMIC signature 30) was found in all samples from a patient with a 
nonsense germline mutation and somatic loss of  heterozygosity of  NTHL1 (NTHL1Q90*), indicating an 
NTHL1-associated polyposis syndrome (28). Patients with any of  the 3 types of  deficient DNA damage 
repair (n = 9, 39%) had a higher median TMB than the remaining and “triple-proficient” patients (P = 5 
× 10–5 by Wilcoxon’s test). The difference in TMB was similar when including all cases with weak signals 
for COSMIC signature 30 (two additional patients) in the DNA damage repair–deficient group (P = 1 × 
10–5). One triple-proficient patient with an intermediate TMB had amplifications of  CCNE1 and ERBB2 
in all tumor samples (>20 additional copies; Figure 1), supporting oncogene amplification as a driving 
mechanism in the absence of  DNA damage repair deficiency (29, 30).

Principal components analysis of  samples based on their mutation profiles (the relative contribution of  
each COSMIC base substitution signature) showed that principal component 1 was most strongly correlated 
to the signatures of  HRD and base excision repair (positively and negatively, respectively; Supplemental 
Figure 6A). This supported that deficient DNA damage repair was a prominent driver of  mutation diversity 
across the tumors. Tumor samples from each patient clustered together in the principal components analysis, 
suggesting lower intrapatient than interpatient mutation heterogeneity (with the exception of  the 2 patients 
with the highest median TMB; Supplemental Figure 6B).

Clonal diversity of  mutations and mutation processes. All patients except 1 (96%) had TP53-mutated tumors. 
The TP53 wild-type cancer had a somatic BRCA1 mutation, and the HGSC diagnosis was confirmed by 
histopathology (Supplemental Figure 2B). Only 1 patient had TP53 mutation heterogeneity. Different TP53 
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missense mutations were found in the ovarian and extraovarian tumors from the patient with the second 
highest median TMB, suggesting a polyclonal cancer origin (Figure 1). DNA copy number profiles across 
tumors and patients were similar to previously reported data for ovarian cancer (31) (Supplemental Figure 
7A), and the level of  genomic complexity was high (median proportion of  genes affected by copy number 
aberrations per sample, 61%; 10–90 percentile range, 39%–71%). The lowest copy number aberration bur-
den was found in the single patient wild-type for TP53 (Supplemental Figure 7B).

No oncogenes or tumor suppressor genes (defined in the Cancer Gene Census [CGC]) beyond TP53 
had frequent nonsilent single nucleotide variants (SNVs) or insertions and deletions (indels) across the 
cancers (Figure 2A; the most frequent mutations in general are shown in Supplemental Figure 8). Muta-
tionTimeR (32) was used to categorize the mutations as clonal (early, late, NA) or subclonal in each sample. 
TP53 mutations were identified as clonal in at least one sample in the majority of  patients (65%). Somat-
ic BRCA1 and DNMT3A mutations were also identified as recurrently clonal. The remaining recurrently 
mutated genes were either diversely categorized or identified as subclonal in all patients.

Figure 1. Mutation profiles across multiple tumors and tumor regions from disseminated high-grade serous carcinomas. (A) Mutation burden from 
whole-exome sequencing of 108 tumor or ascites samples from 23 patients with disseminated high-grade serous carcinoma. Samples are grouped by 
patient and colored according to tumor site. The black dashed lines indicate the median mutation burden per patient, and patients are ranked in order 
of a decreasing median mutation burden. The asterisk marks a patient with polyclonal cancer origin. (B–D) Selected (B) clinicopathological and (C and D) 
molecular characteristics per patient. Color labels and scales are defined to the right of each parameter. The proportion of each base substitution signature 
represents the median per patient. Split boxes indicate intrapatient heterogeneity between the ovarian (left) and extraovarian (right) samples. Remaining 
molecular characteristics were homogeneous in all samples from each patient. (E) Three modes of cancer dissemination were determined by clonality 
modeling, as illustrated in Figure 3. dBER, deficient base excision repair; dMMR, deficient mismatch repair; IDS, interval debulking surgery (with neoad-
juvant chemotherapy); LOH, loss of heterozygosity; Mb, megabase; nd, not determined; PDS, primary debulking surgery (with adjuvant chemotherapy); 
PFS1, progression-free survival after first-line therapy; sig, signature.
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In contrast to the total TMB, the TMB of  clonal mutations varied substantially across samples 
from each patient, indicating intrapatient heterogeneity at the subclonal level (Supplemental Figure 9). 
The clonal TMB did not vary according to tumor site (ovarian versus extraovarian; P = 0.5 by paired 
t test) or previous chemotherapy exposure (P = 0.2 by Wilcoxon’s test of  the median clonal TMB per 
patient). Reestimation of  the COSMIC base substitution signatures for clonal and subclonal mutations 
separately showed that the HRD signature was detectable among clonal mutations in 6 of  the 7 affected 
patients, including patients with germline mutations and loss of  heterozygosity of  BRCA1 or BRCA2 
(Figure 2B). However, HRD was never clonal in all samples from a patient, suggesting intratumor 
heterogeneity and evolution of  HRD during progression. There was no apparent propensity for clonal 
involvement of  ovarian tumors in particular. Five of  the patients also had subclonal HRD in some sam-
ples, suggesting that genomic instability was maintained during dissemination. Exclusively subclonal 
HRD was found in 1 patient wild-type for BRCA1 and BRCA2, possibly reflecting late development of  
HRD. The signature of  base excision repair deficiency was clonal in all samples from the patient with 
a germline NTHL1 mutation, and the phenotype was maintained among subclonal mutations, strongly 
supporting its involvement in the development and progression of  this cancer. In contrast, DNA mis-
match repair deficiency was predominantly subclonal in the MSI positive ovarian tumor.

Diverse and polyclonal dissemination of  most HGSCs. The subclonal tumor architecture and dissemination 
of  each HGSC was further modeled across samples per patient using PyClone (33) and ClonEvol (34). The 
hypermutated HGSC could not be accurately modeled due to a large number of  mutation clusters, but the 
hypermutated ovarian tumor contained all mutations and mutation clusters of  the nonhypermutated perito-
neal tumor, consistent with a monoclonal cancer origin and supporting late and subclonal development of  
MSI (Supplemental Figure 10). The estimated cellular prevalence of  each predicted clone in each modeled 
cancer is illustrated in Supplemental Figures 11–13. The fitted clonal architectures are illustrated with fish 
plots for selected example cancers in Figure 3 (corresponding mutation lists in Supplemental Table 3) and 
for other cancers in Supplemental Figures 14–20. LICHeE was evaluated as a second computational method 
for subclone predictions and phylogenetic inferences (35). There was strong proportionality in the number of  
predicted subclones per cancer according to the two methods (Spearman’s rank correlation = 0.8, P = 5 × 10-6; 
Supplemental Figure 21) and good overall correspondence of  mutation clusters and predicted phylogenetic 
lineages (Supplemental Figures 22–24). Discordances were primarily due to merging of  mutation clusters by 
LICHeE, consistent with the known proclivity of  PyClone to predict a large number of  subclones (36), or 
mutation filtering due to incompatibility in the modeling process. In discordant cases, the models predicted by 
LICHeE had poorer compatibility with cellular prevalence estimates (Supplemental Figure 11–13), and the 
models obtained by PyClone and ClonEvol were used for further analyses.

