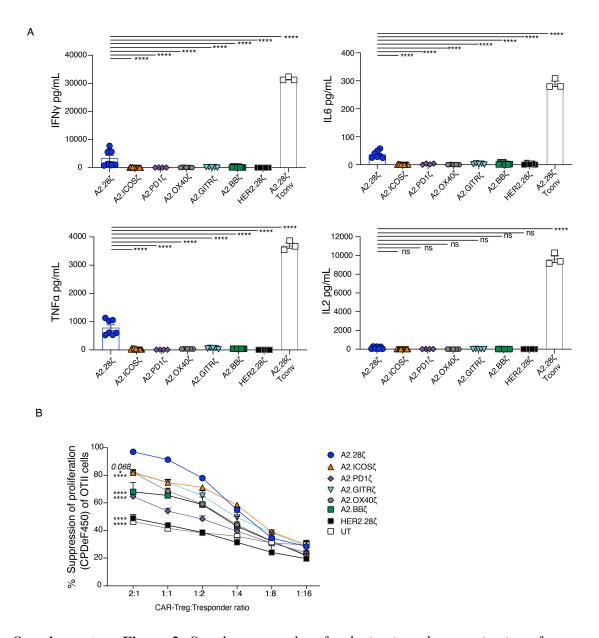
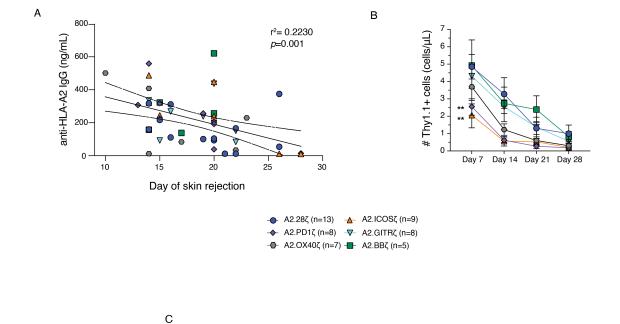
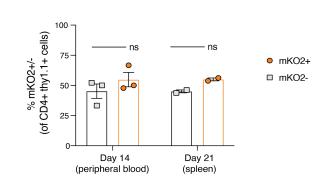

SUPPLEMENTARY DATA

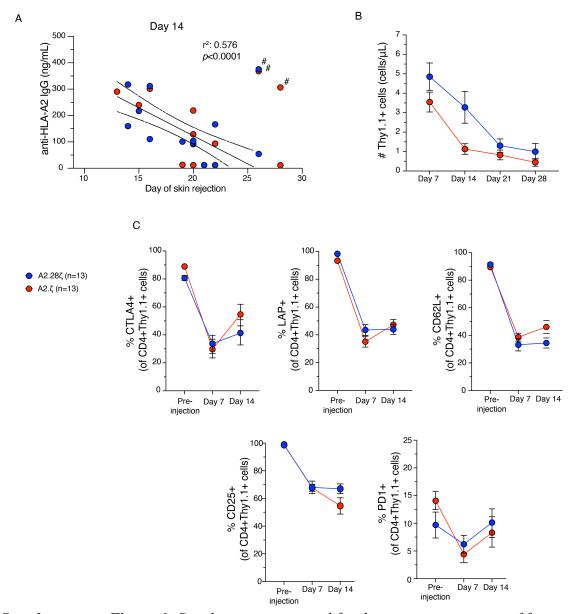

Supplementary Figure 1. Sorting and purity check flow panels. (**A**) Representative data of at least 5 independent experiments showing the pre- and post-sorting flow panel used to isolate Tregs (defined as live CD4+CD8-Thy1.1+Foxp3^{gfp}+ cells). (**B**) Representative data of at least 5 independent experiments showing the flow panel used to check Treg purity and CAR-expression after Treg expansion at day 7.

