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Introduction
Adrenocortical carcinoma (ACC) is a rare and malignant tumor with up to 10% of  early-stage tumors being 
incidentally diagnosed (1, 2). It is frequently referred to as an orphan disease. Currently, the clinical out-
comes of  patients with ACC are variable and difficult to predict. Some patients exhibit an indolent clinical 
course, whereas others have aggressive tumors that lead to death. Patients with ACC have not benefited 
much from the progress in oncological treatments developed for other tumors. The experience and knowl-
edge accumulated in the past decade concerning the clinical outcomes and molecular pathogenesis of  ACC 
highlight the impacts of  heterogeneity at both molecular and clinical levels (3–6). Multiple studies in other 
cancer entities have shown that patients with higher tumor heterogeneity exhibit unfavorable clinical out-
comes (7–11). Intratumor molecular heterogeneity is also regarded as a key factor that contributes to thera-
peutic failure and drug resistance (12). Therefore, inter- and intratumor heterogeneity are closely linked to 
typical tumor features responsible for poor patient outcomes (13). At present, the prognostic factors used in 
clinical practice for ACC are mainly reflected by the European Network for the Study of  Adrenal Tumors 
(ENSAT) stage, as well as tumor proliferation indicator assessed either by mitotic count or Ki-67 (1, 14–16). 
Although combination of  clinical and molecular markers has been proposed, it has not yet found general use 
(17, 18). Importantly, metabolomic changes that underlie the heterogeneous clinical course have not been 
identified, nor have particular tissue subpopulations that drive disease progression been uncovered.

Spatially resolved metabolomics enables the investigation of tumoral metabolites in situ. Inter- 
and intratumor heterogeneity are key factors associated with patient outcomes. Adrenocortical 
carcinoma (ACC) is an exceedingly rare tumor associated with poor survival. Its clinical prognosis is 
highly variable, but the contributions of tumor metabolic heterogeneity have not been investigated 
thus far to our knowledge. An in-depth understanding of tumor heterogeneity requires molecular 
feature-based identification of tumor subpopulations associated with tumor aggressiveness. 
Here, using spatial metabolomics by high–mass resolution MALDI Fourier transform ion cyclotron 
resonance mass spectrometry imaging, we assessed metabolic heterogeneity by de novo discovery 
of metabolic subpopulations and Simpson’s diversity index. After identification of tumor 
subpopulations in 72 patients with ACC, we additionally performed a comparison with 25 tissue 
sections of normal adrenal cortex to identify their common and unique metabolic subpopulations. 
We observed variability of ACC tumor heterogeneity and correlation of high metabolic 
heterogeneity with worse clinical outcome. Moreover, we identified tumor subpopulations that 
served as independent prognostic factors and, furthermore, discovered 4 associated anticancer 
drug action pathways. Our research may facilitate comprehensive understanding of the biological 
implications of tumor subpopulations in ACC and showed that metabolic heterogeneity might 
impact chemotherapy.
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MALDI mass spectrometry imaging (MALDI-MSI) allows label-free semiquantitative detection of  
numerous molecules in biological samples without prior knowledge of  their presence or available high-res-
olution spatial information concerning their distributions. This capability is important for assessments of  
complex adrenal diseases, such as adrenocortical tumors (19). Thus far, MALDI-MSI has been used for 
metabolic profiling of  endocrine tissues, as well as the visualization of  hormone and metabolite distribu-
tions in normal and diseased adrenal glands (20, 21). Based on its ability to improve the understanding of  
the functional anatomy of  the human adrenal glands (22), MALDI-MSI has been used to identify novel 
biomarkers and pathways associated with malignancy in ACC (23). This technique has also been used to 
explore genotype/phenotype correlations in patients with aldosterone-producing adenoma (24), pheochro-
mocytoma, and paraganglioma (25). An improved understanding of  the molecular features underlying 
tumor heterogeneity requires the identification and comprehensive molecular characterization of  tumor 
subpopulations adversely affecting patient outcome. MALDI-MSI is undergoing rapid optimization to 
facilitate its application in biological research and clinical practice (26–29). Balluff  et al. (30) and Bien et al. 
(31) used MALDI-MSI in combination with clustering algorithms to discover de novo phenotypic tumoral 
heterogeneity, which facilitated the identification of  tumor subpopulations associated with adverse clinical 
outcome of  patients with gastric cancer and breast cancer. Here we applied a similar approach in ACC to 
assess tumor metabolic heterogeneity.

K-means clustering is a common unsupervised machine learning algorithm used for clustering and 
grouping data points into distinct clusters. It can be used to identify different subtypes of  cancer cells within 
a tumor based on various features, such as gene expression (32). Simpson’s diversity index (33) is a com-
monly used index for assessing diversity and richness. Based on MALDI-MSI data, we assessed de novo 
metabolic heterogeneity of  tumor tissues from patients with ACC and identified tumor subpopulations 
via k-means clustering and Simpson’s diversity index. Additionally, we applied this pipeline to perform 
comparative analysis between 25 normal adrenal cortex samples and 72 ACC tumors, which revealed the 
common and unique subpopulations between normal cortex and ACC tumors.