All cancers except 1 (96%) had a monoclonal origin and at least 1 common clone among all tumor 
sites and samples (Table 1). The patient with the second highest median TMB had no common mutations 
between the ovarian and extraovarian tumors, confirming a polyclonal cancer origin. There was dissemi-
nation between the 2 extraovarian tumor sites in this patient (Supplemental Figure 14). All cancers except 
1 also showed a branched evolutionary pattern, with at least 2 unrelated and independently evolved sub-
clones present in each tumor or across tumor sites. The single HGSC without branched evolution was 
exposed to neoadjuvant chemotherapy, and the model estimates were uncertain (ROC2-0812; Supplemen-
tal Figure 11 and Supplemental Figure 15B). LICHeE also predicted a linear phylogenetic lineage of  this 
cancer (Supplemental Figure 22).

The median number of  predicted clones was 5.5 per cancer (range, 3–9; Supplemental Figure 21), which 
is similar to results from a recent study based on whole-genome sequencing of  end-stage HGSCs exposed to 
multiple lines of  chemotherapy (25). The number of  clones did not vary according to chemotherapy exposure 
(P = 0.7) or refractoriness to first-line treatment (P = 0.6, both by Wilcoxon’s test). There was a tendency 
toward a larger number of  clones in cancers with low stromal infiltration scores of  the ovarian tumor (evaluat-
ed by RNA sequencing and the ESTIMATE gene expression signature; ref. 37), but this was not found among 
chemonaive cancers separately (Supplemental Figure 25). A median of  35% of clones per cancer disseminat-
ed between at least 2 tumor sites, and the number of  disseminated clones was not associated with the total 
number of  clones in the cancer (P = 0.6 by Kruskal-Wallis test). The relatively wide 95% CI of  the median 
(22%–40%) suggested diversity in the dissemination process, and 3 modes of  dissemination were proposed. 
These included dissemination of  a single clone and dissemination of  multiple related or unrelated subclones 
of  a linear or branched evolutionary lineage, respectively (Table 1 and example plots in Figure 3).
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Six HGSCs (27%) had monoclonal dissemination (first category; Figure 3A and Supplemental Figure 
11, Supplemental Figure 15, and Supplemental Figure 22). Dissemination occurred prior to subclonal devel-
opment in 4 of  these cases, with the initial clone as the disseminated clone and with independent branched 
evolution at the separate tumor sites after dissemination. The direction of  seeding of  the initial clone was 
not possible to determine, but diagnostic histopathology indicated a fused fallopian tube and ovary in 1 case, 
suggesting tubal origin and seeding from the ovary to the intestine (Figure 3A). In the 2 cancers with mono-
clonal dissemination after subclonal development, seeding appeared to occur from the extraovarian tumor 
(omentum) to the ovary (Supplemental Figure 15B; 1 case had a known cancer origin in the fallopian tube).

The majority of  HGSCs (73%) had polyclonal dissemination, most commonly of  2 or 3 subclones 
(n = 10 and 5 HGSCs, respectively), but there was also 1 example with 5 disseminated subclones. Poly-
clonal dissemination occurred predominantly with subclones of  a linear evolutionary lineage (second 

Figure 2. Clonal designations of recurrent mutations and mutation signatures. (A) The vertical axes show the mutation frequency (calculated patient-
wise among 23 patients) of all oncogenes and tumor suppressor genes (defined by the Cancer Gene Census) with recurrent nonsilent SNVs or indels across 
the cancers. Mutations are colored according to designations of clonality based on MutationTimeR (top part) or PyClone and ClonEvol (bottom part; 
reverse vertical axes orientation). Mutations were considered clonal according to MutationTimeR if designated as such in at least 1 sample per patient, 
and subclonal mutations were divided according to their homogeneous (pink) or heterogeneous (green) presence across samples per patient. Results from 
PyClone and ClonEvol are from clonality modeling across all samples per patient. Two polyclonal cancers in 1 patient were analyzed separately and sum-
marized patient-wise. (B) The sample-wise proportions of 3 selected base substitution signatures of deficient DNA damage repair, calculated separately 
for clonal (black) and subclonal (pink) mutations, as designated by MutationTimeR. Results are presented per patient (separated by white spaces) in 
the same order as in Figure 1 (ranked according to a decreasing median tumor mutation burden) and per sample ordered by tumor site. The two top rows 
indicate the type of DNA damage repair deficiency detected in each patient (Repair) and the tumor site of each sample (Sample). c, clonal; dBER, deficient 
base excision repair; dMMR, deficient mismatch repair; nd, not determined; s, subclonal.
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category, monophyletic polyclonal seeding; n = 11 HGSCs; Figure 3B and Supplemental Figure 12, Sup-
plemental Figure 14, Supplemental Figure 16, and Supplemental Figure 23). The direction of  seeding 
was mostly undetermined in these cases, with the exception of  2 cancers with bidirectional seeding either 
between bilateral ovarian tumors (Figure 3B) or between a uterine and an ovarian tumor (Supplemental 
Figure 16B; known cancer origin in the fallopian tube) and 1 cancer with dissemination from the ovary 
to the omentum and ascites (Supplemental Figure 16C). The final 5 HGSCs had disseminated subclones 
of  a branched evolutionary lineage (third category, polyphyletic seeding), with a discernible direction 
of  seeding between at least 2 tumor sites in 4 of  the cancers (Figure 3C and Supplemental Figure 13, 
Supplemental Figures 17–20, and Supplemental Figure 24). The direction of  seeding was determined in 
altogether 9 HGSCs (41%; Table 1). There was no difference in the frequency of  seeding to or from ovar-
ian versus extraovarian tumors. However, ovarian tumors had a more complex subclonal architecture 
than extraovarian tumors, suggesting earlier tumor development in the ovaries. This was observed as a 
larger number of  unique subclones (P = 0.04 by paired t test) and a tendency for more frequent branched 
evolution, also within the subset of  chemonaive cancers (Supplemental Figure 26).

