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Introduction
Ulcerative colitis (UC) and Crohn’s disease (CD) represent heterogenous gastrointestinal disorders and 
the predominant forms of  inflammatory bowel disease (IBD) (1). Over 70% of  genetic associations in 
IBD occur in the noncoding regions of  the genome, with only a fraction appearing in coding genes. 
However, the genome is widely transcribed outside the coding space, and noncoding RNA transcripts 
are produced in intergenic regions, at enhancers, and bidirectionally from promoters (2–5). One class of  
noncoding RNA, long noncoding RNAs (lncRNAs), have received renewed interest as next-generation 
sequencing technologies have facilitated their widespread identification in the transcriptome. Nonethe-
less, the characterization of  lncRNA expression in disease is far from complete owing to differences 
in lncRNA annotation across reference genome sets and lncRNA databases and the limited molecular 
tools available for lncRNA characterization (6).

Discrepancies and incomplete annotations have hindered the full transcriptomic and functional interroga-
tion of lncRNAs. However, emerging evidence shows lncRNAs are effector molecules regulating diverse areas 
of biology including differentiation, cancer development, and gene regulation in inflammatory diseases (7–9). 

The role of long noncoding RNAs (lncRNAs) in disease is incompletely understood, but their 
regulation of inflammation is increasingly appreciated. We addressed the extent of lncRNA 
involvement in inflammatory bowel disease (IBD) using biopsy-derived RNA-sequencing data 
from a large cohort of deeply phenotyped patients with IBD. Weighted gene correlation network 
analysis revealed gene modules of lncRNAs coexpressed with protein-coding genes enriched for 
biological pathways, correlated with epithelial and immune cell signatures, or correlated with distal 
colon expression. Correlation of modules with clinical features uncovered a module correlated 
with disease severity, with an enriched interferon response signature containing the hub lncRNA 
IRF1-AS1. Connecting genes to IBD-associated single nucleotide polymorphisms (SNPs) revealed an 
enrichment of SNP-adjacent lncRNAs in biologically relevant modules. Ulcerative colitis–specific 
SNPs were enriched in distal colon–related modules, suggesting that disease-specific mechanisms 
may result from altered lncRNA expression. The function of the IBD-associated SNP-adjacent 
lncRNA IRF1-AS1 was explored in human myeloid cells, and our results suggested IRF1-AS1 
promoted optimal production of TNF-α, IL-6, and IL-23. A CRISPR/Cas9-mediated activation screen 
in THP-1 cells revealed several lncRNAs that modulated LPS-induced TNF-α responses. Overall, 
this study uncovered the expression patterns of lncRNAs in IBD that identify functional, disease-
relevant lncRNAs.
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The function of lncRNAs is difficult to predict through sequence alone as few conserved functional domains 
have been characterized (10). However, the coregulation of lncRNAs with various biological pathways and their 
frequent cell type–specific expression suggests that coordinately expressed protein-coding genes may serve some 
utility in predicting lncRNA function. Accordingly, methods of coexpression analysis such as weighted gene 
correlation network analysis (WGCNA) have been used in large transcriptomic data sets to capture patterns of  
coexpressed genes in biological pathways or genes expressed in a cell type–specific manner. Moreover, the lower 
expression of lncRNAs compared with protein-coding genes adds additional challenges to rigorous statistical 
testing of lncRNA expression in large data sets. Low expression leads to increased percentage of zeros, necessi-
tating the use of zero-inflated statistical models. The translation of recent advances in lncRNAs toward clinical 
application in IBD have been hindered by a lack of harmonized lncRNA annotation across data sets. We thus 
set out to comprehensively characterize lncRNA expression by applying a unified lncRNA annotation set to 
a large clinical IBD cohort. After controlling for potential confounding variables of the cohort, these analyses 
revealed expression of select lncRNA transcripts distinguishing disease states, severity, and affected regions. 
Using WGCNA, we uncovered putative functional roles for many lncRNAs and correlated gene modules to 
clinical features, biological pathways, and cell signatures. The lncRNA IRF1-AS1 was identified as a hub gene 
in a module associated with inflammation and disease severity, and subsequent functional studies indicated that 
IRF1-AS1 promoted inflammatory cytokine production by human myeloid cells. Finally, a CRISPR/Cas9-me-
diated activation (CRISPRa) screen in LPS-stimulated THP-1 cells identified other lncRNAs that appeared to 
modulate the production of TNF-α in myeloid cells.

Results
Quantification of  gut biopsy transcriptomes. For quantification of  lncRNA expression from RNA sequencing 
(RNA-Seq), we expanded the 18,805 lncRNA genes in GENCODE by using the lncRNAs from LNCipe-
dia, a specialized, curated database of  46,790 lncRNA genes compiled from reference annotations such as 
Ensembl and Refseq, other lncRNA databases such as NONCODE, and several lncRNA-focused studies 
(11). We further supplemented the collection of  lncRNAs from LNCipedia by adding 3,003 de novo–
assembled lncRNAs from sorted lymphocyte transcriptomes from Ranzani et al. (12) for a total of  49,793 
lncRNAs while retaining the 19,988 protein-coding genes in GENCODE (Figure 1A). This custom gene 
annotation set enabled comprehensive evaluation of  protein-coding gene and lncRNA expression in gut 
biopsy transcriptomes from the Mount Sinai Crohn’s and Colitis Registry (MSCCR) (13, 14). We con-
sidered genes to be expressed if  more than 10 sequencing reads in at least 40% of  the libraries per disease 
classification (CD, UC, and healthy control [HC]) were quantified. After thresholding we transcriptome 
per million–normalized (TPM-normalized) the libraries using the remaining genes. With this threshold we 
found that only 28% of  lncRNA genes were expressed in tissue biopsies compared with 90% of  protein-cod-
ing genes (Figure 1B). The expression levels of  protein-coding genes were higher than the expression of  
lncRNAs, but there was greater tissue specificity for lncRNAs compared with protein-coding genes (Figure 
1, C and D). These results are consistent with prior observations that lncRNAs are generally expressed at 
lower levels but can be more tissue specific than protein-coding genes (15).

Statistical models for lncRNA detection. Differential gene expression analysis using standard meth-
ods from R packages such as DESeq2 or edgeR were not applied in this study because of  a more 
complex data structure than these methods expect. In addition, the high percentage of  zeros distorts 
model estimation and reduces power (16). Therefore, more appropriate alternatives were necessary, 
and zero-inflated generalized mixed-effects linear models were chosen instead (17). Clinical variables 
including demographics, comorbidities, and laboratory results of  participants were explored to better 
model lncRNA expression and detect differentially expressed lncRNAs in UC and CD versus HCs. The 
samples were generally well balanced in terms of  age, sex, race, ethnicity, IBD disease history, comor-
bidities, and medications (Table 1). Study participants with incomplete data records were removed, 
leaving 1,151 patients in the analysis data set. Sample collection varied based on tissue location, and we 
catered our model selection accordingly (see Methods). To ensure that differences in the demographics 
of  the HCs and patients with IBD did not bias our results, we ran another set of  models adjusting for 
demographics such as age, sex, race, ethnicity, and comorbidities. The overlap between the unadjusted 
and adjusted models was generally over 90% (Supplemental Table 1; supplemental material available 
online with this article; https://doi.org/10.1172/jci.insight.168988DS1), and only the genes significant 
in both the unadjusted and adjusted models were retained.
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This analysis revealed extensive differential expression of  both lncRNAs and protein-coding genes 
in IBD, with 1,807 and 1,741 differentially expressed genes versus in HCs, respectively (Figure 2A and 
Supplemental Table 1). Most differentially expressed genes were seen in inflamed conditions, with few 
changes seen for either protein-coding genes or lncRNAs in the absence of  inflammation (Figure 2A). For 
examining the overlap of  differentially expressed genes identified in each condition, the samples were clus-
tered using the genes with higher fold-change differences versus HCs to reduce the number of  differentially 
expressed genes for plotting to 662 lncRNAs and 755 protein-coding genes. Heatmaps of  the expression 
profile revealed that samples were most distinct based on tissue location and inflammation status, with 
contributions from both lncRNA and protein-coding genes (Figure 2B). Meanwhile, expression profiles 
for noninflamed tissue from HCs and patients with IBD were not as distinct (Figure 2B). For all 3 tissues, 
inflammation was the major driver of  differential gene expression, with a large overlap between UC and 
CD suggesting shared regulatory processes (Figure 2C). These results show that lncRNAs demonstrate 
tissue specificity but also have pronounced changes of  expression with inflammatory disease and that the 
full extent of  lncRNA involvement is revealed with improved annotation.

