Supplemental Figures

Supplemental Figure 1. The effect of *Vdr-/-* **on PTH.** Serum PTH is (**A**) increased in mice on regular diet (n=8-10 per group) and (**B**) there is no difference after 2 weeks of rescue diet (n=7-9 per group). Data represents the mean \pm SEM. P values by two-tailed Student's t test.

Supplemental Figure 2. 1,25(OH)₂**D** has no effect on FGF23 cleavage in *Vdr -/-* mice. *Vdr-/-* mice were treated with 1,25(OH)₂D (D) for 7 days have similar cFGF23 (A), iFGF23 (B), cFGF23/iFGF23 (C), phosphate (D) and Ca (E) levels as compared to baseline (n=5 per group). Data represents the mean ± SEM. Student's t test; D, 1,25(OH)₂D; BL, baseline

Supplemental Figure 3. *Vdr* -/- mice do not have anemia or inflammation. *Vdr*-/- mice have similar serum hemoglobin (n=4-7 per group) (**A**), iron (**B**), transferrin saturation (n=6 per group) (**C**) and IL-1 β (n=6 per group) (**D**) levels as compared to wild-type (WT) mice. Data represents the mean ± SEM. Student's t test to determine whether significant changes were observed, WT, wild-type

Supplemental Figure 4. *Vdr* -/- does not affect Klotho. *Vdr*-/- mice and $1,25(OH)_2D$ treated wild type mice have similar plasma Klotho levels as compared to WT mice (n=5-6 per group) (**A**). There is no difference in *Klotho* mRNA in the bone marrow of WT and *Vdr* -/- mice (n=4 per group) (**B**). Data represents the mean \pm SEM. ANOVA and Student's t test to determine whether significant changes were observed, D, $1,25(OH)_2D$; WT, wild type

Supplemental Figure 5. Furin inhibitor treatment of WT and *Vdr-/-* mice. The effect on furin inhibitor treatment for 7 days on (A) serum PTH and (B) calcium levels (n=4-6 per group). Data represents the mean \pm SEM. Non-significant, two way ANOVA. BL, baseline; FI, furin inhibitor; WT, wild-type

]

Supplemental Figure 6. Western blot of OCY454 cells in which the *Vdr* was deleted by CRISPR/Cas9. B-actin was used as a control.

Supplemental Figure 7. *Galnt3* and *Fam20C* mRNA expression *in vivo* and GALNT3 and FAM20C protein *in vitro*. *GalnT3* (A) and *Fam20C* (B) mRNA expression in the bone marrow of WT and *Vdr* -/- mice (n=3-4 per group). Data represents the mean ± SEM, non-significant, two-tailed Student's t test.Western blot of GALNT3 (C) and FAM20C (D) from OCY454 cells. Scr, scramble, *Vdr* KD, *Vdr* knock-down

Supplemental Figure 8. *Galnt3* overexpression and *Fam20C* knock-down in OCY454 cells. GALNT3 (A) and FAM20C (B) Western blot after *Galnt3* overexpression (*Galnt3* Tg) and *Fam20C* knock-down (*Fam20C* KD).

Supplemental Figure 9. *Furin* gene binding and transcription analyses. Chromatin Immunoprecipitation analysis of DNA regions identified by JASPR CORE transcription factor binding site program (A-D). (E) Firefly luciferase expression of control ChIP region -10093 to -9893 bp normalized to renilla luciferase (n=6 per group). Data represents the mean \pm SEM, nonsignificant, two-tailed Student's t test.

Supplemental Figure 10. qPCR showing reduction in transcription of *Furin* promoter - 16,993 to -16,743 bp in *Vre* KD OCY454 cells. (n=3 per group)VRE KD, Vitamin D responsive element knock down

Supplemental Figure 11. The effect of 1,25(OH)₂D on serum bone mineral parameters. $1,25(OH)_2D 0.5 \ \mu g i.p. \ QOD \ for 7 \ days \ on \ serum \ (A) \ phosphate, \ (B) \ PTH \ and \ (C) \ calcium \ (n=7 \ per \ group). \ Data \ represents the mean <math>\pm \ SEM.$ P values by two-tailed Student's t test

