Supplemental information

Supplemental Figures

Figure S1

Figure S1. Physiological characteristics of Slc39a8-NSKO mice

(A) Mouse weight in 4-week-old male and female control and *Slc39a8*-NSKO mice.

(B) Brain weight in 4-week-old male and female control and *Slc39a8*-NSKO mice.

Data are presented as individual values and represent the mean ± SEM.

Figure S2. Neuronal SIc39a8 deletion leads to brain Mn deficiency

(A–C) ICP-MS analysis of Mn (A), Fe (B), and Zn (C) levels in whole brain from 4-week-old male and female control and *Slc39a8*-NSKO mice.

(D-F) ICP-MS analysis of Mn (D), Fe (E), and Zn (F) levels in whole blood from 4-week-old male and female control and *Slc39a8*-NSKO mice.

(G-I) ICP-MS analysis of Mn (G), Fe (H), and Zn (I) levels in liver from 4-week-old male and female control and *Slc39a8*-NSKO mice.

Data are presented as individual values and represent the mean \pm SEM. * *P* < 0.05, ** *P* < 0.01, and *** *P* < 0.001.

Figure S3. Loss of *Slc39a8* in neurons results in little impacts on iron and zinc levels in the brain region.

ICP-MS analysis of iron and zinc levels in olfactory bulbs (OB), prefronatal cortex (PFC), cortex (CTX), hippocampus (HPC), midbrain (MB), and cerebellum (CB) from 4-week-old male and female control and *Slc39a8*-NSKO mice.

Data are presented as individual values and represent the mean \pm SEM. * *P* < 0.05.

Figure S4. Neuronal *Slc39a8* deletion results in impaired brain Mn uptake.

(A-F) Control and *Slc39a8*-NSKO mice at 4 weeks of age were administered 0.1 μCi [⁵⁴Mn]MnCl₂ per gram body weight via oral-gastric gavage. Brain regions were collected at 1 hr, and cpm was determined by γ-counting. Levels of ⁵⁴Mn in olfactory bulbs (OB) (A), prefrontal cortex (PFC) (B), cortex (CTX) (C), hippocampus (HPC) (D), midbrain (MB) (E), and cerebellum (CB) (F) from 4-week-old male and female control and *Slc39a8*-NSKO mice.

(G, H) Blood was collected at 1 hr after intravenous injection (G) or after oral gavage (H), and blood counts per min (cpm) were determined by γ-counting.

(I, J) Levels of total ⁵⁴Mn between control and *Slc39a8*-NSKO mice for intravenous injection (I) or for oral gavage (J).

Data are presented as individual values and represent the mean \pm SEM. * *P* < 0.05 and ** *P* < 0.01.

Figure S5. Transporter RNA levels were measured in cerebellum (CB) from 4-week-old male and female control and *Slc39a8*-NSKO mice.

Figure S6. H&E-stained sagittal sections of paraffin-embedded mouse brains from 4-week-old control and *Slc39a8*-NSKO mice. Samples with morphological defects are highlighted red.

Figure S7. Morphological defects in *Slc39a8*-NSKO cerebellum.

(A) Immunohistochemical staining of cerebellar Purkinje cells (PCs) with anti-calbindin antibody. PC morphologies of *Slc39a8*-NSKO mice at P8. EGL, external granule cell layer; ML, molecular layer; PCL, Purkinje cell layer; IGL, internal granule cell layer. Scale bars: 25 μm
(B) Number of PCs at P8.

Data are presented as individual values and represent the mean \pm SEM. *** P < 0.001.

В

Figure S8. SLC39A8 mRNA expression from single-cell transcriptome analysis from human brain (1, 2).

log2 fold-Gene symbol **Gene description** Padj change **Down-regulated** Nuclear Receptor Subfamily 4 Group A Member 2 Nr4a2 -0.85 2.3E-32 Nuclear Receptor Subfamily 4 Group A Member 1 -0.80 Nr4a1 4.6E-29 FOS Like 2 Fosl2 -0.57 4.7E-14 Apolipoprotein L Domain Containing 1 Apold1 -0.44 1.0E-09 Period Circadian Regulator 1 Per1 -0.39 1.8E-06 FosB Proto-Oncogene Fosb -0.25 7.8E-06 Phosphodiesterase 10A Pde10a -0.38 7.8E-06 Nuclear Receptor Subfamily 4 Group A Member 3 Nr4a3 -0.27 2.6E-05 Neurexophilin 1 Nxph1 -0.37 2.6E-05 Salt Inducible Kinase 1 Sik1 -0.37 4.2E-05 Predicted gene 45140 NA -0.25 2.2E-04 Fos Proto-Oncogene Fos -0.24 3.8E-04 Solute Carrier Family 2 Member 13 -0.32 Slc2a13 1.5E-03 **Thioredoxin Interacting Protein** -0.31 Txnip 3.5E-03 Interferon Regulatory Factor 2 Binding Protein 2 Irf2bp2 -0.25 3.5E-03 Ddit4 **DNA Damage Inducible Transcript 4** -0.28 3.5E-03 Klf2 Kruppel Like Factor 2 -0.30 3.5E-03 Neuronal PAS Domain Protein 4 -0.25 Npas4 4.1E-03 Arrdc3 Arrestin Domain Containing 3 -0.26 5.1E-03 Nab1 NGFI-A Binding Protein 1 -0.29 5.2E-03 Glcci1 Glucocorticoid Induced 1 -0.30 7.3E-03 -0.29 Rnf122 Ring Finger Protein 122 7.4E-03 Kcnk10 Potassium Two Pore Domain Channel Subfamily K Member 10 -0.26 1.5E-02 -0.28 Uncx **UNC Homeobox** 1.6E-02 -0.27 Coq10b Coenzyme Q10B 1.8E-02 Creb5 **CAMP Responsive Element Binding Protein 5** -0.28 2.3E-02 Ovca2 OVCA2 Serine Hydrolase Domain Containing -0.27 3.1E-02 Gm42715 predicted gene 42715 -0.27 3.1E-02 Tob2 Transducer of ERBB2 -0.23 5.0E-02 Up-regulated Myh6 Myosin Heavy Chain 6 0.34 4.0E-11 ENSMUSG00000116417 NA 0.15 3.2E-04 0.17 Troponin T2 Tnnt2 9.7E-03 Zxda zinc finger, X-linked, duplicated A 0.11 1.1E-02 Capn11 Calpain 11 0.14 2.3E-02 1700025G04Rik RIKEN cDNA 1700025G04 gene 0.24 2.7E-02 Sulf1 Sulfatase 1 0.27 3.2E-02