Results
Schematic overview. A schematic overview of  the conceptual methodology in this study is shown in Figure 
1, comprising approaches used to assess metabolic heterogeneity and tumor subpopulations in 72 patients 
with ACC based on spatial metabolomics, k-means clustering, Simpson’s diversity index, and bioinformat-
ics analysis linking to clinical data (Figure 1A), as well as the comparative analysis between 72 ACC patient 
samples and 25 additional normal adrenal cortex samples (Figure 1B). For the latter analysis, the medulla 
regions of  all adrenal gland samples were excluded, and only cortex regions were included in further anal-
ysis. Detailed clinical characteristics are given in Table 1.

Within the mass range of  m/z 50–1,000, approximately 2,500 individual mass spectrometry m/z spe-
cies were resolved in tumor ROIs from 72 patients. Annotation of  these 2,500 m/z species yielded 1,034 
metabolites according to the Human Metabolome Database (https://www.hmdb.ca/); 362 metabolites had 
KEGG_id information.

High intratumor metabolic heterogeneity is evident in tissues from patients with ACC. We first performed k-means 
clustering for k values of 2–15 among the 72 patients. Based on the clustering results, Akaike’s information 
criterion (AIC) was used to evaluate the fit of each k model (i.e., the patient distribution at each k value) by 
assigning distinct subpopulation presence thresholds that ranged from 4% to 50% (30); thresholds of 17%–50% 
produced optimal regression models (Figure 2A). The model of k = 2 was excluded because it exhibited very 
low variance; i.e., it completely determined whether a patient died or not. Three criteria were considered during 
model optimization. First, an increasing value of k was associated with greater similarity among patients in a 
single subpopulation. Second, a model with a lower AIC value more closely fit the data. Third, P values < 0.05 
were indicative of statistically significant differences in survival. Although the models of k = 3 and k = 4 exhib-
ited low AIC values, they did not meet the other criteria. Considering the above factors, k = 12 with a threshold 
of 19% was selected as the optimal and most informative model for further analyses. This optimal model 
exhibited higher stability and revealed significant differences in overall survival among tumor subpopulations.

Using a k value of  12, ROIs with molecular features were segmented into 12 tumor subpopula-
tions (sub 1 to sub 12) as shown in Figure 2B. The spatial distribution of  each subpopulation exhibited 
high metabolic heterogeneity within and between tumor tissue cores. The distribution of  overall pixels 
revealed the greatest abundance in subpopulation 4 (32.72%) but the least abundance in subpopulations 
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Figure 1. Schematic overview of the conceptual methodology for the de novo identification of metabolic heterogeneity and tumor subpopulations. 
(A) Workflow in 72 ACC tumor samples. The spatial metabolomics comprises TMA construction, matrix application, and MALDI-MSI measurement. The 
k-means clustering algorithm and Simpson’s diversity index calculation were applied to assess metabolic heterogeneity and identify tumor subpopu-
lations, followed by bioinformatics analysis linking with data of clinical endpoints. (B) Workflow of comparison between 72 ACC tumors and 25 normal 
adrenal cortex samples. MALDI-MSI measurement was performed as in A after TMA construction of 25 independent normal adrenal glands. Adrenal cortex 
was annotated as ROIs for comparative analysis with ACC tumors. ACC, adrenocortical carcinoma; TMA, tissue microarray; MALDI-MSI, MALDI mass spec-
trometry imaging; ROIs, regions of interest.
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11, 12, and 5 (sub 11 — 0.16%, sub 12 — 0.59%, and sub 5 — 0.91%) (Figure 2C). As examples of  this 
segmentation, patients a and b contained 3 and 8 tumor subpopulations, respectively (Figure 2D).

Simpson’s diversity index indicated variability in metabolic heterogeneity among patients with ACC. For further 
analysis of tumor heterogeneity among 72 patients, we considered the subpopulation number and size, then 
used Simpson’s diversity index to quantify metabolic heterogeneity in each patient, which ranged 0–0.798 
(Supplemental Figure 1A; supplemental material available online with this article; https://doi.org/10.1172/
jci.insight.167007DS1). By correlating to clinical data, we found a significant positive correlation between 
ENSAT tumor stage and metabolic heterogeneity represented by Simpson’s diversity index (Figure 3A) (rho = 
0.242, P = 0.040). ENSAT stage IV exhibited significantly higher heterogeneity compared with ENSAT stage I 
(P = 0.026) (Supplemental Figure 1A). As illustrated in Figure 3B, patients at advanced ENSAT stage showed 
higher metabolic heterogeneity associated with unfavorable outcomes. Remarkably, a Sankey diagram revealed 
a nonlinear correlation of metabolic heterogeneity with ENSAT stages, particularly a trend for lower heteroge-
neity in ENSAT stage III compared with stage II. Following an optimized cutoff  (0.49) for Simpson’s diversity 
index, Kaplan-Meier survival estimates indicated that patients with lower metabolic heterogeneity (n = 40) 
tended to survive longer, compared with patients who had higher metabolic heterogeneity (n = 32) (Figure 3C).