Supplemental Figure 12. The effect of calcitriol and *Vdr-/-* on FGF23 cleavage in CKD. (A) Creatinine is increased in mice on adenine diet induced CKD. (B) Adenine diet induced CKD reduces cFGF23/iFGF23 within 2 weeks as compared to baseline and calcitriol further reduces cFGF23/iFGF23. (C) iFGF23 and (D) cFGF23 are increased in CKD (n=6-8 per group). (E) *Vdr-/-* mice have reduction in cFGF23/iFGF23 with progression/weeks of CKD (n=3-5 per group). Data represents the mean \pm SEM. P values by two way ANOVA. Cr, creatinine; Bl, baseline; CKD, chronic kidney diseas

Supplemental Table 1. Patient baseline characteristics

	PLACEBO (N=18)	ERGOCALCIFEROL (N=18)	P VALUE
AGE	30 (19, 44)	28 (18, 39)	0.39
25OHD (ng/ml)	15±4	15±3	0.93
1.25(OH) ₂ D (pg/ml)	36±13	37±11	0.83
iFGF23 (pg/ml)	47±34	41±17	0.50
PTH (pg/ml)	41±14	42±13	0.87
Ca (mg/dl)	9.0±0.4	9.2±0.4	0.12
Phos (mg/dl)	3.3±0.4	3.4±0.5	0.359
Creatinine (mg/dl)	0.9±0.1	0.9±0.1	0.67

RT-qPCR primer name	Primer sequence	
Furin FW	TGG TTG CTA TGG GTG GTC G	
Furin RE	CCA GAA GTG GTA ATA GTC ACC GA	
GalnT3 FW	TGC AAA TAG GAG CGC CCA TTA	
GalnT3 RE	GGC GAT CAA AAA CCG GCT TC	
Fam20C FW	GAT GTG ACG CGG GAT AAG AAG	
Fam20C RE	GCT CGG TGG AAC AGT AGT AGG	
Klotho FW	GAC GGT TTC GAG TGG CAT AGG	
Klotho RE	CCG ACA CTG GGT TTT GTC AAA G	
sgRNA target name	sgRNA target sequence	
Vdr #1	TGGAGATTGCCGCATCACCA	
Vdr #2	AGCGTTGAAGTGGAAGCCCG	
VRE #1	TGCTTGCCTCTGCTTCCCAC	
VRE #2	GTTTTTGTGTGTGTTTTTTTGC	
ChIP qPCR	ChIP qPCR primer sequence	
ChIP -10,093 to -9,893 bp FW	AGG CCC TGA GGT CTT AGC TA	
ChIP -10,093 to -9,893 bp RE	CCT TCT CTG ACA CTC CAG AG	
ChIP -10,643 to -10,443 bp FW	CCA TCG GAG GCT GAG CAT GG	
ChIP -10,643 to -10,443 bp RE	CCA CAG TAG ACA GAT GGA GG	
ChIP -10,993 to -10,793 bp FW	CAG ATG GAG AGG TTC TGT AC	
ChIP -10,993 to -10,793 bp RE	ATG TAA GTA CAC TGT AGC TG	
ChIP -16,993 to -16,743 bp FW	AAA ACA ACA CAA CAC AAC AA	
ChIP -16,993 to -16,743 bp RE	TCC CAC ATG GTG GTG GAA AG	
ChIP -24,043 to -23,843 bp FW	CCC AAG TGC TGG GAT TAA AG	
ChIP -24,043 to -23,843 bp RE	ACA CCT TCC TTC CCC ACA CC	

Supplemental Table 2. List of oligonucleotides; all 5' to 3'

Supplemental Table 3. Plasmid DNA construct sequence by VectorBuilder Inc (Chicago, IL)