Construction of  weighted coexpression networks. We next sought to provide structure to the expression 
patterns of  lncRNAs in IBD to reveal the underlying lncRNA network architecture. After regressing out 
relevant covariates, genes passing the expression threshold in 1,478 samples from inflamed and nonin-
flamed biopsies from 855 patients with UC or CD and 343 noninflamed biopsies from 238 HCs were 
used to construct a coexpression network using WGCNA. Inflamed ileum samples were collected in CD, 
but few were collected in UC; therefore, ileum samples were omitted from the analysis. A soft-threshold 
power was used in the network to increase scale independence and modulate the mean connectivity of  the 
network. A soft threshold of  8 was used to obtain an approximate scale-free topology of  over 80% with 
saturation of  scale independence at higher values (Figure 3A). Genes with similar expression profiles were 
clustered and divided into 60 modules after dynamic tree cutting of  the cluster dendrogram (Figure 3B).  

Figure 1. Summary of custom gene annotation for comprehensive lncRNA quantification and characterization of gene biotypes in the Mount Sinai 
Crohn’s and Colitis Registry data set. (A) The number of lncRNA and protein-coding genes and their corresponding reference source used for gene and 
transcript annotation. Protein-coding genes were isolated from GENCODE v38 while lncRNA genes were taken from the LNCipedia high-confidence set 
v5.2 and combined with the de novo–assembled lncRNAs transcripts identified in Ranzani et al. (12). (B) The number of lncRNA and protein-coding genes 
passing the expression threshold in the Mount Sinai Crohn’s and Colitis Registry (MSCCR) biopsy data set. (C) The log2-transformed, TPM-normalized 
expression levels of all expressed lncRNA and protein-coding genes averaged across all biopsy samples. (D) Tissue-specific expression of lncRNA and 
protein-coding genes as defined by containing at least 20 sequencing reads in at least 30% of samples in that tissue group but not in other tissue groups.
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Per WGCNA, colors were used for module identities. We analyzed module composition by quantifying the 
proportion of  lncRNAs and comparing them by relative module size. Out of  the 60 modules, 57 modules 
contained fewer than 50% lncRNAs (Figure 3C). Intriguingly, the coral1 module was found to be composed 
of  over 95% lncRNAs, suggesting a lncRNA-dominant regulatory hub (Figure 3C). There was a weak 
but insignificant trend toward higher lncRNA incorporation in larger modules, and lncRNAs in smaller 
modules were more often found in proximity (within 50 kB) of  module protein-coding genes compared 
with larger modules (Figure 3, C and D). The degree of  gene connectivity inside each module, defined 

Table 1. Baseline characteristics of the patients in the MSCCR data set

Control UC CD Overall χ2

(N = 238) (N = 416) (N = 497) (N = 1,151) P value
Race <0.001A

White 141 (59.2%) 359 (86.3%) 429 (86.3%) 929 (80.7%)
Black or African 
American

49 (20.6%) 18 (4.3%) 25 (5.0%) 92 (8.0%)

OtherB 48 (20.2%) 39 (9.4%) 43 (8.7%) 130 (11.3%)
Ethnicity (Hispanic) 45 (18.9%) 29 (7.0%) 39 (7.8%) 113 (9.8%) <0.001A

Sex 0.6628
Female 114 (47.9%) 205 (49.3%) 230 (46.3%) 549 (47.7%)
Male 124 (52.1%) 211 (50.7%) 267 (53.7%) 602 (52.3%)

Birth year <0.001A

Before 1960 104 (43.7%) 121 (29.1%) 104 (20.9%) 329 (28.6%)
1960 to 1969 89 (37.4%) 81 (19.5%) 79 (15.9%) 249 (21.6%)
1970 to 1979 17 (7.1%) 76 (18.3%) 89 (17.9%) 182 (15.8%)
1980 and after 28 (11.8%) 138 (33.2%) 225 (45.3%) 391 (34.0%)

Disease duration 0.001A

Under 2 years 32 (7.7%) 60 (12.1%)
2 to 5 years 66 (15.9%) 63 (12.7%)
Over 5 years 318 (76.4%) 374 (75.3%)

IBD severity <0.001A

Inactive 186 (44.7%) 153 (30.8%)
Mild 136 (32.7%) 172 (34.6%)
Moderate 59 (14.2%) 125 (25.2%)
Severe 35 (8.4%) 47 (9.5%)

Asthma 51 (21.4%) 56 (13.5%) 57 (11.5%) 164 (14.2%) 0.001A

Thyroid disease 16 (6.7%) 20 (4.8%) 32 (6.4%) 68 (5.9%) 0.486
Rheumatoid arthritis 6 (2.5%) 9 (2.2%) 23 (4.6%) 38 (3.3%) 0.087
Psoriasis 6 (2.5%) 22 (5.3%) 29 (5.8%) 57 (5.0%) 0.142
Ankylosing spondylitis 0 (0%) 3 (0.7%) 10 (2.0%) 13 (1.1%) 0.033C

Osteopenia/
Osteoporosis

11 (4.6%) 40 (9.6%) 35 (7.0%) 86 (7.5%) 0.058

Cancer
Colon cancer 1 (0.4%) 0 (0%) 4 (0.8%) 5 (0.4%) 0.183
Other cancers 9 (3.8%) 26 (6.3%) 23 (4.6%) 58 (5.0%) 0.327
Total cancer 10 (4.2%) 26 (6.3%) 27 (5.4%) 63 (5.5%) 0.541

Appendectomy 12 (5.0%) 6 (1.4%) 22 (4.4%) 40 (3.5%) 0.017C

Depression 35 (14.7%) 37 (8.9%) 60 (12.1%) 132 (11.5%) 0.069
Tobacco use 84 (35.3%) 135 (32.5%) 160 (32.2%) 379 (32.9%) 0.681
Medications <0.001A

None 218 (91.6%) 163 (39.2%) 149 (30.0%) 530 (46.0%)
Small molecule only 20 (8.4%) 146 (35.1%) 120 (24.1%) 286 (24.8%)
Biologics only 0 (0%) 51 (12.3%) 108 (21.7%) 159 (13.8%)
Small molecule and 
biologics

0 (0%) 56 (13.5%) 120 (24.1%) 176 (15.3%)

A χ2 test was used to test differences between cohorts for each variable. AP < 0.001. B“Other” included Asian, more than one race, American Indian/Alaska 
Native, and Other (with a space to write what the other is). CP < 0.01.
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as intramodular connectivity, was then calculated for each gene. Protein-coding genes had higher intra-
modular connectivity than lncRNAs (Figure 3E), suggesting a higher degree of  synchronized expression 
for protein-coding genes compared with lncRNAs. To measure intersample variability of  module-assigned 
lncRNAs and protein-coding genes, the standard deviation of  each gene was calculated and normalized to 
the mean expression level. The normalized standard deviation revealed that lncRNAs had higher expres-
sion variability between samples than protein-coding genes (Figure 3F). Genes that could not be assigned 
to any module were placed in the gray module and 57% were lncRNAs. Unassigned lncRNAs had lower 
mean expression compared with module-assigned lncRNAs but similar standard deviation, indicating low 
expression may reduce detectable coexpression patterns (Figure 3, G and H). These results suggest higher 
regulatory variability of  lncRNAs than protein-coding genes and lower network connectivity. Despite the 
variability, the results also indicate coregulation of  gene expression in disease can occur through the con-
cert of  protein-coding and lncRNA genes.

Module analysis and module-trait correlation. To further characterize the 60 modules, the module eigen-
genes were calculated. Module eigengenes are the first principal component of  each module summarizing 
the module expression profile using dimensionality reduction. Clustering of  module eigengenes revealed 
high similarity between some modules; therefore, similar modules were merged by cutting the module sim-
ilarity dendrogram, resulting in 34 modules (Figure 4A). The eigengene adjacency heatmap showing the 
correlation between merged module eigengenes indicated broader patterns of  correlated modules (Figure 
4B). However, pathway analysis using the larger groups of  correlated clusters failed to identify significantly 
enriched pathways. This suggests coregulated genes of  specific pathways are organized in smaller modules 
and function together to carry out broader biological processes. Therefore, the merged set of  34 modules 
was used for further analyses (Supplemental Table 2). Intriguingly, the lncRNA-dominant coral1 module 
remained distinct from other modules after merging.

