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Supplementary Methods 
 
 

Cell lines 
 
MC38 cells were gifted by Dr. Jeffrey Schlom from NCI of NIH (Bethesda, MD) and by Dr. 

Andrew Y. Koh from University of Texas Southwestern Medical Center (Dallas, TX). MC38-

OVA cells were created by transducing MC38 cells with lentiviral particles containing the OVA-

miSFIT-17-T construct (Addgene #124677, a gift from Tudor Fulga) (1). Stable GFP-positive 

MC38-OVA cells were sorted out by FACS 5 days after transduction. The cells were cultured 

with complete DMEM media supplemented with 10% heat-inactivated fetal bovine serum (HI-

FBS) (Hyclone, Cytiva, Global Life Sciences Solutions USA LLC., Marlborough, MA, USA), 

1% penicillin-streptomycin (Pen-strep) (Life Technologies Corporation, Waltham, 

Massachusetts, USA). The media was changed every 2 days. The cells were harvested by 

trypsinization and washed twice with endotoxin-free PBS. The cells were tested negative for 

mycoplasma contamination on periodic quality control check. 

 
 
Generation of the Dnase1l3+/+;APCmin/+ and Dnase1l3-/-;APCmin/+ mice 

 
All mice were on C57BL/6J background. Dnase1l3-/-;APCmin/+ and their age- and gender- 

matched Dnase1l3+/+;APCmin/+ controls were generated by crossing Dnase1l3-/- mice with 

APCmin/+ mice and Dnase1l3+/+ mice with APCmin/+ mice, respectively. Age- and gender matched 

littermates were used for all experiments except stated otherwise. 

 
 
Histological evaluation of colon tissues from mice treated with AOM/DSS 

 
Tumors formed in the colon of AOM/DSS-treated mice were counted, and tumor burden was 

calculated as ratio between tumor area and total colon area. The total tumor area in one animal 

was calculated by summing up the areas of all tumors from that mouse. 
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Hematoxylin and eosin (H&E) stained Swiss roll sections of large intestine (colon) were blindly 

evaluated by a certified pathologist for the presence of tumors, their stages, as well as 

proliferative and non-proliferative lesions (inflammation and ulcer). Lesion descriptions, 

morphologic diagnoses, and severities are provided as follows. Atypical hyperplasia was 

characterized by crypts lined with crowded epithelial cells that still maintained polarity, with 

some dysplasia. This lesion was smaller in size and less proliferative than one would expect 

with an adenoma or adenocarcinoma. Adenomas were either composed of proliferations of 

branching tubules in the lamina propria or finger-like projections of lamina propria lined with 

proliferating epithelium. There were varying degrees of dysplasia evident in the adenomas; the 

epithelial cells typically lacked their normal layering and organization, with cells piling upon each 

other. Nuclei varied in shape and size, but they were often large and basophilic. 

Adenocarcinoma was a sessile proliferation of epithelial cells, with invasion into the underlying 

lamina propria and submucosa. 

 
 
Immunohistochemistry assays 

 
Immunohistochemical stained colonic tissues from Dnase1l3 Wt and KO mice treated with 

AOM/DSS were formalin-fixed, paraffin-embedded, and sectioned to slides. The slides were 

deparaffinized in xylene and rehydrated through graded ethanol. Endogenous peroxidase was 

blocked using 3% H2O2, after which heat-induced epitope retrieval was performed using a 1 x 

EDTA buffer solution (Biocare Medical, Concord, CA) in a Decloaker pressure chamber for 5 

min at 120℃. Non-specific sites were blocked with R.T.U. normal goat serum 2.5% (ImmPRESS 

Reagent Kit Anti-Rat Ig (peroxidase) (Vector Laboratories, Inc., Burlingame, CA) for 20 min at 

room temperature. Sections were incubated with rat anti-mouse CD8a monoclonal antibody 

(4SM15) (invitrogen, Catalog # 14-0808-82; 1:500 dilute) for one hour at room temperature. Rat 

IgG2a isotype control serum was applied to the negative control. Further, the sections were 

incubated with ImmPRESS Reagent Kit Anti-Rat Ig (peroxidase) (Vector Laboratories, Inc., 
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Burlingame, CA) for 30 min at room temperature. The antigen antibody complex was visualized 

using 3-diaminobenzidine (DAB) chromagen (Dakocytomation, Carpenteria, CA) for 6 min at 

room temperature. Finally, the sections were counterstained with hematoxylin, dehydrated 

through graded ethanol, cleared in xylene, and cover slipped. The percentage of CD8a positive 

area was calculated as CD8a+ area/total tumor area using the ImageJ 2.0.0 (Fiji) software. 