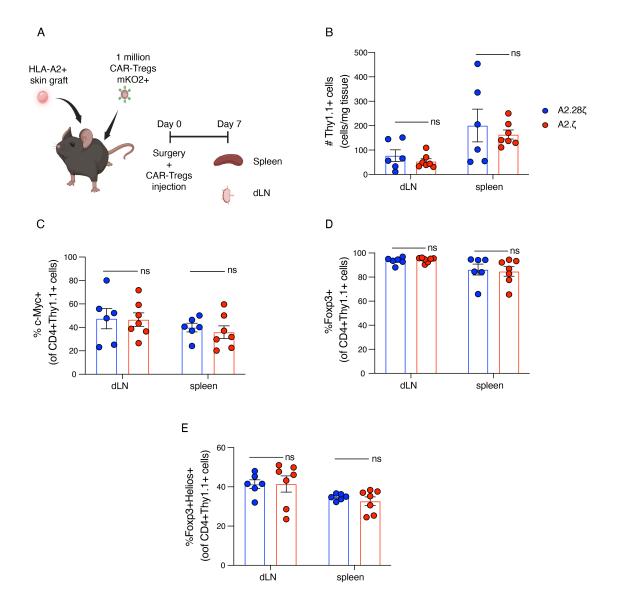


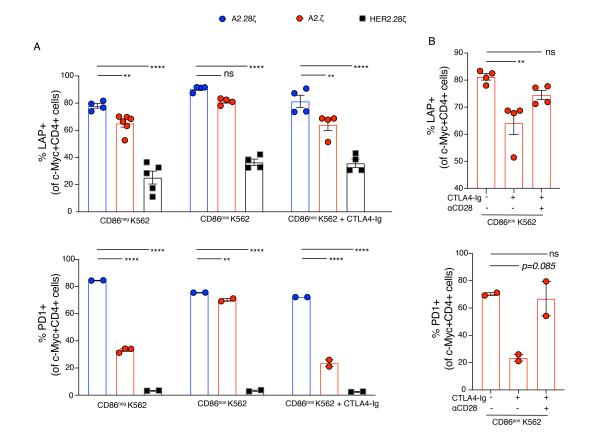


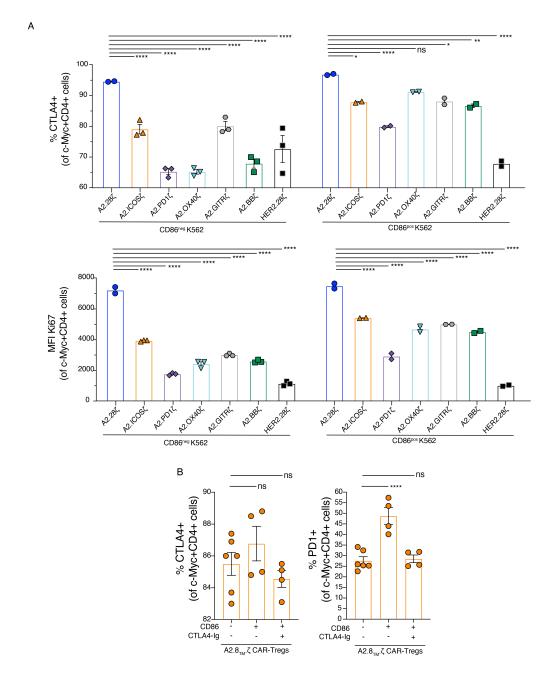
Supplementary Figure 2: *Co-stimulatory domain variant CAR expression*: (**A**) Representative data of at least 5 independent experiments showing the expression of co-stimulatory domain CAR variants defined by c-Myc and mKO2 co-expression in Tregs. (**B**) Lack of CAR expression or binding to HLA-A2 for the CTLA4- and TNFR2-based CAR variants. (**C**) Frequencies of c-Myc and mKO2 co-expression in Tregs, gated in live CD4+foxp3^{gfp}+ cells; n=6 to 13 replicates from at least 8 independent experiments. Data shown as mean±SEM. Statistical significance was determined using one-way ANOVA with a Holm-Sidak post-test, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