HGSCs with the least complex dissemination pattern (first category, monoclonal dissemination) had a 
lower patient-wise median TMB than HGSCs with polyclonal dissemination; this was also true within the 
subset of  chemonaive cancers (P = 0.04 from Wilcoxon’s test; Figure 1). Among cancers with polyclonal 
dissemination, the number of  disseminated clones was not associated with previous chemotherapy exposure 
(P = 0.5 by Wilcoxon’s test), but polyphyletic seeding was more common among treated cancers (3 of  the 4 
cancers exposed to chemotherapy 2–3 months before surgery had polyphyletic seeding; odds ratio, 11.8; P = 
0.06 by Fisher’s exact test relative to chemonaive cancers). There was an increase in the stromal infiltration 
scores of  ovarian tumors according to the complexity of  cancer dissemination, observed as a nonsignificant 
trend from the first to the third dissemination category (Supplemental Figure 25). All HGSCs with the most 
complex dissemination pattern (third category, polyphyletic seeding) had more than 2 sampled tumor sites 
(P = 2 × 10–4 from Fisher’s exact test of  enrichment) and were analyzed by a larger number of  samples (P = 
0.005 from Wilcoxon’s test). There was no association between the mode of  dissemination and the site of  the 
extraovarian tumor or any of  the clinicopathological parameters listed in Supplemental Table 1.

Recurrent driver mutations based on clonal composition. Mutations were grouped according to their presence 
in the initial clone, a disseminated subclone, or a local subclone in the patient-wise models. The estimated 
number of  mutations in the initial clone correlated with the median patient-wise TMB of  clonal mutations 
summarized from the MutationTimeR sample-wise calls, showing correspondence of  the 2 orthogonal mod-
eling approaches (Spearman’s rank correlation = 0.56, P = 0.006; Supplemental Figure 9D). The recurrently 
mutated oncogenes and tumor suppressor genes also showed a good correspondence of  their clonal desig-
nations (Figure 2). The largest discordance was found for mutations designated as subclonal in all samples 
per patient by MutationTimeR, while considered to belong to the initial clone in the patient-wise models.

All nonsilent mutations in TP53, BRCA1, BRCA2, and MUC16 were estimated to belong to initial 
clones. Three additional oncogenes or tumor suppressor genes were recurrently mutated in either an initial 
or a disseminated clone. AKT1 had a frameshift deletion of  11 base pairs in an initial clone (Supplemental 
Figure 14) and the oncogenic variant AKT1E17K in a disseminated clone (Supplemental Figure 17) of  2 
triple-proficient cancers. PIK3CAE545Q represents another activating mutation of  the PI3K/AKT1 pathway, 
and it was found in the disseminated clone of  a third triple-proficient cancer (Figure 3C). DNMT3A had 
a missense mutation predicted to be damaging to protein function in the initial clone of  a triple-proficient 

Figure 3. Three common modes of cancer dissemination. The 3 categories of cancer dissemination are illustrated by example cases, including (A) dissemination 
of a single clone, (B) polyclonal dissemination of monophyletic subclones of a linear evolutionary lineage (related subclones), and (C) polyclonal dissemination 
of polyphyletic subclones of a branched evolutionary lineage (independent subclones). Fish plots illustrate the subclonal architecture of each cancer, with the 
estimated cellular prevalence of each subclone at each tumor site indicated along the vertical axis (white lines). Bar plots show the number of mutations (non-
silent and silent) per subclone, and nonsilent mutations in oncogenes and tumor suppressor genes (defined by the Cancer Gene Census) are indicated. White 
boxes with black outlines illustrate the phylogeny of each cancer, with dots representing subclones, dashed lines indicating a linear evolutionary lineage, and 
the horizontal axis representing the relative mutation time for development of each clone, plotted as the proportion of mutations in each clone relative to the 
total number of mutations in the cancer model. Charts with arrows illustrate the direction of seeding between tumor sites, with two parallel arrows indicating 
bidirectional seeding and a bidirectional arrow indicating that the direction is undetermined. Subclones have consistent colors in all plots per cancer. Dissemi-
nated subclones are marked by black outlines in the bar plots and phylogenetic representations. None of the illustrated cancers were exposed to neoadjuvant 
chemotherapy or refractory to first-line treatment. The cancer in B had bidirectional seeding of the pink subclone from the left to the right ovary, followed by the 
purple subclone in the opposite direction. There were several possible models for the relationship of the red, yellow, and orange subclones in this cancer, but this 
had no effect on the designated mode of dissemination.
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and chemonaive cancer (DNMT3AR488Q, PolyPhen-2 score, 0.48; Supplemental Figure 16A) as well as a 
frameshift deletion of  37 base pairs in a disseminated clone of  a cancer with HRD exposed to neoadjuvant 
chemotherapy (Supplemental Figure 20). TNC had missense mutations in either the initial clone or a dis-
seminated clone of  triple-proficient and chemonaive cancers (Figure 3, A and C), but only the clonal muta-
tion was predicted to be damaging (TNCP1790L, PolyPhen-2 score, 0.99; TNCR1637C, PolyPhen-2 score, 0.38).

Diversity in the evolutionary timing of  dissemination. The relative timing of  dissemination along the evolu-
tionary trajectory model of  each HGSC was evaluated in mutation time (on a scale from 0 to 1), estimated 
as the proportion of  mutations in the disseminated subclone(s) relative to the latest developed subclone per 
cancer (the subclone with the largest number of  mutations). Disseminated clones developed relatively late 
in the evolutionary models of  most cancers, and the median mutation time of  the first or only disseminated 
clone was 0.77 (Figure 4A). However, there was considerable variation among the cancers, and the 95% CI 
of  the median ranged from 0.52 to 0.82. The timing of  dissemination was not associated with chemothera-
py exposure (P = 0.9 by Wilcoxon’s test) but was correlated to the median patient-wise TMB, most strongly 
among chemonaive patients (Spearman’s rank correlation = 0.7, P = 0.003).

Patients with germline mutations of  DNA damage repair genes (BRCA1, BRCA2, or NTHL1) had a later 
evolutionary onset of  dissemination than patients with triple-proficient cancers (P = 0.03 by Wilcoxon’s test; 
Figure 4B). There was no difference between patients with germline mutations and somatic development of  
HRD. Results were similar when analyzing chemonaive cancers only, showing a later onset in DNA damage 
repair–deficient cancers (germline or somatic) than in triple-proficient cancers (P = 0.003 by Wilcoxon’s 
test). Two additional cancers with weak somatic signals for deficient base excision repair (both chemonaive; 
Figure 1) also had late onset of  dissemination, and inclusion of  these in the DNA damage repair–deficient 

Table 1. Summary of the clonal evolutionary patterns of disseminated high-grade serous carcinomas

Evolutionary pattern
All patients (%)

Total, n = 23
Chemonaive patients (%)

Total, n = 17

No cancer evolution modelA 1 (4%) 1 (6%)

Cancer originA

Polyclonal 1 (4%) 1 (6%)

Monoclonal 22 (96%) 16 (94%)

Evolutionary mode of the cancer (across tumor sites)

Linear lineage only 1 (4.5%) –

Branched lineage(s) 21 (95%) 16 (100%)

Dissemination mode

Monoclonal dissemination (single clone) 6 (27%) 4 (25%)

Polyclonal seeding 16 (73%) 12 (75%)

Monophyletic (related subclones of linear evolutionary 
lineage) 11 (50%) 10 (63%)

Polyphyletic (unrelated subclones of branched 
evolutionary lineage) 5 (23%) 2 (13%)

Direction of seedingB

Known direction 7 (32%) 4 (25%)