Further heatmap-based clustering analysis according to the discriminative m/z species revealed the 
separation of  tumors with high and low metabolic heterogeneity (Figure 3D). The metabolites that con-
tributed to heterogeneity stratification were used for pathway enrichment analysis (Figure 3E). The pen-
tose phosphate pathway, pentose and glucuronate interconversions pathway, and galactose metabolism 
pathway were the most significantly altered pathways in tumors with high metabolic heterogeneity. Based 
on a fold-change threshold of  1.5, we identified 33 and 103 discriminative m/z species with increased 
abundance in patients with low and high metabolic heterogeneity, respectively (Figure 3F). Figure 3G 
shows the heterogeneous spatial distributions of  3 endogenous metabolites in highly heterogeneous ACC 
tumor tissue, among which ribose phosphate is a key metabolite in the pentose phosphate pathway.

To obtain insight into the relationship of  tumor heterogeneity with tumor steroid hormone metabolites, 
we correlated metabolic heterogeneity to the presence of  measurable tumor steroid hormone in patients 
with ACC, such as estrone 3-sulfate (E1S), estradiol-17β 3-sulfate (E2S), and estradiol-17β 3,17-disulfate 
(E2S2), and found a significant negative correlation between E1S with ACC tumor heterogeneity, similar 
to E2S (Supplemental Figure 1B).

Certain tumor subpopulations are independent prognostic factors. To explore the clinical impact of each tumor 
subpopulation, we linked the results of molecular segmentation to the patients’ clinical data. Using the AIC-
based threshold of 19%, patients with a pixel percentage above the threshold were assigned to 10 tumor sub-
populations; 2 subpopulations below the threshold were excluded (Figure 4A). The overall survival differenc-
es of patients in 10 tumor subpopulations are illustrated in Figure 4B. To determine which subpopulations 
are associated with specific prognoses, Kaplan-Meier analysis was performed in subpopulation pairs, which 

Table 1. Clinical parameters of the patient cohort

Characteristics Number of patients
Number of ACC patients 72
ENSAT tumor stage at initial diagnosis

I 8
II 32
III 16
IV 16

Sex
Male 30
Female 42

Age median (years) at initial diagnosis 52 (range 12–77)
Ki-67 49

<10% 22
10%–19% 13
≥20% 14

Number of normal adrenal cortex 25
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revealed statistically significant differences in overall survival between sub 2 versus sub 3 (P = 0.018), sub 2 ver-
sus sub 8 (P = 0.036), and sub 2 versus sub 9 (P = 0.004). Remarkably, sub 2 was associated with worse survival 
compared with sub 3, sub 8, and sub 9 (Figure 4C). To investigate the potential factors associated with prog-
nosis, we performed Cox’s regression model with multivariate adjustment for tumor subpopulations, ENSAT 
stages, age, and sex that revealed the independent detrimental effect of sub 2, sub 4, sub 6, and sub 8 on overall 
survival (Table 2, sub 2: HR 7.610, 95% CI 1.867–31.012, P 0.005; sub 4: HR 4.617, 95% CI 1.767–12.066, P 
0.002; sub 6: HR 6.300, 95% CI 1.341–29.598, P 0.020; sub 8: HR 2.624, 95% CI 1.005–6.854, P 0.049).