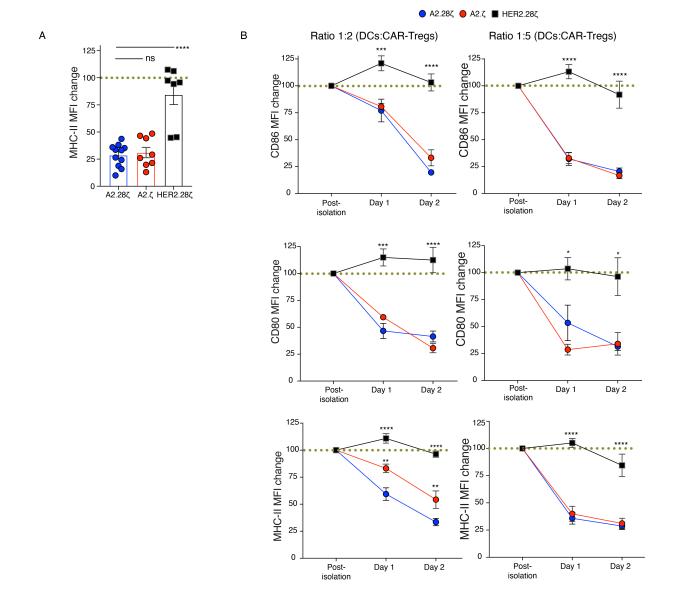
Supplementary Figure 3: Supplementary data for the in vitro characterization of costimulatory domain CAR variants. (**A**) Cytokine production of CAR-Tregs cultured for 3-days with HLA-A2⁺ K562 cells; n=3 to 12 replicates from at least 3 independent experiments. (**B**) CAR-Treg suppression of the OTII CD4 T responder proliferation, as determined by CPDeF450 dilution; n=3 to 6 replicates from at least 2 independent experiments. UT = Untransduced. Data shown as mean±SEM. Statistical significance was determined using one-way (**A**) two-way (**B**) ANOVA with a Holm-Sidak post-test. *p<0.05, **p<0.01, ***p<0.001. ****p<0.0001.

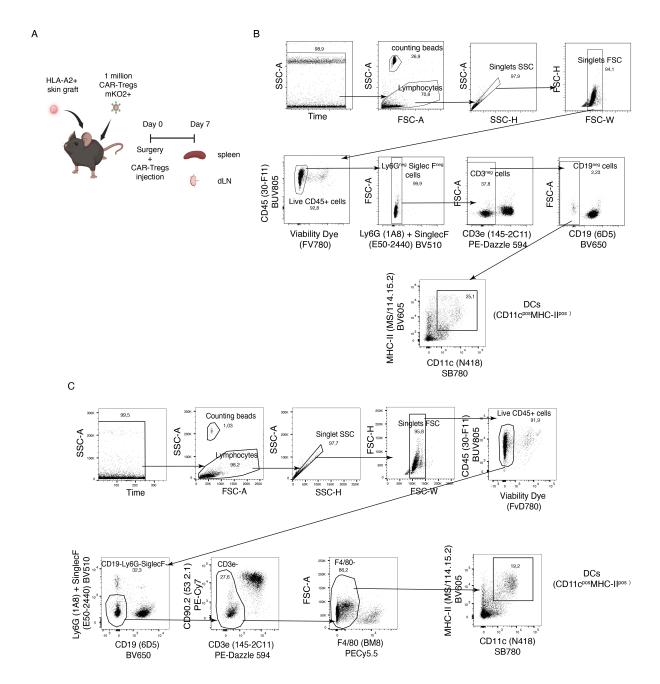



Supplementary Figure 4: Supplementary data for the in vivo characterization of co-stimulatory domain CAR variants. (A) Correlation between levels of anti-HLA-A2 IgG Abs in plasma at day 14 and skin graft rejection date of mice receiving Tregs bearing CD28 and TNFR family-based co-stimulatory domain CARs. (B) Count of CAR-Tregs in peripheral blood of mice transplanted with HLA-A2-expressing skin and intravenously administered with 1x10⁶ CAR-Tregs. (A-B) n=3 to 13 mice per group from at least 4 individual experiments. (C) Relative frequencies of mKO2+ and mKO2- CAR-Tregs in peripheral blood and spleen; n=3 mice per group from one experiment. BL/6 mice were transplanted with skin grafts from HLA-A2⁺ BL/6 mice and intravenously administered 5x10⁵ mKO2^{pos} and 5x10⁵ mKO2^{neg} CD28-bearing CAR-Tregs. Data shown as mean±SEM. Statistical significance was determined using Pearson Correlation (A), or two-way ANOVA (B-C) with a Holm-Sidak post-test. *p<0.05, **p<0.01, ***p<0.001.