Bidirectional 2 (9%) 2 (13%)

Not determined 13 (59%) 10 (63%)

AVariables evaluable in all patients. The remaining variables were not evaluated for the hypermutated HGSC (no 
evolution model) or the nondisseminated ovarian tumor in the patient with polyclonal cancer origin. BAt any of the 
potentially multiple seedings.
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group strengthened the difference relative to triple-proficient cancers (P = 9 × 10–4 by Wilcoxon’s test). There 
was no association between the onset of  dissemination and patient age (Spearman’s rank correlation = –0.3, 
P = 0.1), cancer stage at diagnosis (P = 0.4 from Wilcoxon’s test of  FIGO stage II or III versus IV), or pro-
gression-free survival (P = 0.8 by Cox’s proportional hazards analysis; results were similar within the subset 
of  chemonaive cancers). Early discontinuation of  seeding was associated with higher intrapatient intertu-
mor heterogeneity, identified as a negative correlation of  the mutation time of  the last disseminated clone 
and the number of  unique subclones in the ovarian versus extraovarian tumors (Spearman’s rank correlation 
= –0.62, P = 0.002; chemonaive cancers only, Spearman’s rank correlation = –0.67, P = 0.004). The total 
number of  unique subclones did not increase with a high TMB (P > 0.9).

Figure 4. Diversity in the evolutionary timing of dissemination. (A) Each horizontal line represents a patient (n = 22; categorized according to the 3 
modes of dissemination), and each dot represents a disseminated subclone (local/nondisseminated clones are not plotted). Pink and green indicate 
monophyletic and polyphyletic clones, respectively. Boxes to the left indicate germline mutations of DNA repair genes [Mut(g); color code shown in 
B], positivity for COSMIC base substitution signature 3 (HRD; black = “yes”), exposure to chemotherapy prior to sampling (neoadjuvant chemotherapy 
[NACT]), and refractory disease after first-line treatment. The horizontal axis shows the relative evolutionary timing of development of disseminated 
subclones as the mutation time on a scale from 0 to 1, representing the proportion of mutations per subclone relative to the latest developed subclone per 
cancer. Vertical dashed line and pink-shaded background represent the median mutation time and 95% CI of the first/only disseminated subclone across 
the cancers. Horizontal bar plots show the maximum mutation time between disseminated clones in each patient (black, time between the first and last 
disseminated clones of a monophyletic origin; white, time interval estimated as the total number of unique mutations in 2 polyphyletic clones, relative 
to the total number of modeled mutations in the cancer). (B) Box plot of the relative timing of development of the first disseminated clone according to 
DNA damage repair deficiency status. (C) Box plot of the time interval of dissemination (mutation time between the first and last disseminated clone in 
cancers with polyclonal dissemination) according to chemotherapy exposure (P value from Wilcoxon’s test). Bounds of boxes represent the interquartile 
range, lines within boxes represent the median, and whiskers represent 1.5× the interquartile range above the 75th percentile or below the 25th percentile.



1 0

R E S E A R C H  A R T I C L E

JCI Insight 2024;9(3):e170423  https://doi.org/10.1172/jci.insight.170423

In most HGSCs with monophyletic polyclonal seeding (the most common dissemination mode), the 
dissemination appeared to occur as a single wave and within a relatively short time interval, reflecting low 
mutational diversity of  the disseminated clones (Figure 4A). The median difference in the mutation time 
between the first and last disseminated clone was 0.1 (95% CI, 0.04–0.23). Polyphyletic seeding was associ-
ated with a higher mutational diversity of  the disseminated clones and a longer time interval of  dissemina-
tion (P = 0.01 by Wilcoxon’s test). A caveat of  this analysis was the requirement for a different approach to 
estimate the relative mutation time of  branched clones (estimated as the total number of  unique mutations 
in the 2 most divergent disseminated clones, relative to the total number of  modeled mutations in the can-
cer). Cancers exposed to neoadjuvant chemotherapy also had high mutational diversity of  disseminated 
clones (long relative time interval of  dissemination; Figure 4C), and this was associated with a poor pro-
gression-free survival among the patients (neoadjuvant chemotherapy versus chemonaive, hazard ratio, 7; 
P = 0.01 by Cox’s proportional hazards analysis).

Discussion
Dissemination within the peritoneal cavity is a main determinant of  poor patient survival from HGSC (38). 
The dissemination process is highly diverse (16, 17) and poorly understood from an evolutionary perspec-
tive. We modeled the subclonal architecture across tumor sites in 23 disseminated HGSCs and identified 
common features. The cancers were categorized according to the complexity of  the dissemination process, 
initially separating monoclonal from polyclonal dissemination, followed by polyclonal dissemination of  
a linear versus branched evolutionary lineage. These categories provided a useful framework to interpret 
the evolutionary timing of  development of  disseminated subclones in relation to molecular and clinico-
pathological factors. In particular, HGSCs with DNA damage repair deficiency disseminated relatively 
late in their evolutionary trajectory models, consistent with reports of  improved short-term survival and 
sensitivity to platinum-based chemotherapy in patients with BRCA1 or BRCA2 mutations (39). Our study 
suggested that both hereditary and somatic development of  DNA repair deficiency was associated with 
late cancer dissemination, but the study was not powered to evaluate a potential effect on patient survival. 
Furthermore, polyclonal dissemination appeared to occur predominantly as a single and rapid wave of  
dissemination, that is, within a relatively short evolutionary time interval and with low mutational diversity 
of  the disseminated clones. Higher diversity was observed in cancers exposed to chemotherapy, involving 
a longer time interval of  dissemination and/or a branched evolutionary relationship of  the disseminated 
clones (polyphyletic seeding). Previous studies have suggested that primary treatment does not change the 
clonal structure and complexity of  most HGSCs (40). Our study supported this, and a potential effect of  
chemotherapy was observed on the dissemination pattern only, although the rationale for the association 
was not clear. Chemotherapy could exert a direct or indirect effect by eradicating sensitive subclones or by 
accelerating subclonal evolution (15, 25), the former being more likely in this study based on the relatively 
short time interval between treatment exposure and sampling. As an alternative rationale, the pattern and 
timing of  clonal dissemination might be associated with the surgical resectability of  the cancers and might 
have contributed to the decision to give neoadjuvant treatment in some cases. Neoadjuvant chemotherapy 
followed by interval debulking surgery has been shown to be noninferior to primary debulking surgery 
and adjuvant chemotherapy with respect to survival outcomes in randomized clinical trials (41). Howev-
er, patients treated by neoadjuvant chemotherapy commonly have a high morbidity risk profile and low 
likelihood of  complete primary cytoreduction, and they had poorer progression-free survival also in our 
study. The study was not sufficiently powered to resolve the potential links among chemotherapy exposure, 
treatment response, dissemination patterns, and patient prognosis.