Having demonstrated the replicability of  the WGCNA modules on this data set, we returned to the 
network generated by analysis of  the composite data set to examine whether identified modules correlated 
with basic clinical features. This module-trait association was calculated by correlating module eigengenes 
with clinical traits (Figure 4C). The traits included biopsy inflammation status, biopsy location, compar-
isons of  IBD disease severity, disease designation, and CRP levels. IBD disease severity was determined 
for each biopsy at the time of  sampling and stratified as inactive, mild, moderate, and severe disease. To 
improve sample number and reduce the number of  comparisons, the moderate and severe IBD biopsy clas-
sifications were combined into a single “active” disease category, and categorical variables were binarized 
for correlation analysis. For the active versus inactive IBD trait, the brown4, lightpink4, and darkturquoise 
modules were the most positively correlated (r = 0.37, r = 0.3, and r = 0.29, respectively). The brown4, 
lightpink4, and darkturquoise modules were also correlated with inflammation status, CRP level, and the 
active versus mild IBD trait, suggesting that these modules are associated with disease severity and active 
disease processes, and were therefore identified as key modules for IBD activity. Additional associations 
were identified for biopsy location. The yellow, white, and lightyellow modules were most correlated for distal 
colon expression (r = 0.73, r = 0.52, and r = 0.46, respectively). However, the yellow and lightyellow modules 
diverged in their association with disease severity, with yellow being negatively and lightyellow being posi-
tively correlated with disease severity.

The division of  coexpressed genes into modules is thought to reflect coregulation of  genes acting in 
the same biological pathway. Since the function of  most lncRNAs is unknown, we sought to annotate the 
lncRNAs in each module using pathway analysis to provide clues to their functional roles. Using the term 
enrichment analysis method, SaddleSum (18), we pulled the top 5 predicted pathways for each module 
from a selection of  Gene Ontology Terms, Tissue and Cell Expression Barcodes, Reactome, and Molecular 
Signatures Database Hallmark Gene Sets. The top terms are presented in Supplemental Table 3 and Figure 
4D. The pathway enrichment results demonstrated 16 modules had significant pathway enrichments while 

Figure 2. Differential expression analysis of the MSCCR biopsy data set. (A) Number of differentially expressed lncRNA and protein-coding genes. Bar 
plots depict number of significantly upregulated and downregulated genes [adjusted P < 0.05, absolute(log2fold-change) > 1] in each condition. (B) Heat-
map showing expression of differentially expressed lncRNA [abs(log2fold-change > 1.5] and protein-coding genes for a random sampling of 200 inflamed 
samples and 200 noninflamed samples. Samples were clustered using the expression of both lncRNA and protein-coding genes and then separated into 2 
heatmaps while keeping the sample order the same. (C) Overlap of significant lncRNAs [adjusted P < 0.05, abs(log2fold-change) > 1.5] for all comparisons 
in each tissue. NonI, noninflamed; I, inflamed; UC, ulcerative colitis; CD, Crohn’s disease.
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no significant enrichments were identified for 18 modules. Intestinal cell– and intestinal tissue–related sig-
natures were the most abundant module enrichments (yellow, blue, darkred, cyan, magenta, green, lightsteel-
blue1, and mediumpurple3). Immune cell–related signatures were identified for modules orange, darkturquoise, 
and darkolivegreen. The orange module was composed of  signatures for B cells, T cells, and monocytes; 
correlated well with the inflammation status trait (r = 0.28); and positively correlated with disease severity, 
suggesting this module captured inflammatory immune cell infiltrate. Reactome and Kyoto Encyclopedia 
of  Genes and Genomes signatures were enriched for IFN response (brown4), endoplasmic reticulum (ER) 
to Golgi transport (lightyellow), histone acetylation/deacetylation (dark green), and oxidative phosphory-
lation (lightcyan). These results demonstrated that coexpressed genes of  the colon in IBD can be divided 
into modules that are significantly enriched for genes of  pathways that play roles in tissue homeostasis, cell 
regulation, and inflammatory processes.

Next, we wanted to ensure the modules produced by WGCNA on this data set were robust and replica-
ble. Thus, the data set was split into a training set comprising 70% of  the samples and a test set comprising 
the remaining 30% of  the samples. We used a stratified sampling strategy to evenly distribute samples based 
on disease severity between the training and test set (Figure 5A). This sampling also resulted in equal dis-
tributions of  biopsy sampling location, inflammation status, and IBD disease type (Figure 5A). There was 
a high correlation in the average expression of  each gene between the 2 sets, suggesting the samples were 
well distributed for both lncRNAs and protein-coding genes (Figure 5B). We performed WGCNA as before 
to obtain a set of  modules from the training set for use in comparison with the test set. The module mem-
bership values (kME), the correlation of  the expression profile of  a gene with the module eigengene, were 
then calculated for each gene. The expression profile of  genes in the test set had similar kME as the genes 
in the training set when tested against training set module eigengenes (Figure 5C). Having determined that 
genes from the test set had analogous membership in training set modules, we then performed WGCNA on 
the test set to compare module composition between the 2 networks. A module preservation analysis was 
performed using the training set as the reference where a Z summary (Zsummary) statistic was calculated to 
measure the preservation of  modules between networks (19). Zsummary scores > 10 are considered highly 
preserved while Zsummary scores < 5 are considered to have low preservation. Of  the 34 modules in the 
test set, 32 had Zsummary scores of  above 10, indicating that most modules were highly preserved between 
networks constructed from the 2 independent data sets (Figure 5D). Finally, a topological analysis was car-
ried out on lncRNAs and protein-coding genes by calculating the betweenness centrality (BC) using the R 
package Igraph. In graph theory, BC measures the influence of  a node over information flow in a module, 
and we used it to infer gene position in networks from each data set. High-influence nodes were determined 
by taking the top quantile of  BC scores in the networks of  both the train and test data sets. There was an 
overlap of  83% for lncRNAs and 75% for protein-coding genes for these high-influence nodes, suggesting 
similar topological layout between the train and test data sets (Figure 5E).

Module visualization and identification of  hub genes. To view the network structure of modules, we used an 
intramodular-connectivity threshold to limit modules of interest to top connected genes, called hub genes. The 
module networks were then filtered to display only lncRNAs and their nearest connected neighbors. The resul-
tant genes in the brown4 module — the module most positively correlated with disease severity — largely formed 
a single coherent network around protein-coding genes corresponding to an IFN response signature (Figure 
6A). The most highly connected hub gene for the brown4 module was the protein-coding gene GBP1, a recently 
reported IFN-inducible receptor for LPS involved in caspase-4–mediated pyroptosis (20, 21). Other protein-cod-
ing hub genes were involved in IFN-stimulated pathways, including MHC presentation (TAP1, HLA-E, HLA-B), 
STAT signaling (STAT1), and posttranslational ADP ribosylation modifications (PARP9, PARP14). Some of  