Figure 2. Spatial distribution of 12 tumor subpopulations identified in patients with ACC. (A) Heatmap of AIC threshold of each k value. Darker red indicates 
models with better fit; darker blue indicates models with poor fit, according to minimum AIC. White squares indicate lowest AIC value and best threshold at 
each k. (B) Distribution map of tumor subpopulations with k value of 12 in ACC tumors. Each color represents 1 tumor subpopulation. (C) Distributions of overall 
pixels in distinct tumor subpopulations. The central angle represents the percentage of pixels, the radius represents the number of pixels, and the number in 
parentheses indicates the proportion of pixels. (D) Examples of 2 patients show the distinct heterogeneity. More colors within the tissue cores represent more 
involved tumor subpopulations and therefore higher heterogeneity. ACC, adrenocortical carcinoma; AIC, Akaike’s information criterion; TMA, tissue microarray.
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Distinct tumor subpopulations are characterized by different pathways. We selected differentially abundant metab-
olites in each subpopulation for pathway enrichment analysis. Figure 5 summarizes the discriminative meta-
bolic pathways characteristic of corresponding subpopulations of patients with ACC. Classes of metabolites 
with variability were carbohydrate metabolism, lipid metabolism, and amino acid metabolism. The intratumor 
metabolic heterogeneity between distinct subpopulations was evident at the pathway analysis level. It is note-
worthy that in the tumor subpopulations with independent prognostic value (sub 2, sub 4, sub 6, and sub 8), 
pentose phosphate pathway, starch and sucrose metabolism, galactose metabolism, pentose and glucuronate 
interconversions, and purine metabolism were enriched in sub 2 and sub 8, while those metabolic pathways 
were downregulated in sub 4 and not identified in sub 6. Interestingly, in sub 4, all identified pathways were 
downregulated, in contrast to the other 3 independent prognostic subpopulations. As demonstrated in Figure 
6, 5 metabolites that play roles in 4 anticancer drug action pathways were discovered to closely correlate with 
tumor subpopulations, which indicated associations between tumor subpopulations with the drug action path-
ways of capecitabine, cyclophosphamide, paclitaxel, and tamoxifen. For example, the 4 drug pathways were all 
found to correlate with sub 4 and sub 5, while in sub 1, sub 2, and sub 6, there were no associated drug action 
pathways, which might indicate a worse response to chemotherapy in these 3 ACC tumor subpopulations.

ACC tumor subpopulations share metabolomic features with normal adrenal cortex. To investigate the relevance 
of  molecular pattern-based subpopulations present in normal adrenal cortex in comparison with ACC, we 
performed pixel-wise k-means clustering in 25 normal adrenal cortex and 72 ACC tumor regions in 1 run 
with k = 12. By doing so, we obtained a spatial segmentation map displaying 12 metabolic subpopulations 
(S1–S12) within normal adrenal cortex and ACC (Figure 7A). By coregistering with H&E-stained images, 
we found that most subpopulations showed high similarity with zona fasciculata and zona glomerulosa, 
such as S7 and S12, while several subpopulations showed high similarity with zona reticularis, particularly 
S11 (Figure 7B). By comparing the distributions of  12 subpopulations in normal adrenal cortex and ACC 
tumors, we were able to identify not only unique subpopulations in normal cortex or ACC tumors but also 
shared subpopulations by both normal and tumor (Figure 7C and Figure 8A). For example, S4 presented in 
both normal cortex and ACC tumors (Figure 8B), S6 presented as an ACC-specific subpopulation (Figure 
8C), and S11 presented as a normal cortex–specific subpopulation (Figure 8D). However, the majority of  
ACC metabolic subpopulations were absent in normal adrenal cortex. These results verify the metabolic 
heterogeneity also existed in normal adrenal cortex. However, fewer subpopulations were detected in nor-
mal adrenal cortex, indicating a lower intensity in metabolic heterogeneity compared with ACC tumors.

Discussion
In this study, we explored metabolic heterogeneity by spatial metabolomics in tissues from 72 patients with 
ACC and 25 normal adrenal glands for comparison. Thus far, various tumors have been reported to exhibit 
highly heterogeneous metabolic profiles that contribute to the connective metabolic networks within such 
tumors, as well as networks between the tumors and their surrounding environments. Tumor metabolic 
heterogeneity may influence tumor progression and patient outcomes, and an improved understanding of  
this metabolic heterogeneity may yield alternative clinical strategies (34). Our research not only revealed 
a variability in heterogeneity within ACC but also was able to identify distinct tumor subpopulations of  
which the presence of  certain ones was independent of  prognostic relevance. Some tumor subpopulations 