Diverse models and nomenclature with partly competing views have been developed to describe the evo-
lution of cancer metastasis (42, 43). Evidence of most models was found across the HGSCs analyzed in this 
study. This high degree of diversity is consistent with that found in previous studies (16, 17, 20) and with the 
limited physiological constraints on locoregional dissemination within the peritoneal cavity by a predominant-
ly passive dissemination mechanism (44). Lowest complexity and monoclonal dissemination was found in 
cancers with a low mutation burden. However, this was not reflected in a low complexity of the subclonal 
architecture of the tumors. Parallel evolution after dissemination resulted in mutational heterogeneity between 
ovarian and extraovarian tumors, and heterogeneity was dependent on the evolutionary timing of dissemina-
tion rather than on polyclonal seeding and inheritance of genetic diversity among the sites (45). This is consis-
tent with a parallel progression model (43), suggesting potential for greater spatial tumor heterogeneity with 
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early dissemination. This stresses the importance of diagnosis and start of treatment as early as possible, even 
if  the cancers have already disseminated. Most cancers in this study disseminated late in their evolutionary 
trajectory models, and the molecular timing of dissemination was similar to that found in another study of 6 
HGSCs with predominantly metachronous metastases (24). Late evolutionary dissemination is consistent with 
symptom development and diagnosis relatively rapidly after cancer dissemination, and it does not translate 
into a potential for diagnosis and onset of treatment prior to dissemination. Single-cell multiomics sequencing 
has suggested that metastatic cell lineages preexist in the subclones of primary tumors (46), and there are no 
fundamental genomic differences between early-stage and late-stage HGSCs to aid in early diagnosis (47). Fur-
thermore, a randomized screening study concluded that diagnosis prior to dissemination is unlikely to translate 
into reduced mortality, suggesting an intrinsically poor prognosis with HGSC (48).

We did not find evidence of  more frequent dissemination from ovarian to extraovarian tumors, but 
ovarian tumors had more complex subclonal architectures. This indicated a longer time for tumor devel-
opment in the ovaries, which is consistent with results found in other studies of  disseminated HGSCs (40). 
Notably, the direction of  seeding was determined in only a subset of  the cancers. This partly reflects the 
biology and frequency of  dissemination and partly the sample availability, in particular the lack of  samples 
from the fallopian tube. Most HGSCs originate in the fallopian tube, and our analyses could not determine 
if  the cancers spread sequentially from the tubes to the ovaries and extraovarian sites or directly from the 
tube to multiple intraperitoneal sites. The first scenario is most likely, based on the more complex subclonal 
architecture of  the ovarian tumors. Our findings also supported a monoclonal origin of  bilateral ovarian 
tumors, together with a relatively late dissemination to the contralateral ovary (49), and even evidence of  
bidirectional seeding between the ovaries.

Nearly three-fourths of  the HGSCs had polyclonal dissemination, but the most complex pattern with 
polyphyletic seeding of  subclones of  a branched evolutionary lineage was found only in cancers with more 
than 2 tumor sites analyzed. Polyphyletic seeding indicates repeated acquisition of  dissemination potential 
during cancer evolution (42). From a biological perspective, there can be a greater potential for subclonal 
diversity and parallel evolution when tumors grow at multiple distinct sites. However, dissemination of  
branched subclones occurred primarily between 2 sites in our study, and it could not be determined whether 
the subclones developed at the same site or at separate sites with dissemination in opposite directions. From a 
technical perspective, it is likely that the increased spatial resolution obtained with analysis of  3 separate sites 
and a larger number of  samples enabled improved reconstruction of  the subclonal architectures. This was the 
case with multiregional tumor sampling, which increased the detection rate of  branched subclones within 
each tumor. We can, therefore, not conclude whether the underpinnings of  the complex polyphyletic dissem-
ination pattern were primarily related to distinct cancer biology or to improved spatial resolution. The lack 
of  systematic sampling of  peritoneal sites outside of  the adnexa and omentum is a limitation of  our study, 
and the frequency of  polyphyletic dissemination might be underestimated by sampling of  only 2 tumor sites 
from most patients. Additional technical caveats were related to the computational reconstruction of  tumor 
architectures and mutation timing (50). Such models are often associated with high noise levels and poten-
tially also with poor reproducibility. We obtained fairly correspondent tumor architecture models with two 
computational methods, in many cases aided by the multiple sampling approach and distinction of  subclones 
present in different samples. Mutation time is proportional to real time under the assumption of  a constant 
mutation rate and cell division time. However, the evolutionary timing of  dissemination was correlated to 
the mutation burden of  the cancers in this study, suggesting that the assumption did not hold true and that 
care should be taken in the interpretation of  the mutation time beyond the estimate of  mutational diversity. 
A main methodological advantage of  the current study was the high sequencing depth. This supported the 
detection of  rare subclones and the resolution of  subclones with small differences of  their cellular prevalence. 
Whole-genome sequencing offers broader coverage and more powerful modeling with genetic variants also 
outside of  coding regions, but this currently comes at the cost of  a lower sequencing depth. Indeed, the num-
ber of  clones detected in our study was similar to that found in a recent whole-genome sequencing study with 
more comprehensive tumor sampling, including a median of  17 samples per cancer (25).

Polyclonal cancer origin and 2 distinct TP53 missense mutations were identified in 1 patient with a germ-
line mutation of BRCA1, but with pronounced HRD in only 1 of  the 2 synchronous cancers. The frequency 
of  polyclonal HGSC is unknown, but potential for polyclonal cancer development has been indicated in 
BRCA1 mutation carriers, who commonly present with several p53 signatures and different pathogenic muta-
tions of  TP53 at risk-reducing salpingo-oophorectomy (51). We also identified a germline variant of  NTHL1 
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in a patient with base excision repair-deficient tumors. This phenotype is rare and described in only 6 of  
>12,000 tumors across cancer types in the 100,000 Genomes Project, only 2 of  which were associated with 
germline variants (52). The phenotype was clonal and likely developed early in the evolutionary trajectory 
of  the cancer in this study. All somatic nonsilent mutations of  BRCA1 and BRCA2 were also early events, 
consistent with a previous study reporting similar somatic mutation frequencies of  these genes in early-stage 
and late-stage HGSCs (47). MUC16 mutations were also identified in the initial clone of  2 cancers. This gene 
encodes the diagnostic biomarker CA125, which is used for blood-based monitoring of  ovarian cancer (53), 
but the effect of  mutations on disease progression and patient prognosis is not clear (54).