Figure 3. Construction and characterization of WGCNA network. (A) Soft-threshold selection process for scale independence of the data set. (B) Interaction 
of coexpressed genes based on a Topological Overlap Matrix (TOM) dissimilarity and the resulting cluster dendrogram. Each color represents one coex-
pression module, and branches above represent genes. (C) The proportion of lncRNAs in each coexpression module ordered by module size with smallest 
modules on the left. (D) Proportion of lncRNAs in each module within 50 kb of a protein-coding gene in the same module. Modules are ordered by size with 
smallest modules on the left. (E) The intramodular connectivity, i.e., connectivity of the gene to other genes within the same module, of lncRNA versus pro-
tein-coding genes. Differences in the empirical distribution function between the 2 curves were tested using a Kolmogorov-Smirnov test. (F) The normalized 
standard deviation between lncRNA and protein-coding genes in all modules except gray. The normalized standard deviation was calculated as the standard 
deviation of expression divided by the average expression of the gene. (G) The average log2(TPM) expression for lncRNAs in the gray module versus all 
nongray modules. (H) The normalized standard deviation between lncRNAs in the gray module versus all nongray modules. Box plots show the interquartile 
range (box), median (line), and minimum and maximum (whiskers). Differences in F–H were tested using a 2-sided t test.
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Figure 4. WGCNA module analysis and module-trait correlation. (A) An eigengene dendrogram identified groups of highly similar modules. Cluster 
groups that fell below the merging threshold of 0.2 were merged. (B) Eigengene adjacency heatmap of merged clusters identifies groups of correlated 
modules after merging. (C) Heatmap of the correlation between merged modules and clinical traits including biopsy inflammation status, rectal versus 
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the protein-coding hub genes (HLA-B, STAT1) have been previously implicated in IBD susceptibility (22, 23). 
The top lncRNA hub gene, lnc-SLC22A5-6, also known as IRF1-AS1, has been associated with the IBD suscep-
tibility loci rs17622378 and rs17622378 (24). Overall, the structure of the brown4 network involved a similar 
degree of connectivity between protein-coding genes and lncRNAs. To identify putative lncRNA driver genes 
in the brown4 module, a principal component analysis was conducted on the samples using the expression of  
the brown4 module genes. Samples were best separated by inflammation status, consistent with the module-trait 
correlation analysis identifying this module as positively associated with inflammation. We calculated the contri-
butions of lncRNAs to the first 2 principal components (PCs) and retained those with the highest contributions, 
finding 4 groupings of lncRNAs (Figure 6, B and C). The first set of lncRNAs were increased in inflammation 
and included lnc-SLC22A5-6 and USP30-AS1; the second group was also increased in inflammation and included 
lncRNAs such as LUCAT1, LINC00346, and MIR4435-2HG; and the third group included the lncRNAs lnc-IL5-1 
and lnc-B2M-1. These first 3 groups had similar direction in the first PC but were delineated by the second PC. 
Finally, the fourth group of lncRNAs was higher in noninflamed samples and included lncRNAs such as lnc-
CLK3-1 and lnc-NAGP1-2. The higher contributions of these lncRNAs to brown4 module expression suggested 
the possibility that these lncRNAs play roles in regulating the IFN response (Supplemental Table 3). Indeed, we 
have previously shown that LUCAT1 is involved in the negative regulation of IFN responses by altering the splic-
ing and stability of the nuclear receptor NR4A2, a downstream mediator of TNF-α signaling (25–27).

IBD pathology is driven by multiple immune cell types, such as myeloid, B, and T cells, and module 
analysis revealed the orange module as being enriched for multiple leukocyte cell signatures and increased 
with inflammation (Figure 4, C and D). To examine the organization of  immune cell signatures in the 
orange module, the top connected lncRNAs and their nearest connected neighbors were visualized as a 
network. This network was found to be separated into 2 subnetworks (Figure 7A). The hub gene of  one of  
the subnetworks was the protein tyrosine phosphatase CD45 (encoded by PTRPC), which was consistent 
with the leukocyte-centric cell signatures identified for the orange module (Figure 4D and Supplemental 
Table 3). The hub genes of  another subnetwork have roles in efficient antibody production and plasma 
cell homeostasis, including immunoglobulin (Ig) heavy chain V genes. MZB1 encodes a B cell–specific 
cochaperone of  Grp94 active in ER stress conditions during Ig biosynthesis (28). JCHAIN encodes a poly-
peptide incorporated into IgA and pentameric IgM antibodies. Furthermore, TNFRSF17 codes for B cell 
maturation antigen that promotes differentiation and survival of  plasma cells (29). There was a high degree 
of  connectivity for lncRNAs in this apparent plasma cell subnetwork, outranking even the protein-coding 
genes in some cases. Examination of  the genomic location of  the highly connected lncRNAs lnc-EIF2AK3-4 
and lnc-ZNF280B-6 revealed they were within the Ig κ and λ loci, respectively. Antibody-secreting B cell 
populations have recently been implicated in IBD pathogenesis (30). To further explore the relationship of  
the orange module to immune cell populations, the expression of  orange module genes was calculated from 
sorted immune cell transcriptomes from ImmGen (31). Subsets of  orange module genes were specifically 
expressed in various cell types of  myeloid, B, and T cell populations (Figure 7B). These results suggest that 
the orange module is composed of  gene signatures from diverse immune cell types, with antibody-secreting 
B cells forming a distinct subnetwork highly enriched for several lncRNA hub genes.

Relationship of  modules to IBD genetics. The altered lncRNA expression in the transcriptome reflects either 
cause or consequence of  the disease state. To examine whether any modules harbor genetic susceptibility 
to IBD, we examined the proportion of  protein-coding genes and lncRNAs that were within 50 kb of  IBD 
risk loci identified by genome-wide association studies (GWAS). Across all genes in the network analysis, 
lncRNAs and protein-coding genes were equally likely to be adjacent to IBD-associated single nucleotide 
polymorphisms (SNPs) (Figure 8A, dashed lines). However, the enrichment of  SNP-adjacent lncRNA and 
protein-coding genes was altered when looking across the 34 modules. Significance of  enrichment was tested 
by bootstrapping size-matched random sets of  genes. The disease severity–associated IFN response module 
brown4 (Figure 4C) had significant enrichment for IBD SNP adjacency for both lncRNAs and protein-coding 
genes, supporting a causal role for lncRNAs in IBD etiology in a pathway that likely exacerbates disease. 
The darkolivegreen module was enriched for SNP-adjacent protein-coding genes, was enriched for a B cell 

nonrectal colon sampling, mild versus inactive disease status, active versus inactive disease status, active versus mild disease status, CD versus control, 
UC versus control, UC versus CD, and C-reactive protein (CRP) levels. Each column corresponds to a clinical trait, and each row corresponds to a module. 
Each cell contains the correlation coefficient as calculated by Pearson correlation, and the P values are denoted by the number of stars. *P < 0.05, **P < 
0.01, ***P < 0.001. (D) Enrichment of pathways for modules as determined by SaddleSum enrichment testing.
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Figure 5. Network reproducibility between train and test data sets. (A) The distribution of samples across IBD disease severity, IBD disease category, 
inflammation status, and biopsy region after splitting the data set into a training set and a test set using stratified sampling to evenly separate based on 
IBD disease severity. (B) The average expression [log2(TPM + 1)] of protein-coding genes and lncRNAs in the train data set compared with the test data set 
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signature (Figure 4D and Supplemental Table 3), and included SNP-adjacent B cell genes such as BANK1 
(Supplemental Table 3), which has been associated with systemic lupus erythematosus (32). The lightyellow 
module also had enrichment of  lncRNAs and protein-coding genes adjacent to IBD GWAS SNPs whereas 
the yellow module had significant enrichment only for SNP-adjacent lncRNAs. Pathway enrichment analysis 
of  lightyellow module revealed an ER to Golgi trafficking signature (Figure 4D and Supplemental Table 3), 
a biological process that is key to epithelial barrier function (33). Thus, the enrichment of  SNP-adjacent 
lncRNAs in select disease-associated modules suggests a role for lncRNA involvement in IBD development 
and further suggests the network analysis has identified disease-relevant modules.

The patterns of  colonic involvement between UC and CD are distinct, with rectal inflammation char-
acteristic of  UC compared with the noncontiguous, pan-colonic involvement found in CD. Despite differ-
ences in disease manifestation, the genetic architecture of  CD and UC is largely shared, suggesting that dis-
ease-specific mechanisms are driven at the fringes by UC- and CD-specific genetics (22, 34). The proportion 
of  SNP-adjacent lncRNAs that were either UC or CD specific for each module was determined to examine 
the potential lncRNA contribution to disease-specific presentation. Surprisingly, 100% of  the SNP-adjacent 
lncRNAs in lightyellow and 88% of  the SNP-adjacent lncRNAs in yellow modules were found to be adja-
cent to UC-specific SNPs (Figure 8B). Both modules were correlated with rectal involvement (Figure 4C), 
suggesting they are distal colon-specific modules that may be impacted more in UC than in CD. Consistent 
with this hypothesis, yellow module genes, but not lightyellow, had significant overlap with genes differentially 
expressed in a comparison of  UC versus CD in the rectum (Figure 8C). The yellow module was also negative-
ly correlated to disease severity, but this was not restricted to UC (Figure 4C). Correlations between individu-
al genes and the indicated trait for yellow module genes were calculated between the yellow module and rectal 
gene expression. This correlation was defined as the gene-trait significance. Additionally, the membership of  
each gene in the yellow module was determined. As expected, there was a high correlation between rectum 
expression and gene membership in the yellow module (Figure 8D). The same analysis was carried out for 
the disease severity trait, which again validated a correlation between the yellow module and disease severity 
(Figure 8E). Several yellow module genes were adjacent to a UC-specific SNP in the HOXA locus, including 
the lncRNAs lnc-HOXA11-3, lnc-HOXA13-1, lnc-HOXA13-2, lnc-HOXA13-3, HOXA11-AS, and HOTTIP as well 
as the protein-coding gene HOXA13. HOXA13 and the lncRNA HOTTIP are coregulated in hepatocellular 
carcinoma, and the lncRNA HOXA11-AS has been implicated in regulating proliferation of  several cancers, 
including gastric cancer (35). These results suggest that disease-specific mechanisms of  pathogenesis may 
be the outcome of  SNP-driven lncRNA contributions acting within coordinately expressed gene programs.