Supplementary Figure 5: Supplementary material for the in vitro comparison of first- and second-generation CARs: **A)** MFI of CAR expression, co-expression of Myc and mKO2 and Foxp3^{gfp} expression for first- and second-generation CAR-Tregs after expansion, gated on total live Myc+CD4⁺Foxp3^{gfp+} or live CD4⁺ cells; n=7 to 16 replicates from at least 8 independent experiments. (**B)** Cytokine production of CAR-Tregs cultured for 3-days with HLA-A2^{pos} K562 cells; n=3 to 7 replicates from 3 independent experiments (**C)** CAR-Treg suppression of the OTII CD4 T responder proliferation, as determined by CPDeF450 dilution; n=3 to 6 replicates from 2 independent experiments UT = Untransduced. Data shown as mean±SEM. Statistical significance was determined using t-student (**A**), one-way (**B**) two-way ANOVA (**C**) with a Holm-Sidak post-test. *p<0.05, **p<0.01, ***p<0.001. ****p<0.0001.


Supplementary Figure 6: Supplementary material for the in vivo comparison of first- and second-generation CARs. BL/6 mice were transplanted with skin grafts from syngeneic or HLA-A2⁺ BL/6 mice and were intravenously administered 1x10⁶ CAR-Tregs. (**A**) Correlation between anti-HLA-A2 IgG Abs in plasma at day 14 and skin graft rejection from mice receiving Tregs bearing A2.28ζ or A2.ζ CARs. # Outliers values excluded from linear regression analysis. (**B**) Counts of Thy1.1⁺ CAR-Tregs of total CD45⁺ T cells in peripheral blood over time. (**C**) Phenotype of Thy1.1⁺CD4⁺ CAR-Tregs in peripheral blood over time including expression of CTLA-4, LAP, CD62L, CD25 and PD1. Data pooled from 3 individual in vivo experiments with n=3 to 13 mice per group and shown as mean±SEM. Statistical significance was determined using Pearson Correlation (**A**) and two-way ANOVA with a Holm-Sidak post-test (**B,C**). *p<0.05, **p<0.01, ****p<0.001. *****p<0.001.


Supplementary Figure 7: Study of first- and second-generation CAR-Tregs in lymphoid tissues. (A) Schematic diagram of the study of first- and second-generation CAR-Tregs in lymphoid tissues. BL/6 mice were transplanted with skin grafts from HLA-A2⁺ BL/6 mice and intravenously administered 1x10⁶ CAR-Tregs. Spleen and draining lymphoid node (dLN) were collected at day 7 post-infusion. (B) Numbers of first- and second-generation CAR-Tregs in dLN (left) and spleen (right). (C-F) CAR-Tregs expression of: (C) CAR (c-Myc+) (D), FoxP3 and (E) FoxP3 and Helios in dLN and spleen. Data are mean±SEM generated from two independent experiments; n=6 to 7 mice per group. Statistical significance was determined using Student's t-test with a Holm-Sidak post-test, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.


Supplementary Figure 8: Supplementary material of the effects of a CAR-independent stimulation over the CAR-mediated activation and function of Tregs. CAR-Tregs were co-cultured with CD86+HLA-A2+ or CD86-HLA-A2+ K562 cells at a 1:2 K562:Tregs ratio for 3 days. (**A-B**) LAP and PD1 expression in CAR-Tregs following 3-days of co-culture, gated on Myc+CD4+ live cells. Where indicated, CTLA4-Ig or activating anti-CD28 mAbs were added at 10 mg/mL. N= 2 to 6 replicates from 2 or 1 independent experiments for LAP and PD1, respectively. Data is shown as mean±SEM. Statistical significance was determined using oneway (**B**) or two-way (**A**) ANOVA with a Holm-Sidak post-test, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