Supplementary Table S1. The 36 downregulated and upregulated genes in the *Slc39a8*-NSKO cerebellum.

Supplementary Table S2. Chow/Mn content variation in studies using *Slc39a8* A391T KI mice.

Study	Chow Manufacturer; Cat#	Mn content	Other metals
Sunuwar et al., 2021 (3)	Harlan Teklad Global 18% Protein Extruded Diet; #2018SX	100 pm	NA
Nakata et al., 2020 (4)	NA	NA	NA
Mealer et al., 2022 (5)	TestDiet; #5755	65 ppm	NA
Li et al., 2022 (6)	Regular sterilized rodent chow	NA	NA
Verouti et al., 2022 (7)	Provimi Kliba AG; #2223	12 mg/kg	Iron 65 mg/kg, zinc 45 mg/kg, copper 6 mg/kg, iodine 0.6 mg/kg, selenium 0.2 mg/kg

Supplemental Table S3. Primer sequences used in this study.

Primer name	Sequence
Nr4a2	TGAATGAAGAGAGCGGACAA
	TGTCGTAATTCAGCGAAGGA
Nr4a3	AAACTTGCAGAGCCTGAACC
	CTGGTGGTCCTTTAAGCTGC
Apold1	CCGTCCTGAAGGCCAAGATT
	AGAAAAACAACGCTGCGTCC
Per1	TGTCCGTCACCAGTCAGTGT
	CCAGGCAGGTCTTCCATC
Fosb	GTGAGAGATTTGCCAGGGTC
	AGAGAGAAGCCGTCAGGTTG
Myh6	ACGGTGACCATAAAGGAGGA
	TGTCCTCGATCTTGTCGAAC
36B4	TCATCCAGCAGGTGTTTGAC
	TACCCGATCTGCAGACACAC

Reference

- 1. Polioudakis D, de la Torre-Ubieta L, Langerman J, Elkins AG, Shi X, Stein JL, et al. A Single-Cell Transcriptomic Atlas of Human Neocortical Development during Mid-gestation. *Neuron.* 2019;103(5):785-801.e8.
- 2. Speir ML, Bhaduri A, Markov NS, Moreno P, Nowakowski TJ, Papatheodorou I, et al. UCSC Cell Browser: visualize your single-cell data. *Bioinformatics*. 2021;37(23):4578-80.
- 3. Sunuwar L, Frkatović A, Sharapov S, Wang Q, Neu HM, Wu X, et al. Pleiotropic ZIP8 A391T implicates abnormal manganese homeostasis in complex human disease. *JCI Insight.* 2020;5(20).
- 4. T N, EA C, M K, H L, MK S, J Y, et al. A missense variant in SLC39A8 confers risk for Crohn's disease by disrupting manganese homeostasis and intestinal barrier integrity. *Proceedings of the National Academy of Sciences of the United States of America*. 2020;117(46).
- 5. Mealer RG, Williams SE, Noel M, Yang B, D'Souza AK, Nakata T, et al. The schizophrenia-associated variant in SLC39A8 alters protein glycosylation in the mouse brain. *Mol Psychiatry*. 2022;27(3):1405-15.
- 6. Li S, Ma C, Li Y, Chen R, Liu Y, Wan LP, et al. The schizophrenia-associated missense variant rs13107325 regulates dendritic spine density. *Transl Psychiatry*. 2022;12(1):361.
- 7. Verouti SN, Pujol-Giménez J, Bermudez-Lekerika P, Scherler L, Bhardwaj R, Thomas A, et al. The Allelic Variant A391T of Metal Ion Transporter ZIP8 (SLC39A8) Leads to Hypotension and Enhanced Insulin Resistance. *Front Physiol.* 2022;13:912277.