IRF1-AS1 promotes myeloid inflammatory cytokine production. To explore if  any of  the predicted lncRNAs 
identified in our analysis regulate an inflammatory pathogenesis seen in IBD, we focused our attention on 
the brown4 module, which was enriched for an IFN response signature, correlated with inflammation and 
disease severity, and enriched for IBD GWAS SNPs (Figure 4, C and D; Figure 6, A and B; and Figure 
8A). The lncRNA lnc-SLC22A5-6, also known as IRF1-AS1, was the highest connected lncRNA in brown4 
and overlapped with the IBD GWAS SNPs rs2188962 and rs17622378 (24). High correlation was observed 
between IRF1-AS1 expression and the expression of  the adjacent protein-coding gene IRF1 (Figure 9A), a 
gene critical for the activation of  myeloid cell defenses in response to IFN-γ and LPS (36). Thus, we hypoth-
esized that IRF1-AS1 plays a role in myeloid responses. To determine if  IRF1-AS1 functions to modulate 
myeloid cell responses, monocyte-derived macrophages (MDMs) and DCs (moDCs) were stimulated with 
LPS for 6 hours and IRF1-AS1 transcription was measured. LPS stimulation increased both IRF1-AS1 and 
IRF1 transcription, but the addition of  IFN-γ only further enhanced IRF1 expression (Figure 9B). To iden-
tify the sequence of  IRF1-AS1 transcripts, we used Oxford Nanopore long-read sequencing on full-length 
cDNA isolated from LPS-stimulated moDCs after 6 hours. Multiple isoforms of  IRF1-AS1 were detected, 
but the most abundant isoforms did not overlap with IRF1 (Figure 9C). Using these transcript sequences, 
we developed 3 antisense oligos (ASOs) to IRF1-AS1 for reducing IRF1-AS1 transcript levels and used 
RNAiMax to transfect the ASOs into MDMs and moDCs 48 hours before stimulation with LPS. Treatment 
with the ASOs reliably reduced IRF1-AS1 levels by 50% compared with cells treated with a nontargeting 
control (NTC) ASO with knockdown of the MALAT1 lncRNA using a MALAT1 ASO, verifying transfection. 

and the results of fitting a linear regression. (C) The kME of module genes in the train data set and the kME of train data set module genes using the test 
data set. (D) The preservation of modules between networks calculated using the Zsummary statistic. (E) The proportion overlap of high-influence nodes 
from the top quantile of BC scores between train and test data sets.
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Antisense lncRNAs often regulate the complementary protein-coding gene (37); therefore, IRF1 levels in 
ASO-treated cells were also measured. However, minimal changes in IRF1 levels were registered, and only 
with the 216 ASO, suggesting the lncRNA IRF1-AS1 does not primarily regulate IRF1 expression (Figure 
9D). Cytokine production of  cells was measured using multiplex cytokine enzyme-linked immunoassays 
(ELISAs) to determine if  there were broader changes in the myeloid cell response to LPS with reduced 
IRF1-AS1 expression. The ELISA results showed reduction of  TNF-α, IL-6, and IL-23 protein levels in the 
supernatants of  cells treated with the 216 ASO and the 34667 ASO, but not the 12678 ASO, compared with 
a NTC ASO whereas IFN-γ–induced protein 10 (IP-10) levels were not affected (Figure 9E). Therefore, 
expression of  IRF1-AS1 appears to promote inflammatory cytokine production in LPS-stimulated primary 
human myeloid cells.

An integrative unbiased CRISPRa approach to identify lncRNAs that regulate inflammatory macrophage 
function. While cell-specific expression and disease associations may indicate lncRNA involvement, 
a key challenge remains to unravel biological functions of  lncRNAs. As lncRNA expression is often 
low, ASO/siRNA-knockdown approaches have proven challenging to effectively reduce expression 
in our hands. In addition, their noncoding nature renders CRISPR/Cas9-mediated small nucleotide 
deletions/insertions ineffective to affect function. To identify lncRNA function, we focused on inflam-
matory responses in macrophages, since they present a key cell population responsible for TNF-α pro-
duction, a clinically validated therapeutic target in CD and UC. Specifically, we conducted a pooled 
CRISPRa screen using THP-1 dCas9-VP64/mCherry cells and targeted the transcription start sites 
(TSSs) of  lncRNAs (6 sgRNAs per lncRNA) that were prioritized based on differential expression in gut 
biopsies of  patients with IBD, associated with GWAS loci, or identified in our WGCNA. We further 
narrowed our screen to lncRNA transcripts readily detected in Oxford Nanopore long-read sequencing 

Figure 6. Hub genes and dimensionality reduction for the inflammation-associated brown4 module. (A) The brown4 coexpression module from the WGCNA 
was filtered with a connectivity threshold of 0.01 and exported for visualization into Cytoscape. The module network was filtered to show lncRNAs (yellow nodes) 
and their nearest connected neighbors, and the degree of connectivity between nodes was calculated and used to adjust the node size. (B) The expression of 
brown4 module genes was isolated, principal component analysis was conducted, and the first 2 principal components (PC1 and PC2) were depicted. For brown4 
lncRNAs, the weights and direction of contributions were calculated as the hypotenuse between PC1 and PC2 loadings. Only the top lncRNA contributors to PC1 
and PC2 are shown. (C) The log-normalized expression of the top lncRNA contributors between inflamed and noninflamed samples from the MSCCR biopsy data 
set. Box plots show the interquartile range (box), median (line), and minimum and maximum (whiskers).
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data of  full-length cDNA isolated from LPS-stimulated moDCs, resulting in detection of  345 lncRNAs 
with 1,066 unique isoforms. The full-length sequence information obtained from Nanopore sequencing 
verified previously known TSS locations but also allowed detection of  TSSs not previously annotated 
(Supplemental Table 4). In addition, we included positive (e.g., TNF-α, TLR4) and negative controls 
(intergenic sgRNAs that do not target any known lncRNA) to validate our screen.

Following transduction of  THP-1 cells with the guide library, mature THP-1 cells were left untreated 
or stimulated with LPS in the presence of  Brefeldin A. Subsequently, THP-1 cells were stained for intracel-
lular TNF-α and sorted into TNF-α–positive (TNF+), TNF-α–negative (TNF–), TNF-α–high (TNFhi), and 
TNF-α–low (TNFlo) populations (Figure 10A and Supplemental Figure 1). Genomic DNA was analyzed 

Figure 7. Visualization of hub genes for the immune cell signature–enriched orange module and expression of orange module genes in immune cell 
populations. (A) A connectivity threshold of 0.17 was applied to the orange module and exported for visualization into Cytoscape. The module network 
was filtered to show lncRNAs (yellow nodes) and their nearest connected neighbors, and the degree of connectivity between nodes was calculated and 
used to adjust the node size. (B) The expression of orange module genes was determined in various T, B, dendritic, and myeloid cell populations using 
ImmGen data. MF.PC, peritoneal macrophages; Mo.6C, Ly6C+ and Ly6C– monocytes; CD4+ DC, CD4+ dendritic cells; CD8+ TE, CD8+ terminal effectors; CD8+ 
IEL, CD8+ intraepithelial lymphocytes; CD4+aCD3, CD4+ T cells activated with anti-CD3 and CD40; Tgd, γδ T cells; CD4+ Nve, CD4+ naive T cells; CD8+ Nve, 
CD8+ naive T cells; B.PB, B cell plasmablasts; B.Fo, follicular B cells; B.GC, germinal center B cells.
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Figure 8. Relationship of modules to IBD genetics. (A) The percentage of SNP-adjacent lncRNA genes and protein-coding genes (within 50 kb) was 
calculated for each module (filled circles). Significance was determined using a Fisher’s exact test. The average percentage of SNP-adjacent lncRNA 
genes and protein-coding genes for all modules was also calculated (dashed lines). *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. (B) The proportion of dis-
ease-specific (i.e., significant in one but not the other) SNP-adjacent lncRNAs was calculated for modules having at least 3 UC- or CD-specific SNP-ad-
jacent lncRNAs. (C) Differential gene expression analysis was performed on UC versus CD samples in the rectum and nonrectum colon. All significant 
genes with adjusted P value below 0.01 and absolute log2 fold-change of 1 were intersected with the genes in the yellow and lightyellow modules. 
Significance testing of the overlap between the 2 gene sets was performed using a hypergeometric distribution with all genes included in the WGCNA 
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by next-generation sequencing, and the relative abundance of  each sgRNA was determined in each of  the 
sorted TNF-α populations as well as pooled (presorted) cells. The log2 fold-changes in sgRNAs between the 
sorted TNF-α subpopulations and pooled cells or TNF– cells were calculated using the STARS program 
from the Broad Institute (38). lncRNAs with STARS false discovery rate (FDR) < 0.25 were identified as 
potential lncRNAs that modulate (increase/decrease) LPS-induced TNF-α induction in macrophages.