Activating mutations of  the PI3K/AKT1 pathway were found in the disseminated subclones of  2 tri-
ple-proficient HGSCs. Overactivity of  this pathway has been implicated in chemoresistance in HRD-posi-
tive HGSCs (25), but the interpretation of  a treatment prediction value in the context of  HR proficiency and 
generally low platinum sensitivity is not clear. The AKT1E17K mutated cancer was chemorefractory, but the 
patient with a PIK3CAE545Q mutation had long-term progression-free survival after adjuvant chemotherapy. 
The latter cancer also had CCNE1 amplification, which is commonly mutually exclusive and synthetically 
lethal with HRD (55). Therapeutic inhibition of  the PI3K/AKT1 pathway has been proposed as a strategy 
to disrupt HR and sensitize cancer cells to PARP inhibition (56), and a nonrandomized trial of  the pan-
AKT inhibitor capivasertib suggested that AKT1E17K is a therapeutic target in metastatic solid tumors (57). 
Furthermore, PI3K/AKT1 inhibition has been shown to be effective in HGSC organoids of  a specific evo-
lutionary state characterized by multiple subclones, polyclonal seeding, and frequent PI3K/AKT1 pathway 
aberrations (40). Consistently, both HGSCs in our study with activating mutations of  this pathway had 
polyphyletic seeding. However, the mutations were found in only 1 of  several disseminated clones, and tar-
geted inhibition would likely have had limited efficacy. One additional tumor suppressor gene was predicted 
to be recurrently involved in cancer development or dissemination. Hotspot mutation of  the DNA methyl 
transferase-encoding gene DNMT3A is a frequent and early event associated with poor patient survival in 
myeloid leukemias (58). The mutations detected in this study were not in the same hotspot region, but muta-
tions of  other loci have been proposed as risk factors for development of  secondary myeloid neoplasms after 
PARP inhibition for ovarian cancer (59). None of  the patients in this study received PARP inhibitors, and 
the patient with a pathogenic missense mutation was also chemonaive, suggesting that the mutations are not 
exclusively treatment induced. It has been suggested that knockdown of  DNMT3A can attenuate the prolif-
eration and invasiveness of  ovarian cancer cells (60), but the impact of  mutations in this respect is unknown. 
In general, the collection of  mutations in the initial and disseminated cancer clones varied largely among the 
patients. This is consistent with the low prevalence of  most mutations across HGSCs (61) and underlines the 
challenge of  identifying common treatment targets beyond the HRD phenotype. Frequent polyclonal dis-
semination adds to this challenge and is consistent with observations in end-stage and HRD-positive HGSCs 
that the mechanisms of  resistance to platinum-based chemotherapy are frequently subclonal and diverse 
across metastatic sites (25). Multiomics approaches and integrated characterization of  tumor phenotypes on 
the transcriptomic and epigenomic levels with tumor microenvironment components are likely needed to aid 
in the delineation of  the translational relevance of  evolutionary models (40).

In summary, this study describes a complex and diverse subclonal dissemination pattern of  HGSCs. 
Disseminated clones developed relatively late in the evolutionary trajectory models of  most of  the cancers, 
in particular in cancers with DNA damage repair deficiency. Dissemination was predominantly polyclonal 
but occurred as a single and rapid wave of  clones with relatively low mutational diversity and within a short 
evolutionary time interval, except in cancers exposed to chemotherapy.

Methods
Sex as a biological variable. This study investigated cancer of  the female reproductive system.

Patients and tumor samples. Fresh frozen tumor (n = 104) and ascites (n = 4) samples were collected from 
patients (n = 23) treated by cytoreductive (debulking) surgery for disseminated HGSC at The Norwegian 
Radium Hospital, Oslo University Hospital, between 2002 and 2012. Tumor sampling was performed of  
surgical specimens submitted to the Department of  Pathology, and all samples were collected at a single 
surgery of  each patient. The surgical specimens included most commonly the adnexa and omentum, and 
other peritoneal sites were sampled in a minority of  cases. Patients (Supplemental Table 1) were selected 
based on the availability of  multiple tumor samples from the ovaries and extraovarian sites. The median 
number of  cancer samples per patient was 5 (range, 3–7), including 2–4 tumor samples from the ovaries and 
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1–5 extraovarian tumor or ascites samples (except 1 patient with bilateral ovarian samples only; Supple-
mental Figure 1 and Supplemental Table 2). Samples from 3 different sites were available from 7 patients. 
Bilateral ovarian tumors (n = 3 patients) and ascites were both considered separate sites. Blood samples 
were used for reference and collected at the time of  diagnosis before (n = 14 patients) or after (n = 4) first-
line treatment or at a median of  4 years (range, 2–6 years) after diagnosis (n = 5).

Patients were treated according to national guidelines and readmitted to the hospital at relapse. Prima-
ry treatment consisted of  radical debulking surgery with the aim of  less than 1 cm rest tumor, followed by 6 
courses of  chemotherapy by paclitaxel and carboplatin every 3 weeks (n = 17 patients), or neoadjuvant che-
motherapy with 3 courses before and after interval debulking surgery (n = 6 patients; Supplemental Table 
1). Interval debulking surgery was performed at a mean of  85 days after chemotherapy (range, 67–117 
days). Patients treated by primary debulking surgery were chemonaive at the time of  sampling. All prima-
ry pathology diagnostics were performed by experienced gynecologic pathologists, and clinical data were 
extracted from the patients’ medical records. Evaluation of  response to therapy was based on computerized 
tomography scans of  the thorax, abdomen, and pelvis as well as the tumor marker CA125 (53). After 
neoadjuvant chemotherapy, partial response was observed in 4 patients, stable disease in 1, and decrease 
of  CA125 levels from 800 to 43 units/mL in 1; 1 patient was undetermined. After first-line treatment, 3 
patients had refractory disease, 17 had progression after a median of  10 months (range, 2–33 months), and 
3 were progression free after a median of  9 years (range, 3–10 years; Supplemental Table 1).

DNA was isolated using the AllPrep DNA/RNA/miRNA Universal kit according to the manufac-
turer’s instructions (Qiagen). H&E stains of  all fresh frozen tissue samples were evaluated by a specialist 
in gynecologic pathology (BD) to confirm the diagnosis of  HGSC and to evaluate tumor purity of  the 
samples (median 70%, 10–90 percentile range 40%–90%; Supplemental Table 2 and Supplemental Figure 
3A). Available diagnostic specimens of  the distal fallopian tube (from all patients) with fimbriae (7 patients) 
were retrospectively evaluated, and a tubal cancer origin was confirmed in 6 (75%) of  8 evaluable patients, 
including 1 patient with fused tube and ovary (Supplemental Table 1; representative images are shown in 
Supplemental Figure 2A). The remaining cases were inconclusive for tubal versus ovarian cancer origin. 
Morphological evaluations indicated angiogenesis and a varying extent of  solid growth patterns in the 
diagnostic specimens of  all included tumor samples, but the solid, pseudoendometrioid, transitional cell 
carcinoma-like morphology (SET feature) was not observed. The density of  lymphocytes and fibroblasts 
was scored in 3 groups (Supplemental Table 2).