Tumor sections from each mouse were blinded quantified, and the results were averaged for 

each mouse. 

 
 
For CD3 staining: Formalin-fixed paraffin-embedded mouse intestine tissues were 

deparaffinized and rehydrated through graded ethanol. Heat-induced epitope retrieval was 

performed using a citrate buffer solution, pH 6.0 (Biocare Medical, Concord, CA, Rodent 

Decloaker, Cat # RD913M) in the Decloaking pressure chamber for 15 minutes at 110°C. 

Endogenous peroxidase was quenched using 3% H2O2, after which non-specific binding was 

blocked using Rodent Block M (Biocare Medical, Concord, CA) for 20 minutes at room 

temperature. The sections were then incubated with rabbit polyclonal anti-CD3 antibody 

(Abcam, Cambridge, MA, Catalog # ab5690, Lot # GR317048-1) at a 1:750 dilution for one hour 

at room temperature. Negatives were stained with normal rabbit IgG control serum 

(Calbiochem, Cat # NI01, Lot # 2659621) at a 1:375 dilution to match the protein concentration 

of the primary antibody. For detection, the slides were incubated in Rabbit-on-Rodent HRP- 

Polymer Detection (Biocare Medical, Concord, CA, Catalog # RMR622) for 30 minutes at room 

temperature. The antigen-antibody complex was visualized with 3,3’-diaminobenzidine (DAB) 

chromogen (Dakocytomation, Carpinteria, CA) for 6 minutes. Finally, the sections were 

counterstained with hematoxylin, dehydrated through graded ethanol, cleared in xylene, and 

coverslipped. Percentage of CD3 positive area were quantified and calculated similar as CD8. 

 
 
TUNEL staining 
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TUNEL staining of formalin-fixed, paraffin-embedded mouse colon tissue samples was 

performed using the manufacturer’s recommendations contained within the ApopTag Plus 

Peroxidase in situ Apoptosis Detection Kit (Cat# S7101, Millipore, Billerica, MA). Enzyme- 

induced epitope retrieval was performed using a proteinase K (Cat# S3020, DakoCytomation, 

Carpenteria, CA) for 90 seconds at RT, after which endogenous peroxidase blocking was done 

by immersing the sections in 3% H2O2 for 15 min. TdT enzyme incubation was performed for 15 

min at 37°C at a dilution of 1:5 (11 µl dH2O, 77 µl Reaction buffer, 22 µl TdT per 110 µl). 

Staining was visualized using 3-diaminobenzidine (DAB) chromogen (DakoCytomation, 

Carpenteria, CA) and counterstained with hematoxylin. Slides were dehydrated through graded 

ethanol, cleared in xylene, and cover slipped. 

 
 
Genomic DNA and nuclear-DNA degradation assay 

 
Genomic DNA degradation assay was performed as described (2). In brief, purified genomic 

DNA was isolated by DNeasy blood & tissue kits (Qiagen, 69504). 5 µl of serum from either 

Dnase1l3 WT or KO mice was added to 50 µl of substrate solution (500 ng genomic DNA in 25 

mM Tris-HCl (pH 7.4), 150 mM KCl, 5 mM MgCl2, 5 mM CaCl2) and incubated at 37°C at the 

indicated times. For nucleosome DNA degradation assay, nuclei were isolated as described (3). 

In brief, 1 x 106 cells were suspended in 1 mL of cold isolation buffer (10 mM KCl, 250 mM 

sucrose, 4 mM MgCl2, 1 mM dithiothreitol, 20 mM Hepes) with 10 µL of protease inhibitor 

(Thermo Fisher Scientific, Waltham, MA, USA). Then, the cells were lysed with the addition of 

50 µl of 0.5% NP-40. After 10-min incubation on ice, cell nuclei were harvested by 

centrifugation (200 g x 5 min). Precipitated nuclei were rinsed with 1 mL of cold isolation buffer 

twice and incubated with 15 µl serum in 100 µl solution buffer (10 mM Hepes / 50 mM NaCl / 2 

mM MgCl2 / 2 mM CaCl2 / 40 mM β-glycerophosphate, pH 7.0) at 37°C for 2 h. 
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Reagents 
 
Azoxymethane (Sigma, A5486), DSS Dextran sulfate sodium salt (Sigma, 42867-100G), 

doxorubicin hydrochloride (Sigma, D1515-10MG). 