Upon analyses, we identified 22 lncRNAs that exhibited enriched or depleted sgRNAs (FDR < 0.25) in 
1 or more sorted TNF-α populations compared with presorted or TNF– populations. Among these, TNFA, 
TLR4, and IRF8 were the top hits exhibiting significant enrichment of  sgRNAs in the TNFhi population, thus 
validating our CRISPRa screen approach (Figure 10B and Supplemental Figure 2). In addition, we identi-
fied an enrichment of  lnc-MAP3K11-1 and lnc-CEBPB-13 sgRNAs in TNF+ populations, suggesting that these 
lncRNAs promote LPS-induced TNF-α production in macrophages (Table 2 and Figure 10C). In contrast, we 
identified 9 lncRNAs that were negatively correlated with TNF-α production, showing a depletion of  sgRNAs 
in TNF+ or TNFhi population, suggesting they may suppress LPS-induced TNF-α production in macrophages 
(Table 2 and Figure 10, D–F). Among the top hits were lnc-IL5-1 and SENCR, but also LUCAT1 was identified 
to correlate with reduced TNF-α production. The latter observation is consistent with our previous observa-
tions that LUCAT1 serves an antiinflammatory function by regulating NF-κB responses (26).

Overall, our CRISPRa screen successfully identifies a number of  candidate lncRNAs that positively/
negatively regulate inflammatory responses in macrophages that may be relevant to IBD development.

Discussion
In the present study, RNA-Seq library quantification and analysis were performed on an expanded set of  
lncRNA annotations from gut biopsies in a large IBD cohort. This research resulted in an expression matrix 
of  19,899 lncRNAs and 16,903 protein-coding genes passing our detection threshold. Many new lncRNAs, 
especially those not included in GENCODE, were found to be differentially expressed in disease and inflam-
mation and potentially play roles in IBD pathogenesis. WGCNA of  the expressed genes revealed relation-
ships of  coexpression between lncRNAs and protein-coding mRNAs organized into modules of  coordinate 
expression. Using the protein-coding genes in the modules for functional pathway enrichment, the results of  
this study implicate new key regulators and pathways in IBD for lncRNAs and protein-coding genes alike.

Much of  the resolution from this study derives from the large sample size of  the cohort data set. WGC-
NA is a systems biology approach particularly suited for large data sets for uncovering molecular pathways 
in disease, and the use of  WGCNA for lncRNA research in inflammatory disease is on the rise (39–41). 
Since the ileum is a commonly affected tissue in CD, but not in UC, ileum samples were removed from the 
network analysis as not to bias the network toward the distinct transcriptional profile of  ileum-based CD (42). 
A single network was constructed encompassing colon biopsies from both UC and CD, and 34 modules were 
associated with clinical features such as inflammation, location, or disease severity but were similarly associ-
ated between the 2 diseases. Although there are differences in UC and CD presentation, the findings using a 
unified network of  colon biopsies from both diseases emphasized the similarities more than the differences. 
Therefore, the network was centered on cell signatures and pathways of  the colon that were largely shared 
between the diseases. However, there were notable exceptions, including the yellow and lightyellow modules, 
which contained UC-specific SNPs and were biased toward expression in the rectum. Given the recent efforts 
to define the heterogeneity of  IBD, subdividing samples based on disease type, anatomical location, or disease 
presentation could lead to higher resolution coexpression networks to identify context-specific modules and 
elucidate additional lncRNAs. Moreover, the greater variability and tissue specificity of  lncRNA expression 
suggests that lncRNAs could be used in IBD to predict clinical outcomes or treatment response, or even used 
for subtype classification as has been done with lncRNAs in diseases such as breast cancer (43–45).

With the expanded lncRNA reference, a proximity-based GWAS SNP analysis was used to examine 
the enrichment of  genetic susceptibility in our modules. The findings indicated increased enrichment of  
IBD SNP-adjacent lncRNAs in the disease severity–associated brown4 and lightsteelblue1 modules. The anal-
yses were extended to find evidence of  UC-specific SNP-adjacent lncRNAs in rectum-associated yellow and 

as the total gene set. (D) For yellow module genes, the gene significance of each yellow module gene to the rectum versus nonrectum samples was 
calculated and plotted against the module membership of each yellow module gene. (E) For yellow module genes, the gene significance of each gene 
to active versus inactive IBD status was calculated and plotted against the module membership of each yellow module gene. For D and E, significance 
was calculated using Pearson correlation.
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Figure 9. IRF1-AS1 promotes inflammatory cytokine production. (A) Expression of IRF1 and IRF1-AS1 in colon samples of the MSCCR data set with 
calculated linear regression and Pearson correlation. (B) MDMs and MoDCs were stimulated with LPS or LPS + IFN-γ for 6 hours, and the expression 
of IRF1-AS1 and IRF1 was determined by quantitative PCR (qPCR) and compared with unstimulated samples. Data shown are from 2 experiments (1 
for MDMs and 1 for MoDCs). (C) RNA extracted from MoDCs stimulated with LPS for 6 hours was converted to cDNA and sequenced with an Oxford 
Nanopore device. Stringtie of resulting sequences was used to determine the transcript sequences of IRF1-AS1 (left). TPM levels were also calculated 
(right). (D) The transcript sequences of IRF1-AS1 from Nanopore sequencing was used to design 3 highly specific ASOs (216, 12678, and 34667) along 
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lightyellow modules. A closer examination of  some of  the SNP associations in these modules revealed multi-
ple genes in the HOXA locus adjacent to a UC-specific SNP and including the protein-coding gene HOXA13 
and several lncRNAs. HOXA13 is strongly expressed in the hindgut endoderm during early gut development 
with dosage effects on development of  the epithelial layer of  the rectum (46, 47), and lncRNAs in the HOXA 
are notably conserved among vertebrates (48). The consequence of  disease-associated variants on lncRNAs 
in IBD is unknown, but a recent study on data from the Genotype Tissue Expression project has identified 
IBD-associated genetic variants associated with differences in lncRNA expression (49). Thus, future stud-
ies on the expression quantitative trait loci (eQTLs) of  the impacted gene expression surrounding variants 
should be expanded to include a broad set of  lncRNAs as was used in this study. However, noncoding 
variants identified by GWAS cannot readily be linked to a candidate causal gene, and therefore gene proxim-
ity-based methods are limited in establishing candidates. Additional studies that incorporate 3-dimensional 
genome conformation or colocalization with eQTLs to link SNPs with genes will be especially informative.

Due to the pervasive transcription of  lncRNAs throughout the genome, it is unclear how many 
lncRNAs are merely byproducts of  transcription and how many have functional roles. Through WGC-
NA, this study was able to provide putative functional annotation or associated cell types for IBD-ex-
pressed lncRNAs through “guilt by association,” many for the first time ever to our knowledge. Mod-
ule-trait correlation analysis revealed the brown4 module to be associated with disease severity and 
enriched for an IFN response signature. An IFN signature has been reported in blood and tissue for 
many autoimmune disorders, but the consequences of  an elevated IFN signature in IBD have yet to be 
determined (50). Intriguingly, a coexpression analysis of  an independent IBD cohort revealed a similar 
module enriched for an IFN signature with STAT1 and GBP1 as hub genes, and this signature was high-
ly correlated with disease penetrance (51). Our results parallel this independent analysis while reveal-
ing additional information about lncRNA hub genes. Examination of  the module network of  brown4 
revealed the lncRNA IRF1-AS1 was a highly connected hub gene and coexpressed with the neighboring 
IRF1 gene. IRF1 is a transcription factor that regulates IFN responses in cells including myeloid cells. 
Knockdown of  IRF1-AS1 in LPS-stimulated myeloid cells reduced TNF-α, IL-6, and IL-23 production. 
However, expression of  IRF1 was minimally impacted after reduction of  IRF1-AS1 levels, and IRF1 
levels, but not IRF1-AS1 levels, were increased by IFN-γ, suggesting IRF1-AS1 regulates inflammatory 
cytokine protection without being directly regulated by IFN.