Whole-exome sequencing and mutation calling. Whole-exome sequencing was performed to a mean depth of  
668× coverage of tumor samples (range, 365–806) and 736× coverage of blood samples (range, 657–828; Sup-
plemental Table 2). Exome libraries were generated from 1 μg genomic DNA using the Agilent SureSelect 
All Exon v6+COSMIC capture kit. Sequencing was performed in 2 × 100 base-pair paired-end mode using 
the Illumina HiSeq 4000 System. Raw sequencing reads were aligned to the human reference genome hg38 
using BWA (version 0.7.8) (62). Sequence alignments were converted to binary files with Picard (version 1.102; 
http://broadinstitute.github.io/picard) and sorted and indexed with SAMtools (version 0.1.19) (63). Binary 
alignment map (BAM) files were preprocessed following the Genome Analysis Toolkit (version 3.8; https://
gatk.broadinstitute.org/hc/en-us). Somatic SNVs were called with MuTect (version 1.1.7) (64) and indels with 
Strelka (version 1.0.14) (65). Germline variants were called with Haplotypecaller (version 3.6) (66). All variants 
were annotated using ANNOVAR (version 2015-12-14) (67) and the Ensembl Variant Effect Predictor (version 
79). Candidate somatic mutations were filtered to include loci with ≥15× coverage in the tumor- and patient-
matched blood samples as well as mutant allele fractions ≥5% in the tumor sample and <1% in the blood 
sample. To accommodate the high sequencing depth, a mutant allele fraction up to 5% in the blood sample was 
accepted for candidate loci with a fraction ≥15% in the tumor sample and ≥100× coverage in both the tumor 
and blood sample, if  the mutant allele fraction was also ≥4 times higher in the tumor sample than in the blood 
(to allow for the presence of circulating tumor cells and potential technical errors). Quality control was per-
formed with Samtools, and only reads with mapping quality ≥30 were included for analysis. Germline variants 
were filtered to include loci with ≥10× coverage, ≥5 variant reads, and a variant allele fraction ≥5%.

Nonsynonymous exonic SNVs (missense, nonsense, stoploss), frameshift indels, and splice site mutations 
(SNVs or indels) were considered nonsilent. A total of 12,618 somatic SNVs and 1,008 somatic indels were 
identified, including 9,449 nonsilent SNVs and 821 nonsilent indels (Supplemental Table 2). Classification of  
oncogenes and/or tumor suppressor genes was adopted from the CGC (tier 1 and 2; downloaded from https://
cancer.sanger.ac.uk/census in March 2022) (68) if  based on the relevant mutation types (missense, nonsense, 
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frameshift, or splice site mutations). Mutated genes were “flagged” if  included in a list of genes (n = 100) with 
frequent mutations across exome sequencing studies and associated with common features such as a long pro-
tein coding sequence and a large number of paralogs (69).

Variants of  selected cancer predisposing genes involved in DNA damage repair were annotated 
for pathogenicity using curated databases provided by the ARUP Laboratories and the University of  
Utah Department of  Pathology for BRCA1 and BRCA2 (accessed in April 2022, now available from 
https://www.ncbi.nlm.nih.gov/clinvar/; accessed in April 2022) or the InSiGHT (70) (https://www.
insight-database.org/classifications/) and LOVD databases for MLH1, MLH3, MSH2, MSH6, and PMS2 
(https://databases.lovd.nl/shared/variants; both accessed in April 2022). Germline variants of  BRCA1 
and BRCA2 have previously been confirmed by Sanger sequencing (71). The effect of  selected somatic 
SNVs on protein structure and function was predicted using the web interface of  PolyPhen-2 (http://
genetics.bwh.harvard.edu/pph2/; accessed in June 2023).

DNA copy number estimation. Allele-specific DNA copy numbers and tumor purity were estimated 
from BAM files of  patient-matched tumor and blood samples using the R package FACETS with default 
settings (72). The estimated tumor purity per sample was correlated to the histopathological evaluations 
(Spearman’s rank correlation = 0.6, P = 1 × 10–11; Supplemental Figure 3A). DNA copy number aberra-
tions were called based on median-centered copy numbers above or below 0, and aberration frequencies 
were plotted with the cnFreq function in GenVisR (73). Loss of  heterozygosity was called in segments 
with a minor allele copy number of  0.

Mutation signatures. COSMIC single base substitution signatures (26) were estimated with the R pack-
age SomaticSignatures (74). The contribution of  each substitution type and its two surrounding bases 
was scored relative to the COSMIC reference signatures (v3.2; https://cancer.sanger.ac.uk/signatures/
downloads) using the R package MutationalPatterns (v3.4.1) (75). Values were presented as the propor-
tion of  each signature per sample. MSI status was determined by the PCR-based Promega MSI Analysis 
assay in accordance with the manufacturer’s protocol.

Sample-wise clonality estimates. MutationTimeR (32) was run with default settings to estimate the timing 
of  SNVs and indels relative to the local DNA copy numbers per sample and to assign clonal (early, late, 
NA) and subclonal states to each mutation. The distinction between clonal and subclonal mutation calls 
according to this algorithm is based on the estimated presence in all or a fraction of  cancer cells. The 
distinction between early and late clonal mutations is based on the occurrence before or after local copy 
number gains. To summarize the frequencies of  each mutation category per gene (clonal or subclonal), 
genes with several nonsilent mutations were counted once per category per sample. Mutations annotated as 
clonal in at least 1 sample were considered true clonal if  also found in all tumor samples from the patient 
(otherwise categorized as subclonal).

Patient-wise clonality models. Inference of  subclonal tumor populations based on mutation clustering 
and clonal ordering was performed with PyClone version 0.13.0 (33) and ClonEvol version 0.99.11 (34), 
respectively, on somatic SNVs and indels detected in any tumor sample per patient. Additional prepro-
cessing of  mutations prior to modeling was performed with MuTect2 (v4.1.2.0; https://gatk.broadinstitute.
org/hc/en-us/articles/360037593851-Mutect2) to enable joint mutation calling on all samples from each 
patient. BAM files were used as input together with browser extensible data files of  regions of  the previously 
called mutations (±20 base pairs), to reduce processing time. Only mutations detected by both MuTect2 and 
MuTect/Strelka after the previously described filtering criteria were used. Patient-wise mutation files with 
information regarding mutant allele fractions were merged with the allele-specific copy number files from 
FACETS and used as input for PyClone to model putative clones and their cellular prevalence based on the 
adjusted allelic fraction of  mutation clusters (adjusted for DNA copy numbers and tumor purity). PyClone 
was run with default parameters, with the exception of  a minimum mutation cluster size of  3 (--min_clus-
ter_size 3) and 10,000 iterations (--num_iters 10000). The optional parameter --purity was assigned with the 
estimated tumor purity from FACETS. Reconstruction of  subclonal architectures based on cellular prev-
alence estimates was further performed with ClonEvol using the function infer.clonal.models and default 
parameters, except the parameter cluster.center was set to “mean” and num.boots was set to 100. The num-
ber of  bootstraps was lowered to reduce the computation time, which was high due to the large sample 
number per patient and a high level of  heterogeneity resulting in a large number of  subclones. This had little 
impact on the results (data not shown). The parameter cancer.initiation.model was initially set to “monoclo-
nal” and changed to “polyclonal” if  unsuccessful. If  still unsuccessful, conflicting clones were identified by a 
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step-wise exclusion approach with a manual evaluation of  all clones. Conflicting clones or mutation clusters 
with poor quality were adjusted or excluded. Clones with a similar estimated cellular prevalence, but with 
slight variation relative to each other across the individual samples from each patient, were estimated from 
the relationship established in the majority of  samples, and slight adjustments were made to allow inclusion 
in the final models. Manual filtering and adjustment of  subclones are summarized for each cancer in Sup-
plemental Table 4. The clone with an estimated cellular prevalence of  approximately 1 across all samples 
per cancer (after adjusting for tumor purity) was designated as the initial (truncal) clone. Clones present at 
a lower and/or varying cellular prevalence across tumor sites were designated as disseminated, and clones 
present in a single tumor site as local.