Supplementary Figure 9: Supplementary material of the effects of a CAR-independent stimulation over the CAR-mediated activation and function of Tregs. CAR-Tregs were co-cultured with CD86+HLA-A2+ or CD86-HLA-A2+ K562 cells at a 1:2 K562:Tregs ratio for 3 days. (**A**) CTLA4 and Ki67 expression in different co-stimulatory CAR-Tregs following 3-days of co-culture, gated on Myc+CD4+ live cells; n=2 to 3 replicates from one experiment. (**B**) CTLA4 and PD1 expression in CD8α-TM CAR-Tregs following 3-days of co-culture, gated on Myc+CD4+ live cells; n=4 to 6 replicates from one experiment. Where indicated, CTLA4-Ig or activating anti-CD28 mAbs were added at 10 μg/mL. Data are shown as mean±SEM. Statistical significance was determined using one-way (**B**) or two-way (**A**) ANOVA with a Holm-Sidak post-test, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

Supplementary Figure 10: Supplementary material of the in vitro APC suppression by first-and second-generation CAR-Tregs. CAR-Tregs were co-cultured with splenic HLA-A2⁺ CD11c⁺ DCs at a 1:2 or 1:5 DCs:Tregs for 1 or 2 days. (**A**) Expression of MHC-II in HLA-A2⁺ CD11c⁺ DCs after 2 days of culture with the indicated CAR-Tregs; n=7 to 11 replicates from at least 4 independent experiments. (**B**) Expression of CD80, CD86 and MHC-II in HLA-A2⁺ CD11c⁺ DCs cultured at different time points and with different ratios of DCs/CAR-Tregs; n=6 to 15 replicates from at least 4 independent experiments. Data are shown relative to DCs cultured with untransduced Tregs which were normalized to 100% (dotted lines). Data are shown as mean±SEM. Statistical significance was determined using one-way (**A**) or two-way (**B**) ANOVA with a Holm-Sidak post-test, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

Supplementary Figure 11: Study design and flow panels of the in vivo study of CAR-Treg modulation of co-stimulatory and MHC-II molecules expression in APCs. (A) Schematic diagram of the study of first- and second-generation CAR-Tregs modulation of co-stimulatory and MHC-II molecules expression in APCs. BL/6 mice were transplanted with skin grafts from HLA-A2⁺ BL/6 mice and intravenously administered 1x10⁶ CAR-Tregs. Spleen and draining lymphoid node (dLN) were collected at day 7 post-infusion. (B) Representative data of one experiment showing the flow panel used to study dendritic cells (DCs) in dLNs (defined as live CD45^{pos}Ly6G^{neg}SigletF^{neg}CD3e^{neg}CD19^{neg}CD11c^{pos}MHCII^{pos}). (C) Representative data of one experiment showing the flow panel used to study DCs in spleen (defined as live CD45^{pos}Ly6G^{neg}SigletF^{neg}CD19^{neg}CD3e^{neg}F4/80^{neg}CD11c^{pos}MHCII^{pos}).