In addition to using hub genes to uncover functional lncRNAs, such as IRF1-AS1, an examination 
of  the first 2 PCs of  the brown4 module revealed the lncRNA LUCAT1 as a major contributor with ele-
vated expression in inflamed biopsies. We have previously shown that LUCAT1 regulates inflammation 
in myeloid cells by controlling the splicing of  the transcription factor NR4A2 (26), suggesting that other 
lncRNAs identified using the PCs may also be functional in regulating inflammation. In addition to the 
functional lncRNAs identified through gene hubs or PCs, the lncRNA HOXA11-AS was adjacent to an 
IBD SNP and organized in the yellow module, a module highly associated with the rectum and enriched 
for UC-specific SNPs. We recently demonstrated the protective role of  the highly conserved mouse ortho-
log Hoxa11os in colitis by restraining myeloid cell inflammatory cytokine production in the distal gut (52). 
Therefore, identifying lncRNAs adjacent to disease-associated SNPs also appears promising for identifying 
functionally relevant lncRNAs. Other studies have also investigated the role of  lncRNAs in IBD by linking 
SNPs to nearby lncRNAs and functionally annotating the lncRNAs using the function of  nearby pro-
tein-coding genes to find an enrichment of  immune-regulatory processes (53, 54). Our study complements 
these efforts by expanding the functional annotation of  lncRNAs using pathway enrichment analysis of  the 
robust coexpressed modules obtained from our large IBD cohort. The use of  different lncRNA annotations 
remains a barrier for cross-examining annotated lncRNA function across these various studies, and a for-
malized nomenclature like the one proposed by LNCipedia could help to alleviate this problem.

with MALAT1 and NTC ASOs as controls. MDMs and MoDCs were differentiated from monocytes for 5 days before adding ASOs with RNAiMax for 48 
hours. Cells were then stimulated for 6 hours with LPS before measuring IRF1-AS1, IRF1, and MALAT1 expression by qPCR (n = 9, n = 8, and n = 10, 
respectively, across 3 experiments). (E) MDMs and MoDCs were differentiated from monocytes for 5 days before adding ASOs with RNAiMax for 48 
hours. Cells were then stimulated for 6 hours with LPS before collecting supernatants from the cultures and measuring cytokine concentrations using 
Meso Scale Discovery multiplex cytokine ELISAs. Two experiments were performed on MDMs (n = 2 and n = 3), and 2 experiments were performed with 
MoDCs (n = 4 and n = 3); the results were combined for a total of 12 samples. Statistical significance for cytokine concentrations was determined using 
a 1-way ANOVA in GraphPad Prism. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Data represent mean ± SEM (B, D, and E).
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Despite the demonstrated utility of  our gene coexpression networks, there are a few technical lim-
itations to note. The transcriptomic data obtained for this study were based on a cross-sectional cohort 
whereas the expression of  lncRNAs is likely dynamic. Future studies based on longitudinal data may 
reveal additional patterns of  coexpression that could lead to a more complete understanding of  lncRNAs 
in the pathogenesis of  IBD. Moreover, the role of  microRNAs, another noncoding RNA known to be 
regulated by lncRNAs, was not addressed in this study because our transcriptomic techniques were 
not suited to capture the microRNA compartment. Finally, the data set here consisted of  unstrand-
ed RNA-Seq libraries, which presented difficulties in quantifying the expression of  antisense lncRNAs.  

Figure 10. Identification of lncRNAs that modulate LPS-induced TNF-α responses using a CRISPRa screen. (A) THP-1 cells were stained for intracellular 
TNF-α and sorted into TNF-α+, TNF-α–, TNF-αhi, and TNF-αlo populations. Enrichment and depletion of sgRNAs in TNF-α subpopulations were compared 
with presorted and TNF-α– populations. (B) Log fold-change of sgRNAs targeting the TSS of TNFA reveal correlation with TNF-α levels, thus validating the 
CRISPRa screening potential. (C–F) Log fold-change of sgRNAs targeting lncRNAs that positively (lnc-MAP3K11-1, C) or negatively (lnc-IL5-1, D; SENCR, E; 
lncTMEM154-4, F) correlate with levels of TNF-α production.
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Pseudoalignment methods (as used in this study) have been investigated and found superior to align-
ment-based methods in quantifying lncRNA expression from unstranded libraries. One possible explana-
tion for their superior performance is that the expectation maximization algorithm that pseudoalignment 
methods employ better models the random sampling of  subsequences of  spliced transcripts. Therefore, 
strand-specific methods of  RNA-Seq library prep are recommended for further large-scale studies and 
clinical trials if  lncRNA contribution to human disease is to be more fully understood as 32% of  human 
lncRNAs are antisense to coding genes (55).

Addressing lncRNA functionality is challenging because of  the limited molecular tools for character-
izing lncRNA function. Despite reliably achieving MALAT1 knockdown with the use of  ASOs, we were 
only able to reduce IRF1-AS1 levels by 50%. Nonetheless, using a CRISPRa screen in macrophages, we 
were able to identify lncRNAs that appear to modulate (increase/decrease) LPS-induced TNF-α responses. 
Among these was LUCAT1, verifying our previously reported antiinflammatory function for this lncRNA 
(26). In contrast, sgRNAs targeting IRF1-AS1 did not significantly modulate LPS-induced TNF-α responses 
in our screen. This could be explained by the differences in approach (i.e., gain of  function versus loss of  
function), with IRF1-AS1 already reaching maximum functional capacity and a further increase having 
limited impact on modulation of  TNF-α induction. In addition to LUCAT1, particularly lnc-IL5-1 and SENCR 
show a strong negative correlation with the level of  TNF-α production, suggesting that these lncRNAs 
may play important roles as negative regulators of  macrophage inflammation. SENCR has been primarily 
associated with vascular disease and atherosclerosis, where it was reported to promote endothelial integrity 
by controlling the adherens junction through the RNA-binding protein CKAP4 and the membrane-bound 
CDH5 (56, 57). On the other hand, less is known about the tissue-specific expression, regulation, and 
potential functional role of  lnc-IL5-1. Thus, the identification of  these lncRNAs may uncover new and 
exciting biology, though confirmation and understanding the biology of  each of  these lncRNAs will require 
substantial efforts. Finally, the immunological context of  our screen was limited to LPS-induced TNF-α 
production while we expect many of  the lncRNAs screened may functionally impact other macrophage 
activation pathways, other immune cells such as T cells, or tissue epithelial cells. Future screening efforts 
may focus on understanding the functional role of  these lncRNAs beyond macrophages.

In summary, an expanded set of  lncRNA annotations was used to characterize lncRNA expression 
more fully in IBD, with a gene coexpression network analysis providing insights into the coregulation of  
lncRNA and protein-coding gene expression associated with clinical features and tissue and cell type speci-
ficity. We expect that our in silico prioritization of  lncRNAs will provide a foundational resource for novel 
target identification, biomarker evaluation, and future functional studies of  IBD-associated lncRNAs.

Table 2. Log fold-change and FDR for sgRNAs that positively or negatively correlate with TNF-α levels in selected subpopulations

Gene LFC TNF+ vs. presort FDR-adjusted P value LFC TNFhi vs. TNF– FDR-adjusted P value LFC TNF– vs. presort FDR-adjusted P value
sgRNAs enriched in TNFhi

TNF 1.21 <0.001 2.58 <0.001 –0.72 <0.001
TLR4 0.60 <0.001 1.31 <0.001 –0.47 <0.001
IRF8 0.07 0.012 0.045 0.00083 –0.077 0.433

lnc-MAP3K11-1 0.12 0.10 0.082 0.39 0.066 >0.999
lnc-CEBPB-13 0.09 0.11 0.23 0.51 –0.023 >0.999

sgRNAs depleted in TNFhi

lnc-IL5-1 –0.45 <0.001 –0.71 0.032 0.019 0.18
lncTMEM154-4 –0.40 0.32 –0.91 0.017 0.10 >0.999
ADAMTSL4-AS1 –0.08 >0.999 –0.18 0.053 –0.044 >0.999
lnc-ACAP3-2 –0.30 >0.999 –1.85 0.10 –0.018 >0.999
lnc-GPR183-48 –0.14 >0.999 –0.080 0.08 –0.14 >0.999

LUCAT1 –0.15 0.21 –0.22 0.75 0.025 0.87
MIR155HG –0.73 0.23 –1.06 >0.999 0.29 >0.999
SENCR –0.67 0.022 –0.86 0.02 0.27 >0.999

ZMIZ1-AS1 –0.18 0.24 –0.19 >0.999 –0.013 >0.999

FDR values were calculated using the Benjamini-Hochberg procedure based on the distribution of P values for each comparison. lncRNAs with FDR < 0.25 
in this study all had P < 0.05 in the comparison of interest. LFC, log fold-change.
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Methods
Supplemental Methods are available online with this article.