 
 
References: 

 
1. Michaels YS, Barnkob MB, Barbosa H, Baeumler TA, Thompson MK, Andre V, et al. 

Precise tuning of gene expression levels in mammalian cells. Nat Commun. 
2019;10(1):818. 

2. Mizuta R, Araki S, Furukawa M, Furukawa Y, Ebara S, Shiokawa D, et al. DNase 
gamma is the effector endonuclease for internucleosomal DNA fragmentation in 
necrosis. PLoS One. 2013;8(12):e80223. 

3. Koyama R, Arai T, Kijima M, Sato S, Miura S, Yuasa M, et al. DNase gamma, DNase I 
and caspase-activated DNase cooperate to degrade dead cells. Genes Cells. 
2016;21(11):1150-63. 

 
 



Figure S1. Downregulation of DNASE1L3 in human tumors is associated with poor patient survival for many human cancer types.

(A) Kaplan-Meier survival probability curves for the indicated types of cancer patients from TCGA. Survival probability of the patients with 
DNASE1L3 expression level in tumors above the mean are shown in red (favorable) and of those with DNASE1L3 expression level in 
tumors at or below the mean are shown in blue (unfavorable). P-value was computed based on the log-rank test of the survival distributions 
of high and low expression groups. (B) DNASE1L3 has the highest expression in splenic CD8+ DCs among indicated immune cells. 
Normalized expression of indicated DNASES in immune cells was downloaded from http://rstats.immgen.org/. (C) DNASE1L3 has the 
highest expression in cDCs among myeloid cells from normal human colonic tissues and its expression is downregulated in cDCs from 
colorectal tumors. Single-cell RNA-seq datasets of human colorectal tumors (18) were analyzed (Mann-Whitney test, *p<0.05).
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Figure S2: GI tract of Dnase1l3 KO mice is phenotypically normal in basal conditions. 

(A) Dnase1l3 is deleted in all segments of the intestinal tract in Dnase1l3 KO mice. Two- to three-month old 
Dnase1l3 WT and KO mice were fed with a regular chow diet. The abundance of Dnase1l3 mRNA in different 
segments of the intestinal tissue from Dnase1l3 WT and KO mice was analyzed by qPCR (n=5, 6, 6, 3 WT and 
6, 6, 6, 6 KO in each segment, respectively). (B-D) Dnase1l3 KO mice have normal body weight (B), normal 
intestine length (C) and normal colon length (D) (n=11 WT and 12 KO). (E) Dnase1l3 KO mice have normal 
colonic morphology. Representative H&E colonic sections from Dnase1l3 WT and KO mice are shown. (F) 
Dnase1l3 KO mice have normal expression of stem (Lgr5), goblet (Muc), and endocrine (Sst) cell markers. The 
mRNA levels of indicated genes were analyzed by qPCR in colon of Dnase1l3 WT and KO mice (n=6 WT and 6 
KO). 
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Figure S3. Dnase1l3 deficiency impairs colonic tissue recovery after DSS treatment in AOM/DSS model.  

Two- to three-month-old Dnase1l3 WT and KO mice were subjected to AOM/DSS procedure as described in 
Methods and Figure 3A. (A) The expression of Dnase1l3 during the AOM/DSS procedure (n=4, 5, 6, 10, 6, 12 
WT and 4, 7, 7, 8, 12, and 10 KO in each time point, respectively). (B) Higher percentage of Dnase1l3 KO mice 
display severe bleeding and diarrhea compared to WT mice during the first cycle of DSS treatment (n=7 WT and 
14 KO). (C) Dnase1l3 KO mice have shorter colon length compared to the WT mice at D19 (n=7 WT and 12 
KO; Mann-Whitney test, *p<0.05). (D) Dnase1l3 KO mice have impaired tissue morphology at the recovery 
stage (D19). Representative H&E staining images from the colon of WT and Dnase1l3 KO mice are shown. (E) 
Dnase1l3 KO mice have increased spleen weight compared to WT mice at the recovery stage (D19) (n=7 WT 
and 12 KO; Mann-Whitney test, *p<0.05). 
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Figure S4. Dnase1l3 deficiency in APC Min/+ mice does not affect gross tissue morphology. 