Figure 3. Metabolic heterogeneity in ACC based on Simpson’s diversity index. (A) Bar chart shows ENSAT tumor stage was positively correlated with 
metabolic heterogeneity determined by Simpson’s diversity index (i.e., higher Simpson’s diversity index indicates higher metabolic heterogeneity) 
(patients n = 72; P values were calculated by Pearson’s correlation for continuous values and Spearman’s correlation for ranked variables). (B) Distribution 
and flow of patients according to metabolic heterogeneity status and ENSAT stages, along with their survival status. The width is proportional to the 
number of patients. (C) Kaplan-Meier analysis–based patient stratification between low– and high–metabolic heterogeneity groups. Patients with low 
metabolic heterogeneity exhibited better survival. (D) Discriminative m/z species–focused heatmap clustering analysis reveals a distinct separation of 
patients with high (red) and low (green) metabolic heterogeneity. Columns represent patients (n = 72); rows represent m/z species (top 50). Color gradient 
represents the intensity from maximum (red) to minimum (blue). (E) Enriched pathways in patients with high metabolic heterogeneity. Each pathway is 
shown as a circle according to metabolic classifications and enrichment scores (vertical axis), as well as topology analyses (i.e., pathway impact; hori-
zontal axis). Circle color represents the statistical significance of overall metabolic changes within each pathway. (F) Volcano plot of the distribution of 
differentially abundant m/z species, demonstrating 33 m/z species of increased (blue) abundance in low-heterogeneity patients versus 103 m/z species 
of increased (red) abundance in high-heterogeneity patients (fold-change cutoff = 1.5). The vertical dotted line indicates fold-change = 1.5, and horizontal 
dotted line indicates P = 0.05. (G) Heterogenous spatial distribution of 3 representative metabolites in a patient with high metabolic heterogeneity (the 
vessel region was excluded from analysis). ACC, adrenocortical carcinoma; ENSAT, European Network for the Study of Adrenal Tumors; GDP, guanosine 
diphosphate; AMP, adenosine monophosphate; FC, fold-change.
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were discovered to associate with different anticancer drug action pathways. In addition, we found several 
ACC tumor subpopulations to be shared with zona reticularis of  normal adrenal cortex, suggesting its 
histogenetic origin there.

Despite the generally unfavorable prognosis of  ACC, there is variation among patients in terms of  
progression, recurrence, and overall survival. Basic research and clinical studies of  ACC have enhanced the 
understanding of  this disease and enabled assessments of  genetic heterogeneity during tumor progression. 
Some pan-genomic studies have identified features closely associated with prognosis (35, 36) and proposed 
targeted molecular markers for the prognostic assessment of  ACC (37–39). These molecular markers were 
identified at tumor DNA or RNA level. In a small series of  14 ACCs that underwent exome sequencing, 
intratumor heterogeneity was reported in 43%–63% of  somatic mutations among different metastatic sites 
from the same patient (40). Jouinot et al. (18) assessed the robustness of  targeted molecular markers mea-
surable at the DNA level in 26 patients with ACC. The results indicated that intratumor heterogeneity 
affects DNA-related molecular markers. At variance, prognostic DNA methylation patterns as well as chro-
mosome alteration profiles appear rather stable and might be more robust for ACC prognostic assessment.

MSI renders the phenotypic consequences of  genetic alterations accessible and allows for spatial infor-
mation that may enable an improved understanding of  the complex factors that affect cancer reprogramming. 
These may be used for prognostic assessment and improved treatment. Here, the analysis of  72 patients with 
ACC discovered extensive metabolic heterogeneity within and between individual tumor samples, which 
suggests its biological relevance by demonstrating association with survival. Tumor-related excess of  steroid 
hormones such as cortisol and sex steroids is the leading clinical finding in 50%–60% of  cases of  ACC (41, 
42). Previously, Sun et al. (23) investigated the role of  tumoral steroid hormone metabolites in ACC and 
reported that high abundance of  E1S was significantly associated with more favorable prognosis similar to 
E2S whereas the presence of  E2S2 was associated with particularly poor overall survival. In order to test for 

Figure 4. Tumor subpopulations impact survival of patients with ACC. (A) The number of patients assigned to each subpopulation according to minimum 
AIC threshold (2 subpopulations below the threshold were excluded). (B) Kaplan-Meier analysis of the survival according to subpopulation. (C) Sub 2 is a 
subpopulation associated with worse survival compared with sub 3, sub 8, and sub 9 (patients n = 4 in sub 2, n = 18 in sub 3, n = 15 in sub 8, n = 8 in sub 9; 
P values were calculated by Wald’s test). ACC, adrenocortical carcinoma; AIC, Akaike’s information criterion.
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the relationship between metabolic heterogeneity and tumor steroid excess, we correlated heterogeneity with 
steroid abundance and found them to be negatively associated, in line with our finding that patients with 
high metabolic heterogeneity exhibited worse prognosis.

Tumor metabolic heterogeneity results from internal and external factors (43), both of  which are het-
erogeneous and contribute to metabolic heterogeneity through the activation of  specific signaling pathways 
that induce distinct metabolic responses (43–45). Although genetic variability has been a long-term focus 
of  tumor research (46), it has been challenging to address the lack of  predictability concerning spatial 
and temporal heterogeneity (47). Analyses of  metabolic heterogeneity may overcome the technical limita-
tions of  other tools, providing clinical insights regarding tumor metabolism (48). Within samples from 72 
patients with ACC, we defined 10 distinct tumor subpopulations at the metabolomics level. Four out of  10 
tumor subpopulations were found to be independent prognostic factors — sub 2, sub 4, sub 6, and sub 8. 
Sub 2 was associated with a particularly unfavorable prognosis. Metabolic reprogramming is a common 
hallmark of  human cancers, with important implications for tumor progression and patient survival (49). 
Numerous challenges persist in targeting these metabolic alterations because of  metabolic tumor heteroge-
neity (47). Differential pathway utilization was observed even between the different subpopulations, with 
enhanced activity of  the pentose phosphate pathway observed in sub 2, sub 8, and patients with high met-
abolic heterogeneity. This is in line with the idea that activation of  the pentose phosphate pathway directly 
contributes to cell proliferation, survival, and senescence. In addition, the pentose phosphate metabolite 
phosphoribosyl pyrophosphate is important for the formation of  purine nucleotide. In the present study, 
purine metabolism was also found to be upregulated in sub 2 and sub 8. Previous studies (50) have demon-
strated high concentrations of  purine metabolites in tumor cells and concluded that purine metabolism 
may be an attractive cancer treatment strategy. Our findings provide evidence to support this conclusion 
and a clue to improved prognosis of  heterogeneous ACC subpopulations.