Data set information. The data set used in this study was the MSCCR of  biopsy whole-transcriptome 
sequencing data from a cross-sectional cohort composed of  1,170 patients enrolled in the MSCCR from 
December 2013 through September 2016 (for more details, see Supplemental Methods).

Reference annotation. The identification and annotation of  noncoding genes are iterative and ongoing 
processes and multiple reference sets exist (58). For a uniform lncRNA annotation resource, the human 
lncRNA database LNCipedia was used (11). A custom reference annotation of  nonredundant transcripts 
for both protein-coding genes and lncRNAs was constructed by combining protein-coding transcripts iso-
lated from human transcriptome version GENCODE release 38 of  GENCODE (GRCh38.p13) with the 
high-confidence set of  lncRNAs from LNCipedia v 5.2. Additional lncRNAs resulting from de novo tran-
scriptome assembly of  human lymphocyte subsets from Ranzani et al. were included after lifting over to 
hg38 using the UCSC liftover tool (12, 59).

Module visualization and identification of  hub genes. A connectivity threshold of  0.01 and 0.17 was applied 
to the brown4 and orange modules, respectively, to reduce the number of  edges in the final network. The 
module networks were exported and displayed in Cytoscape and filtered on lncRNAs and their nearest 
connected neighbors (60). The degree of  connectivity of  each node was calculated and used to adjust the 
node size. The expression of  brown4 module genes was then isolated, and principal component analysis was 
carried out in R using the prcomp function. For brown4 lncRNAs, the weights and direction of  contributions 
for top connected lncRNAs were calculated as the hypotenuse between PC1 and PC2 loadings. For the 
orange module genes, human gene symbols were converted to mouse gene symbols, and the heatmap of  
gene expression was plotted using the normalized set of  RNA-Seq ImmGen data from National Center for 
Biotechnology Information Gene Expression Omnibus (NCBI GEO) data set GSE109125.

SNP-based analysis. IBD GWAS SNPs were collected from the NHGRI-EBI GWAS Catalog for Jos-
tins et al., Liu et al., and de Lange et al. (22, 24, 61). Significant associations for UC, CD, and IBD were 
collected and separated into UC-specific, CD-specific, and IBD-shared SNPs. Genes were extended by 50 
kb on each side and intersected with the genomic location of  each SNP using bedtools version 2.30.0 (62). 
The number of  lncRNAs and protein-coding genes within the 100 kb window at each SNP were tabulated 
for each module. Bootstrapping was performed to test the statistical enrichment of  SNP-adjacent lncRNAs 
and protein-coding genes by sampling the same number of  genes with the same proportion of  lncRNAs and 
protein-coding genes and calculating the proportion of  each adjacent to an SNP. This process was repeated 
10,000 times for each module, and the actual value was compared to the resulting distribution to calculate 
the P value. The overlap of  the yellow and lightyellow genes with the significant genes in the UC versus CD 
comparison was calculated, and a Fisher’s exact test was used to test for significance, with the number of  
protein-coding and lncRNA genes that passed the expression threshold for the WGCNA (23,083 genes) set 
as the background.

Statistical modeling of  differential expression. Gene-level summarized RNA fragment counts were generat-
ed using the summarizeToGene function in tximeta (63) followed by TPM normalization. Tissue-specific 
lncRNA genes were defined as being above 0.5 TPM in at least 30% of  the respective tissue but not in the 
other tissues. TPM counts were further log-transformed within each gene as the following:

  (Equation 1).

The differential expression (DE) analyses were conducted separately for ileum, nonrectal colon, 
and rectum samples because of  differences in sample collection. Ileum samples were collected from 659 
patients, with 6 patients with CD having 1 inflamed and 1 noninflamed samples, and the remaining 653 
patients having a single sample. Nonrectal colon samples were collected from 655 patients. Each patient 
had 3 inflamed and 3 noninflamed samples. Rectum samples were collected from 882 patients: 623 of  the 
patients had a single noninflamed sample, 245 patients had a single inflamed sample, and 14 patients had 1 
noninflamed and 1 inflamed sample. Samples from all 3 locations were sequenced in 125 batches.

DE analyses were done using zero-inflated mixed-effects Gaussian model (R function NBZIMM:lme.
zig) (64). If  the model did not converge, non–zero-inflated model was applied (R function nlme:lme) (65). 
Ileum and rectum samples were analyzed on sample level, with batch as a random-effects variable. Colon 
samples were analyzed on patient level with 3 inflamed and 3 noninflamed samples per patient and patient 
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ID and batch included in the model as the random-effects variables. Gene expressions (logTPM) were 
modeled against the combined explanatory variable of  disease status and the biopsy sample inflammation 
status as noninflamed controls, noninflamed UC, inflamed UC (except for ileum samples), noninflamed 
CD, and inflamed CD. The second set of  models was used to adjust for the effects of  the clinical variables: 
race, ethnicity, sex, and history of  asthma, thyroid disease, rheumatoid arthritis, psoriasis, ankylosing spon-
dylitis, osteopenia/osteoporosis, cancer, appendectomy, depression, and tobacco use. Gene expression was 
modeled in genes with statistically significant DE in inflamed UC and inflamed CD samples only against 
disease severity, duration, and medication class. All reported P values were FDR adjusted (66). The results 
were visualized in R using bar plots, heatmaps, and Venn diagrams.

lncRNA CRISPRa library design. An sgRNA CRISPRa library was designed and synthesized by the 
Broad Institute. The sgRNAs were designed to target the TSSs  of  345 lncRNAs expressed in LPS-stim-
ulated moDCs identified through Nanopore-sequenced cDNA from moDCs stimulated with LPS for 6 
hours. Approximately 6 sgRNAs per TSS were designed. In addition, 680 negative control intergenic sgR-
NAs, which do not target any known lncRNA, were included. Finally, protein-coding genes TLR4, MYD88, 
IRAK4, IRAK1, TRAF6, RELA, NFKB1, and TNFA were targeted by 10 sgRNAs each as positive con-
trols. The final library contained 5,837 total sgRNAs, which were cloned into lentiviral CRISPRa vector 
pXPR502 (Broad Institute).

CRISPRa screen data analysis. The log2 fold-changes between the sorted (based on TNF-α level) cells 
and pooled cells were calculated per sgRNA for THP-1 dCas9-VP64/mCherry cells (generated in-house 
from parent THP-1 cells [ATCC]) at day 21. Statistical analysis of  the log2 fold-changes were conducted 
using the STARS program from the Broad Institute (38). The STARS program calculates a score using 
the probability mass function of  a binomial distribution. The calculation was performed for all sgRNAs 
that ranked in the top 4% of  the log2 fold-changes. For genes with at least 2 sgRNAs ranked in the top 
4%, a score from the sgRNA with the lowest rank in the top 4% was assigned to the gene. P values and 
FDRs were calculated for each gene based on a null distribution generated by permutation of  the origi-
nal library (see Table 2). lncRNAs with STARS FDR < 0.25 were identified as candidates in which acti-
vation of  the lncRNA would either increase or reduce the TNF-α expression in THP-1 cells at day 21.

Statistics. Statistical tests and P values are in the figure and table legends.
Study approval. The protocol was approved by the Icahn School of  Medicine at Mount Sinai Institution-

al Review Board, and patients gave written informed consent (13, 14).
Data availability. The MSCCR of  biopsy whole-transcriptome sequencing data are public on NCBI 

GEO GSE193677. Values for data points depicted in graphs and behind reported mean values in the man-
uscript and supplement are available in the Supporting Data Values file online.
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