Supplementary Table 1

CAR	Specificity	Hinge	Transmembrane domain	Costimulatory domain
Α2.28ζ	HLA-A2	CD8α- derived	FWALVVVAGVLFCYGLLVTVA LCVIWT	NSRRNRLLQSDYMNMTPRRPGLTR KPYQPYAPARDFAAYRP
A2.ICOSζ	HLA-A2	CD8α- derived	PVGCAAFVVVLLFGCILIIWF	SKKKYGSSVHDPNSEYMFMAAVNT NKKSRLAGVTS
A2.PD1ζ	HLA-A2	CD8α- derived	FWALVVVAGVLFCYGLLVTVA LCVIWT	AVFCSTSMSEARGAGSKDDTLKEEP SAAPVPSVAYEELDFQGREKTPELP TACVHTEYATIVFTEGLGASAMGRR GSADGLQGPRPPRHEDGHCSWPL
A2.CTLA4ζ	HLA-A2	CD8α- derived	FWALVVVAGVLFCYGLLVTVA LCVIWT	AVSLSKMLKKRSPLTTGVYVKMPP TEPECEKQFQPYFIPIN
A2.GITRζ	HLA-A2	CD8α- derived	LTVIFLVMAACIFFLTTVQLG	LHIWQLRRQHMCPRETQPFAEVQLS AEDACSFQFPEEERGEQTEEKCHLG GRWP
Α2.ΟΧ40ζ	HLA-A2	CD8α- derived	AFAVLLGLGLGLLAPLTVLLAL YLL	RKAWRLPNTPKPCWGNSFRTPIQEE HTDAHFTLAKI
Α2.ΒΒζ	HLA-A2	CD8α- derived	TLFLALTSALLLALIFITLLF	SVLKWIRKKFPHIFKQPFKKTTGAA QEEDACSCRCPQEEEGGGGGYEL
A2.TNFRζ	HLA-A2	CD8α- derived	ISLPIGLIVGVTSLGLLMLGLVN CIILVQR	KKKPSCLQRDAKVPHVPDEKSQDA VGLEQQHLLTTAPSSSSSSLESSASA GDRRAPPGGHPQARVMAEAQGFQE ARASSRISDSSHGSHGTHVNVTCIVN VCSSSDHSSQCSSQASATVGDPDAK PSASPKDEQVPFSQEECPSQSPCETT ETLQSHEKPLPLGVPDMGMKPSQA GWFDQIAVKVA
Α2.ζ	HLA-A2	CD8α- derived	FWALVVVAGVLFCYGLLVTVA LCVIWT	
HER2.28ζ	HER2	CD8α- derived	FWALVVVAGVLFCYGLLVTVA LCVIWT	NSRRNRLLQSDYMNMTPRRPGLTR KPYQPYAPARDFAAYRP
$A2.8_{TM}.28\zeta$	HLA-A2	CD8α- derived	IWAPLAGICVALLLSLIITLI	NSRRNRLLQSDYMNMTPRRPGLTR KPYQPYAPARDFAAYRP
A2.8 _{TM} . ζ	HLA-A2	CD8α- derived	IWAPLAGICVALLLSLIITLI	
HER2.8 _{TM} .28ζ	HER2	CD8α- derived	IWAPLAGICVALLLSLIITLI	NSRRNRLLQSDYMNMTPRRPGLTR KPYQPYAPARDFAAYRP

Supplementary Table 2: List of antibodies and other reagents used in the study

Target	Clone	Fluorophore	Company
CD4	GK1.5	BV785	BD Biosciences
CD4	RM4-5	BUV563	BD Biosciences
CD45	30-F11	BUV805	BD Biosciences
LAP	Tw7-16B4	PerCP-e710	BD Biosciences
PD1	RMP1-30	BV711	BD Biosciences
CD25	PC61	BUV395	BD Biosciences
CD80	16-10A1	FITC or BUV395	BD Biosciences
CD86	GL1	APC	BD Biosciences
CD8	53-6.7	PE or AF647	BD Biosciences
CD3e	145-2C11	PE-Dazzle 594	BD Biosciences
Ly6G	1A8	BV510	BD Biosciences
Siglec F	E50-2440	BV510	BD Biosciences
Thy1.1	HIS51	PE or BUV496	eBioscience
Thy1.2	53 2.1	BV510 or PECy7	eBioscience
Ki67	SolA15	AF700	eBioscience
FoxP3	FJK-16s	FITC or PECy7	eBioscience
CD11c	N418	SB780	eBioscience
Helios	22F6	PE-Dazzle 594 or	Biolegend
		eF450	_
F4/80	BM8	PE-Cy5	Biolegend
CTLA4	UC10-4B9	BV605	Biolegend
I-A/I-E (MHC-II)	MS/114.15.2	BV605	Biolegend
CD62L	MEL-14	AF647	Biolegend
CD19	6D5	BV650	Biolegend
сМус	9E10	AF647 or AF488	UBC Ablab
Streptavidin		APC	BD Biosciences
Streptavidin		PE	BD Biosciences
HLA-A2:01 Biotin			NIH Tetramer Core
monomer			Facility
Goat anti-Mouse	Polyclonal	APC	Invitrogen
IgG (H+L)			