Drug repurposing has been proposed as an effective shortcut to drug discovery. For ACC treatment, 
mitotane is the only FDA-approved drug (51–54) and currently used both in postoperative adjuvant and 
palliative (advanced) care settings. The polychemotherapy regimen etoposide, doxorubicin, and cisplatin 
plus oral mitotane represents the current standard of  chemotherapy for advanced ACC, being the only treat-
ment strategy supported by a randomized controlled trial. We identified actionable pathways of  4 anticancer 
drugs including capecitabine, cyclophosphamide, paclitaxel, and tamoxifen in several ACC tumor subpop-
ulations. Interestingly, sub 2 was not associated with a specific drug pathway, which might reflect poor 
treatment responsiveness of  this specific subpopulation. Although capecitabine has been used for salvage 
therapy of  ACC in combination with gemcitabine (55, 56), cyclophosphamide, paclitaxel, and tamoxifen are 
not commonly used for ACC treatment. In our study, 3 ACC subpopulations, including sub 5, sub 7, and 
sub 9, were positively correlated to the capecitabine action pathway and might be considered to respond to 
this treatment, considering that sub 5 and sub 7 contained only 1 patient each. Paclitaxel has been studied in 
combination with sorafenib (57) but was largely inactive. In the current study, the action pathway of  pacli-
taxel displayed an association with independent prognostic factor sub 4. Paclitaxel could work especially for 

Table 2. Multivariate Cox’s proportional hazards model

Cofactors P value HR (95% CI)
sub 1 0.160 2.182 (0.735–6.472)
sub 2 0.005 7.610 (1.867–31.021)
sub 3 0.385 1.468 (0.617–3.494)
sub 4 0.002 4.617 (1.767–12.066)
sub 6 0.020 6.300 (1.341–29.598)
sub 8 0.049 2.624 (1.005–6.854)
sub 9 0.582 0.733 (0.243–2.212)
sub 10 0.970 1.023 (0.322–3.244)

ENSAT stages <0.001 2.474 (1.630–3.756)
Age 0.782 1.003 (0.980–1.027)
Sex 0.828 0.928 (0.472–1.826)

Significant P values are presented in bold.
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this tumor subpopulation. Taken together, metabolic features of  ACC could be associated with preferential 
activity of  chemotherapy regimens, opening alternative therapeutic opportunities.

To date, only a few papers mainly focused on comparison of  normal adrenal glands and ACC in 
humans. Predictably, when compared with the normal adrenal cortical samples, ACC samples exhibited 
the hallmark features of  neoplastic tissue. Our results discovered a major metabolic difference of  normal 
adrenal cortex from ACC within the overall metabolic profile. They are in agreement with the findings 
of  Imperiale et al. (58), who reported a clear separation between normal adult human adrenal gland 
and adrenal cortical pathologies, such as ACC, based on specific metabolic fingerprints. In addition, the 
observations within normal adrenal cortex–specific subpopulations seemed to indicate their correspon-
dence to normal anatomical structures. Unfortunately, the number of  the samples analyzed does not 
allow us to draw any definitive conclusion.

A major study limitation is the number of  patients included. Due to the limited sample size, we did 
not adjust P values for multiple testing. Nevertheless, our study cohort should be considered large given 
the rarity of  ACC. Our workflow included a multifactorial approach to determine the optimal number of  
tumor subpopulations and the threshold for classifying patients into high- or low-heterogeneity groups. The 
definitions of  the threshold and the optimal number of  clusters were based on P values. Alternatively, the 
selection procedure could use other methods, such as cluster analysis. Our approach, following Balluff  et 
al. (30), has been improved by applying an extended Cox regression model that includes the count process 

Figure 5. Comparison of metabolic pathways in ACC tumor subpopulations. Independent prognostic tumor subpopulations are indicated in red. Each dark 
cyan square indicates a downregulated pathway; each orange square indicates an upregulated pathway. ACC, adrenocortical carcinoma.
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formulation of  Andersen and Gill (59) when comparing subpopulations to account for situations where 
patients belong to more than 1 subpopulation. The use of  TMAs has both benefits and limitations. TMAs 
allow for the measurement and analysis of  multiple tissue samples under the same condition, which can 
lead to more comparable and robust results. Nonetheless, while all tissue cores were identified as represen-
tative regions by experienced pathologists, they do not represent entire tumors. Despite this, we followed 
standard and well-established protocols for working with TMAs. Our study could be expected to be the 
basis for analysis in a larger patient series and extended clinical follow-up.