Dnase1l3-/-;APCmin/+ mice have similar intestine length (A), colon length (B), body weight (C), and 
spleen weight (D) compared to Dnase1l3+/+;APCmin/+ mice (n=10 Dnase1l3+/+;APCmin/+ mice and 14 
Dnase1l3-/-;APCmin/+ mice).
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Figure S5. Colorectal tumors from Dnase1l3 KO mice have reduced expression of multiple interferon pathway genes. Heatmap of 
the 35 down-regulated genes in the tumors isolated from WT and Dnase1l3 KO mice in the AOM/DSS colorectal cancer model. 
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Figure S6. Dnase1l3 deficiency increases the growth of MC38 tumor cells. 1 x 105 MC38 colon cancer cells were subcutaneously 
injected into 8-12 week-old WT or Dnase1l3 KO mice and tumors were collected at Day 21. Weights of final MC38 tumors (n=19 tumors 
from WT and 18 tumors from KO from two additional independent experiments; Mann-Whitney test, *p<0.05). 



Figure S7. scRNA-seq analysis of the cDC populations in MC38 syngeneic colon tumors from Dnase1l3 WT and KO mice.

(A) Gating strategy for flow cytometric sorting of cDCs isolated from subcutaneously grafted M38 tumors dissected 10 days after injection, 
and their purity post-sorting. Sorted cells were applied for scRNA-Seq analyses presented on Figure 6 and Figure S6B-S6E. (B) cDC1 
display transcriptional downregulation in gene sets associated with antigen processing and presentation, and protein translation and 
expression. All DEGs (p adj <0.05, Log2FC<-0.2) from cDC1 from three clusters (6, 8, and 13) of cDC1 were analyzed for GO and pathway 
enrichment as described in Methods. (C) cDCs in cluster 3 have low expression levels of cDC markers. (D-E) cDCs in cluster 3 have high 
levels of MHCI (D) and MHCII genes (E).  (F) GSVA analysis of transcriptomic alterations in cDCs from MC38 tumors in KO vs WT mice. 
Analysis was performed as described in Methods. Top 10 enriched KEGG pathways (7 upregulated and 3 downregulated) from each cell 
clusters are shown. 
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Figure S8. FACS analysis of cDCs in tumors and dLNs.

(A) Gating strategy for flow cytometric analysis of cDCs isolated from subcutaneously grafted M38 tumors or tumor-draining inguinal LNs. 
Data were presented on Figure 5I-5J, and B and C. (B) MC38 tumors from Dnase1l3 KO mice have normal abundance of infiltrating total 
cDCs (CD11b+). (C) MC38 tumors from Dnase1l3 KO mice have normal abundance of infiltrating total cDC1. For (B) and (C), Indicated 
immune cell populations in dLNs were analyzed by flow cytometry (n=16 WT and 16 KO from two independent experiments). 
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Figure S9. scRNA-seq analysis of the CD45+ populations in MC38 tumors from Dnase1l3 WT and KO mice.

(A) Gating strategy for flow cytometric sorting of CD45+ leukocytes isolated from subcutaneously grafted M38 tumors, and their purity post-sorting. 
Sorted cells were applied for scRNA-Seq analyses presented on the rest of this figure. (B) UMAP analysis of 4,404 and 4,549 CD45+ single cells 
sampled from MC38 tumors from Dnase1l3 WT and KO mice, respectively. (C) GSVA analysis of transcriptomic alterations in CD45+ immune cells 
from MC38 tumors in KO vs WT mice. Analysis was performed as described in Methods. Top 10 enriched KEGG pathways (7 upregulated and 3 
downregulated) from each cell clusters are summarized. (D) CD8+ T cells from MC38 tumors in Dnase1l3 KO mice have increased expression of 
several T cell activation and differentiation markers. Total CD45+ immune cells from MC38 tumors in Dnase1l3 WT or KO mice were analyzed by 
scRNA-seq as described in Methods (Mann-Whitney test, *padj<0.05, **padj<0.01, ***padj<0.001). 
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Figure S10. Tumors from Dnase1l3 KO mice have reduced accumulation of immune cells.

(A) Gating strategy for flow cytometric analysis of T cells isolated from subcutaneously grafted M38 tumors or tumor-draining 
inguinal LNs. Data were presented on Figure 6C and 6D. (B) The abundance of indicated immune cells in MC38 tumors at an 
early stage of tumor development (14 days after inoculation). Indicated immune cell populations in isolated tumors were 
analyzed by flow cytometry (n=8 WT and 8 KO mice; Mann-Whitney test). (C) Representative FACS plots of CD8+ T cells from 
MC38 tumors isolated from WT and KO mice (shown on Figure 6D, left). (D) The expression of indicated immune cell genes in 
isolated CD45+ lymphocytes from dLNs was analyzed by qPCR (n=5 WT and 5 KO mice). 
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