Multiple possible clonality models were identified for each patient, and a step-wise approach was 
used to identify the best fit. Initially, all samples from each patient were analyzed separately with 
PyClone and ClonEvol to obtain a full patient model and to retain the best possible spatial resolution. 
The relationship among subclones (parent, progeny, unrelated) was established in this step and used 
to inform the final models, which were presented as the mean per tumor site per patient. It was not 
possible to obtain full models for all patients with more than 2 tumor sites, and these models were 
presented as multiple pair-wise comparisons (producing up to 3 pair-wise comparisons in patients with 
3 tumor sites). In cases retaining multiple possible models after this approach, the least complex and 
most parsimonious model was selected for presentation (selecting linear over branched evolution, and 
dissemination of  a single clone over multiple). The total number of  estimated subclones per patient 
was partly dependent on subtle differences in the cellular prevalence of  mutation clusters, and there-
fore prone to inaccuracy. However, mutation clusters and clonality models were subjected to thorough 
manual inspections, and all subclones relevant for the overall conclusions regarding the mode and 
direction of  dissemination were robustly identified (models prone to inaccuracy are described in Sup-
plemental Figures 11–13).

Final models were visualized as fish plots with the R package fishplot (76). The phylogeny of  each 
cancer was inferred from the fish plots and illustrated as a horizontal dot plot of  the relative timing of  devel-
opment of  each clone (proportion of  mutations in the clone relative to the total number of  mutations in the 
cancer model). The direction of  seeding was determined based on the cellular prevalence of  the disseminat-
ing clone, and the site with the smallest prevalence was considered the original. A single bidirectional arrow 
illustrated that the direction was not possible to determine.

The evolutionary timing of  dissemination was evaluated in mutation time, representing the number of  
mutations in each disseminated subclone relative to the latest developed subclone per cancer (the subclone 
with the largest number of  mutations).

Subclone predictions and phylogenetic inferences were also performed with LICHeE version 1.0 
for comparison with PyClone and ClonEvol (35). LICHeE does not incorporate adjustment of  mutant 
allele fractions based on DNA copy numbers or tumor purity, and adjusted values for each mutation 
were imported from PyClone, as recommended. LICHeE was run with default parameters, except that 
--minClusterSize was set to 3 to match the PyClone runs. Furthermore, --maxClusterDist was lowered 
to prevent excessive merging of  subclones, and --maxVAFAbsent and --minVAFPresent were adjusted 
to prevent modeling failure. No combinations of  parameter values allowed modeling of  all cancers, and 
final values are listed in Supplemental Table 5 (values close to default were prioritized). Phylogenetic 
inferences from LICHeE were plotted using the as.Node function in the R package data.tree (version 
1.0.0). Alluvial diagrams to compare the mutation clustering/subclone predictions with PyClone were 
plotted with the R package alluvial (version 0.1–2).

Tumor microenvironment estimates. Stromal and immune infiltration scores of  each tumor sample 
were estimated with the R package ESTIMATE version 1.0.13 on total RNA-sequencing data (37). 
RNA sequencing was performed in 2 × 101 base-pair paired-end mode on the Illumina NovaSeq 6000 
System to a mean depth of  70.4 × 106 uniquely mapped reads per sample. Sample preparation was per-
formed with the Ribo-Zero Gold rRNA removal kit (Illumina), and sequence library generation was per-
formed with the TruSeq Stranded Total RNA Library Prep Gold kit (Illumina). Paired-end reads were 
trimmed with TRIMMOMATIC version 0.38 and aligned to the GRCh38 human reference genome 
using STAR version 2.7.6a. Reads mapping to protein-coding genes were quantified using HTseq-
count v.2.0.2, and gene expression estimates were normalized as fragments per kilobase of  transcripts 
per million mapped reads (FPKM). The ESTIMATE scores are provided in Supplemental Table 2.  
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The stromal infiltration scores correlated with tumor purity evaluations and fibrosis scores from histo-
pathology and the immune infiltration scores with lymphocyte scores, but both gene expression esti-
mates varied according to tumor site and previous chemotherapy exposure (Supplemental Figure 3).

Statistics. Statistical analyses were performed in R (v3.6.1). Two-sided P values of  less than 0.05 were 
considered significant. Spearman’s and Pearson’s correlation tests were performed with the cor.test func-
tion. Wilcoxon’s rank sum test and t tests (2 tailed) were run with wilcox.test and t.test. Fisher’s exact test 
and calculation of  odds ratios were performed with fisher.test. CIs of  the median were calculated using 
DescTools. In box plots, bounds of  boxes represent the interquartile range, the lines within boxes represent 
the median, and whiskers represent 1.5× the interquartile range above the 75th percentile or below the 
25th percentile. Principal components analysis was performed with the PCA function in FactoMineR (77) 
on a matrix representing the proportion of  each COSMIC base substitution signature per sample (filtered 
to include only signatures with absolute value of  ≥10 in at least 1 sample) and on gene-wise DNA copy 
number estimates (filtered to include the 2,000 genes with largest cross-sample variance). Patient survival 
was analyzed with progression-free survival as the endpoint, estimated from the last day of  first-line ther-
apy (surgery and chemotherapy) to cancer recurrence or progression diagnosed by radiology or increased 
blood levels of  CA125. Cox proportional hazards were estimated with the coxph function in the survminer 
package and P values from Wald test.

Study approval. The project and patient consent for genomic analyses were approved by the Regional 
Committee for Medical and Health Research Ethics South East Norway (REC no. 2014/473). Samples 
were registered at the Biobank Registry of  Norway for blood (S-01188) or tumor tissue (S-04300). All 
patients provided written informed consent, or exemption from consent was approved for deceased patients.

Data availability. Supporting data for each figure panel are available in the Supporting Data Values 
file. In accordance with Norwegian legislation and the ethical approval of  the study by the Regional Com-
mittee for Medical and Health Research Ethics South East Norway, the raw high-throughput sequencing 
data generated in this study are considered patient identifiable and subject to secure storage regulations in 
accordance with the national Personal Data Regulations, chapter 2. Data can currently not be deposited 
to public repositories. Data will be made available upon reasonable request to AS, and this will require 
formalization of  a data transfer agreement. All analyses were performed with published software packages 
and computer code and are described in the Methods.
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