The present study investigated the heterogeneity of  metabolic profiles in ACC and pinpointed tumor 
subpopulations associated with worse survival and certain anticancer drug action pathways. The findings 
illustrated the potential for combining MALDI Fourier transform ion cyclotron resonance MSI (FT-ICR-
MSI) and advanced statistical clustering approaches to explore metabolic heterogeneity in ACC. Detailed 
insights into tumor heterogeneity and information concerning changes in tumor subpopulations might help 
develop clinical strategies for ACC management.

We herewith present a study that uses MALDI-MSI–based spatial metabolomics to investigate the 
metabolic heterogeneity and tumor subpopulations in ACC. The results revealed variability in ACC het-
erogeneity and several survival-distinct ACC subpopulations, which also differed at the level of  pathway 
enrichment. Our findings complement genetic and gene expression data and may aid in the identification 
of  targetable cancer pathways.

Methods
Spatial metabolomics experiments. Briefly, the FFPE tissue samples from 72 patients with ACC received 
from the ENSAT registry (https://registry.ensat.org) were transferred into 6 TMAs. None of  the 
patients received systemic treatment prior to tissue sampling. Each patient presented with 3 cores of  1 

Figure 6. Association of anticancer drug–targeted pathways with different ACC tumor subpopulations. Each black 
square indicates that the drug pathway is present in a subpopulation. The network was generated with the correlated 
tumor subpopulations. The orange and cyan lines indicate positive or negative correlations, respectively, between 
metabolites and subpopulations. The black lines indicate that a metabolite plays a role in an anticancer drug pathway. 
ACC, adrenocortical carcinoma; ATP, adenosine triphosphate; ADP, adenosine diphosphate.
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mm diameter. All the cores were from the representative tumor areas identified by experienced pathol-
ogists. Similarly, the FFPE tissue samples from 25 independent human normal adrenal glands were 
obtained and transferred into 1 TMA. All TMA samples were cut into 3 μm–thick sections using a 
microtome (HM 355S, Microm, Thermo Fisher Scientific) and mounted onto indium tin oxide–coated 
glass slides. A SunCollect automatic sprayer (SunChrom) was used for the application of  a 9-aminoac-
ridine hydrochloride monohydrate (MilliporeSigma) matrix. MALDI-MSI analyses were performed on 
a solariX 7T FT-ICR mass spectrometer (Bruker Daltonics) operating in negative ion mode, followed 
by tissue section staining with H&E. More details about the experiments are in our previous report 
(23). The MALDI FT-ICR-MSI data were acquired over a mass range of  m/z 50–1,000 with a 60 μm 
lateral resolution, then subjected to spectral processing using SCiLS Lab 2021c (Bruker Daltonics) after 
a coregistration of  optical images. For further analysis, only the tumor regions of  ACC samples and the 
cortex regions of  adrenal glands were annotated as ROIs.

Unsupervised k-means clustering. The k-means clustering method was initially used to identify sets that 
were spectrally similar but not necessarily spatially adjacent (clusters). Because of  uncertainty regarding 
the extent of  heterogeneity, we performed the primary analysis for k values of  2–15 within ROIs containing 
resolved mass spectrometry peaks. Segmentation clustering was conducted using the segmentation tool in 
SCiLS Lab (parameters: Normalization_Root Mean Square, Method_k-Means, #Classes_2-15) to reveal 
the spatial distribution of  tumor subpopulations by displaying distinct metabolic regions (i.e., clusters) in 
different colors.

Simpson’s diversity index. Simpson’s diversity index (33, 60), which denotes the probability that 2 ran-
domly chosen pixels are from different types and measures diversity, is defined as follows:

, where pi is the share of  pixels in cluster i, and k is the number of  clusters.
The index, computed for each patient, can have values between 0 and 1, with 0 indicating that all the 

pixels from 1 patient are in 1 cluster, and the higher the values of  the index, the higher the diversity of  the 
pixels in the different clusters for a patient. The calculation was performed in R (version 4.0.4).