Furin -16,993 to -16,743 and Firefly Construct

AGCCTTCTTTGCCTTGTGTAATTTTGAGAAAGTCTCATAGGCTAGCTTGGCCTCGAAC TTCCTATGTAGCCTAGGGTGATCTTGAACTCCTGATCTTCCTGCCTCTCCCTCGAG TGCTGGGATTATAGCATGTGCCACCATGTCTACCTTCCAGGCATTTGCTATTTGTGTT TCTATATATATTTTGTTGTTGTTGTTGTTGTGTTGTTTTGGCAATCCGGTACTGTTG GTAAAGCCACCCAAGTTTGTACAAAAAGCAGGCTGCCACCATGGAAGACGCCAAA AACATAAAGAAAGGCCCGGCGCCATTCTATCCGCTAGAGGATGGAACCGCTGGAGA GCAACTGCATAAGGCTATGAAGAGATACGCCCTGGTTCCTGGAACAATTGCTTTTAC AGATGCACATATCGAGGTGAACATCACGTACGCGGAATACTTCGAAATGTCCGTTCG GTTGGCAGAAGCTATGAAACGATATGGGCTGAATACAAATCACAGAATCGTCGTAT TGCAGTTGCGCCCGCGAACGACATTTATAATGAACGTGAATTGCTCAACAGTATGAA CATTTCGCAGCCTACCGTAGTGTTTGTTTCCAAAAAGGGGGTTGCAAAAAATTTTGAA CGTGCAAAAAAATTACCAATAATCCAGAAAATTATTATCATGGATTCTAAAACGG ATTACCAGGGATTTCAGTCGATGTACACGTTCGTCACATCTCATCTACCTCCCGGTTT TAATGAATACGATTTTGTACCAGAGTCCTTTGATCGTGACAAAACAATTGCACTGAT AATGAACTCCTCTGGATCTACTGGGTTACCTAAGGGTGTGGCCCTTCCGCATAGAAC TGCCTGCGTCAGATTCTCGCATGCCAGAGATCCTATTTTTGGCAATCAAATCATTCCG GATACTGCGATTTTAAGTGTTGTTCCATTCCATCACGGTTTTGGAATGTTTACTACAC TCGGATATTTGATATGTGGATTTCGAGTCGTCTTAATGTATAGATTTGAAGAAGAGC TGTTTTTACGATCCCTTCAGGATTACAAAATTCAAAGTGCGTTGCTAGTACCAACCCT ATTTTCATTCTTCGCCAAAAGCACTCTGATTGACAAATACGATTTATCTAATTTACAC GAAATTGCTTCTGGGGGGCGCACCTCTTTCGAAAGAAGTCGGGGAAGCGGTTGCAAA ACGCTTCCATCTTCCAGGGATACGACAAGGATATGGGCTCACTGAGACTACATCAGC ATTTTTTGAAGCGAAGGTTGTGGATCTGGATACCGGGAAAACGCTGGGCGTTAATCA GAGAGGCGAATTATGTGTCAGAGGACCTATGATTATGTCCGGTTATGTAAACAATCC GGAAGCGACCAACGCCTTGATTGACAAGGATGGATGGCTACATTCTGGAGACATAG CTTACTGGGACGAAGACGAACACTTCTTCATAGTTGACCGCTTGAAGTCTTTAATTA AATACAAAGGATACCAGGTGGCCCCCGCTGAATTGGAGTCGATATTGTTACAACAC CCCAACATCTTCGACGCGGGCGTGGCAGGTCTTCCCGACGATGACGCCGGTGAACTT CCCGCCGCCGTTGTTGTTTGGAGCACGGAAAGACGATGACGGAAAAAGAGATCGT GGATTACGTCGCCAGTCAAGTAACAACCGCGAAAAAGTTGCGCGGAGGAGTTGTGT TTGTGGACGAAGTACCGAAAGGTCTTACCGGAAAACTCGACGCAAGAAAAATCAGA GAGATCCTCATAAAGGCCAAGAAGGGCGGAAAGTCCAAATTGTAAACCCAGCTTTC TTGTACAAAGTGGTGATGGCCGGCCGCTTCGAGCAGACATGATAAGATACATTGAT GAGTTTGGACAAACCACAACTAGAATGCAGTGAAAAAAATGCTTTATTTGTGAAATT TGTGATGCTATTGCTTTATTTGTAACCATTATAAGCTGCAATAAACAAGTTAACAAC AGCAAGTAAAACCTCTACAAATGTGGTAGCGGCCGCGGCGCTCTTCCGCTTCCTCGC AGGCGGTAATACGGTTATCCACAGAATCAGGGGGATAACGCAGGAAAGAACATGTGA GCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTT

CCATAGGCTCCGCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGT GGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTC GTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCTCTT CGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGG TCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCG CCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCAC TGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACA GAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATC TGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGC AAACAAACCACCGCTGGTAGCGGTGGTTTTTTTTGTTTGCAAGCAGCAGATTACGCGC AGAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTCTACGGGGTCTGACGCTCAG TGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTC TAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATC TGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATAC GGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCA CCGGCTCCAGATTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAG TGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGA GTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATC GTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAA GGCGAGTTACATGATCCCCCATGTTGTGCAAAAAGCGGTTAGCTCCTTCGGTCCTC CGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCAC TGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTA CTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGC GTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGG AAAACGTTCTTCGGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTC GATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTT TCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGA CACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCA AGGGGTTCCGCGCACATTTCCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTAT TATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCGGCGCGCG CGCGGCCGC

Furin -10,093 to -9,893 Firefly Construct

CAAAAAATTTTGAACGTGCAAAAAAAATTACCAATAATCCAGAAAATTATTATCAT GGATTCTAAAACGGATTACCAGGGATTTCAGTCGATGTACACGTTCGTCACATCTCA TCTACCTCCCGGTTTTAATGAATACGATTTTGTACCAGAGTCCTTTGATCGTGACAAA ACAATTGCACTGATAATGAACTCCTCTGGATCTACTGGGTTACCTAAGGGTGTGGCC CTTCCGCATAGAACTGCCTGCGTCAGATTCTCGCATGCCAGAGATCCTATTTTTGGC AATCAAATCATTCCGGATACTGCGATTTTAAGTGTTGTTCCATTCCATCACGGTTTTG GAATGTTTACTACACTCGGATATTTGATATGTGGATTTCGAGTCGTCTTAATGTATAG ATTTGAAGAAGAGCTGTTTTTACGATCCCTTCAGGATTACAAAATTCAAAGTGCGTT GCTAGTACCAACCCTATTTTCATTCTTCGCCAAAAGCACTCTGATTGACAAATACGA TTTATCTAATTTACACGAAATTGCTTCTGGGGGGGCGCACCTCTTTCGAAAGAAGTCGG GGAAGCGGTTGCAAAACGCTTCCATCTTCCAGGGATACGACAAGGATATGGGCTCA GTCGGTAAAGTTGTTCCATTTTTTGAAGCGAAGGTTGTGGATCTGGATACCGGGAAA ACGCTGGGCGTTAATCAGAGAGGCGAATTATGTGTCAGAGGACCTATGATTATGTCC ACATTCTGGAGACATAGCTTACTGGGACGAAGACGAACACTTCTTCATAGTTGACCG CTTGAAGTCTTTAATTAAATACAAAGGATACCAGGTGGCCCCCGCTGAATTGGAGTC GATATTGTTACAACACCCCAACATCTTCGACGCGGGCGTGGCAGGTCTTCCCGACGA TGACGCCGGTGAACTTCCCGCCGCCGTTGTTGTTTTGGAGCACGGAAAGACGATGAC GGAAAAAGAGATCGTGGATTACGTCGCCAGTCAAGTAACAACCGCGAAAAAGTTGC GCGGAGGAGTTGTGTTTGTGGACGAAGTACCGAAAGGTCTTACCGGAAAACTCGAC GCAAGAAAAATCAGAGAGATCCTCATAAAGGCCAAGAAGGGCGGAAAGTCCAAAT ATAAGATACATTGATGAGTTTGGACAAACCACAACTAGAATGCAGTGAAAAAAATG CTTTATTTGTGAAATTTGTGATGCTATTGCTTTATTTGTAACCATTATAAGCTGCAAT TGGGAGGTTTTTTAAAGCAAGTAAAACCTCTACAAATGTGGTAGCGGCCGCGGCGCC CTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGG TATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCA GGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCG CGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCTGACGAGCATCACAAAAATCGAC GCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCC CCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGT CCGCCTTTCTCTCTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCT CAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCA GCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACA CGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATG TAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGA ACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGT CAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTCTACG GGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTA TAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCA CCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGT AGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCG

TTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGC GGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTT AGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTC ATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTT CTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGA GTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAA AAGTGCTCATCATTGGAAAACGTTCTTCGGGGGCGAAAACTCTCAAGGATCTTACCGC TGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTT TACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAA AGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATT ATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTA GAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACG TCTAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGC CCTTTCGTCGGCGCGCGCGCGGCCGC