Optimization of  cluster presence threshold. The statistical analysis required linking patient survival data to 
the presence of  specific clusters (tumor subpopulations). In this process, a patient was assigned to a cluster 
if  the cluster was sufficiently present in that patient (i.e., if  the cluster contained a fraction of  pixels above 
a particular threshold); the cluster presence threshold was established based on this “sufficient presence.” 
A single patient could be assigned to more than one cluster if  that patient’s tumor exhibited significant het-
erogeneity. The effect of  threshold variation on survival was investigated using Cox’s proportional hazards 
regression models. Specifically, an iterative loop was created with thresholds ranging from 2% to 50%. At 
each threshold, a binary variable was created by applying the threshold to the cluster ratio. A Cox propor-
tional hazards regression model was then built using the thresholded data. The quality of  each regression 
model was evaluated using the AIC, which provides an assessment of  each model’s fitness, where the mod-
el with the lowest AIC value was presumed to most closely fit the data. The analyses were repeated over k 
values of  2–15. Additional details regarding the application of  the model were previously published (30). 
By comparing the presence percentages of  72 ACC patients to the determined AIC threshold, the patients 
with a sufficient percentage were assigned to 12 tumor subpopulations accordingly, and the patients with a 
percentage below the threshold were excluded from the corresponding tumor subpopulations.

Survival estimates. After calculation of  the Simpson diversity index, we used a Kaplan-Meier survival 
curve to separate patients with low and high metabolic heterogeneity into 2 groups. An optimal threshold 
for low and high metabolic heterogeneity was chosen according to the minimal P value in the log-rank test.

Multivariate Cox’s proportional hazards model was performed to evaluate simultaneously the effect 
of  AIC-thresholded tumor subpopulations on survival — including subpopulations containing more than 
one patient — ENSAT tumor stages, age, and sex. In Kaplan-Meier survival curve analysis, an extended 
Cox regression model was used to evaluate the statistical differences of  the survival of  subpopulations. 
The extended Cox regression model incorporates the count process formulation of  Andersen and Gill to 

Figure 7. Subpopulations in combined de novo discovery of normal adrenal cortex and ACC tumors. (A) Visualization of 12 subpopulations (S1–S12) with-
in 25 normal adrenal cortex and 72 ACC tumor ROIs via k-means clustering. (B) Examples of subpopulation distributions in 3 normal adrenal cortex tissue 
cores reflecting the functional anatomy in the cortex. (C) Pie charts show the presence of respective subpopulations in adrenal cortex and ACC tumors. 
ACC, adrenocortical carcinoma; ROIs, regions of interest; HE, hematoxylin and eosin.
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Figure 8. Visualization examples of 3 subpopulations. (A) Presence ratios of adrenal cortex (black bar) and ACC tumor (white bar) in each subpopulation. S4 
(light purple) presented in both normal cortex and ACC tumor (B). S6 (blue) only presented in ACC tumor (C). S11 (purple) only presented in normal cortex (D). 
ACC, adrenocortical carcinoma.
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manage the possibility that some patients belonged to various subpopulations (59). Differences in survival 
were determined with the Wald test.

Bioinformatics analysis. We generated a heatmap-based clustering and volcano plot (fold-change ≥ 1.5, 
P < 0.05) using MetaboAnalyst database (https://www.metaboanalyst.ca/). The Kyoto Encyclopedia of  
Genes and Genomes (KEGG) database (http://www.genome.jp/kegg/) and MetaboAnalyst 5.0 were used 
to investigate metabolic pathways. The Small Molecule Pathway Database 2.0 (https://www.smpdb.ca/) 
was used to investigate drug-targeted pathways. To identify discriminative pathways characteristic of  sub-
populations, the Pearson correlation coefficient (r) was first calculated within the peak intensities and sub-
population percentages to identify peaks that were significantly correlated with each subpopulation. The 
peaks that were positively and negatively correlated with each subpopulation were then mapped onto the 
respective KEGG pathways to identify upregulated and downregulated pathways, followed by categoriza-
tion into major metabolite classes.

Statistics. Distributions of  Simpson’s diversity index between ENSAT stages were pairwise compared 
via unpaired 2-tailed Mann-Whitney U test. Relations between variables were assessed using Spearman’s 
correlation coefficient (rho) for ranked cofactors and Pearson’s correlation coefficient (r) for continuous 
values. All the P values are nonadjusted in this study because of  the limited sample size. A P < 0.05 was 
considered statistically significant in all analyses.

Study approval. This study was conducted with approvals from the Ethics Committee of  the University 
of  Wuerzburg (approval numbers 86/03 and 88/11, Wuerzburg, Germany) and Klinikum der Universität 
München (approval numbers 379/10, Munich, Germany).

Data availability. The raw spectra data that support the findings of  this study are available online (http://
figshare.com/, retrieve code: 10.6084/m9.figshare.22700002; https://figshare.com/articles/dataset/ 
MALDI-MSI_spectra_in_adrenocortical_carcinoma_tissues/22700002). Values for all data points found in 
graphs are in the Supporting Data Values file.
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