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Introduction
The prevalence of  obesity has increased alarmingly over the past decades (1). Its associations with car-
diovascular disease (CVD) and insulin resistance make obesity a major public health problem. Increased 
fasting and postprandial plasma triglyceride (TG) concentrations, reduced HDL cholesterol levels, and an 
increased number of  LDL particles are the key characteristics of  the dyslipidemia observed in patients with 
obesity. These lipid abnormalities result from an imbalanced lipoprotein metabolism caused by increased 
TG-rich lipoprotein (TRL) production and reduced TRL clearance (2, 3). Moreover, the interplay between 
lipid abnormalities and insulin resistance gives rise to a significantly elevated risk of  developing CVD and 
of  premature death in patients with obesity (4–6).

The pathophysiology of  dyslipidemia in obesity is attributed to the hepatic overproduction and 
secretion of  apolipoprotein B–containing (apoB-containing) TRLs and their impaired clearance from 
the circulation (2, 7–9). TRLs transport hydrophobic TG and cholesterol from the intestine and liver to 
peripheral tissues. The intestine produces and secretes chylomicrons (CMs), whereas liver produces and 
secretes VLDLs. VLDLs are categorized into 2 subfractions based on their sizes: VLDL1 and VLDL2, 
where VLDL1 is the larger and transports a greater amount of  TG per particle. Although, other than their 
sizes and TG load, there is virtually no difference between VLDL1 and VLDL2, these VLDL subtypes 

Dyslipidemia in obesity results from excessive production and impaired clearance of triglyceride-
rich (TG-rich) lipoproteins, which are particularly pronounced in the postprandial state. Here, we 
investigated the impact of Roux-en-Y gastric bypass (RYGB) surgery on postprandial VLDL1 and 
VLDL2 apoB and TG kinetics and their relationship with insulin-responsiveness indices. Morbidly 
obese patients without diabetes who were scheduled for RYGB surgery (n = 24) underwent a 
lipoprotein kinetics study during a mixed-meal test and a hyperinsulinemic-euglycemic clamp study 
before the surgery and 1 year later. A physiologically based computational model was developed 
to investigate the impact of RYGB surgery and plasma insulin on postprandial VLDL kinetics. After 
the surgery, VLDL1 apoB and TG production rates were significantly decreased, whereas VLDL2 
apoB and TG production rates remained unchanged. The TG catabolic rate was increased in both 
VLDL1 and VLDL2 fractions, but only the VLDL2 apoB catabolic rate tended to increase. Furthermore, 
postsurgery VLDL1 apoB and TG production rates, but not those of VLDL2, were positively correlated 
with insulin resistance. Insulin-mediated stimulation of peripheral lipoprotein lipolysis was also 
improved after the surgery. In summary, RYGB resulted in reduced hepatic VLDL1 production 
that correlated with reduced insulin resistance, elevated VLDL2 clearance, and improved insulin 
sensitivity in lipoprotein lipolysis pathways.
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exhibit different profiles under certain metabolic conditions. In patients with insulin resistance and/or 
hepatic steatosis, there is VLDL1, but not VLDL2, overproduction (10, 11). Moreover, hyperinsulinemia 
suppresses hepatic production of  VLDL1 but not VLDL2 in both insulin-sensitive and insulin-resistant 
humans with low liver fat (12–14).

In target tissue capillaries, TGs in TRLs are hydrolyzed to glycerol and free fatty acids (FFAs) by lipo-
protein lipase (LPL), and the products are taken up by tissue cells. As a result, circulating TRLs are trans-
formed into smaller and denser, cholesterol-enriched lipoprotein particles. Because these small lipoprotein 
particles are enriched in cholesterol, they are highly proatherogenic, and their accumulation in plasma 
poses a significant risk for development of  CVD (15). Many studies have shown a close association between 
dyslipidemia and the occurrence of  insulin resistance and type 2 diabetes (16–19). Many hypotheses have 
been proposed in the literature to explain this relationship (20), but the molecular mechanism explaining 
how dyslipidemia, per se, may induce insulin resistance is not fully understood; more importantly, the 
chicken-or-egg question has not yet been answered.

Bariatric surgery is an effective treatment for patients with severe obesity; it induces sustained weight 
loss and improves both overall health and quality of  life (21, 22). In addition to weight loss, bariatric sur-
gery improves blood glucose regulation, insulin sensitivity, plasma lipid profiles, and BP (23, 24). Because 
of  its high success rate, Roux-en-Y gastric bypass (RYGB) surgery is 1 of  the most commonly performed 
bariatric procedures (25). Notably, RYGB results in dramatic improvements in insulin resistance and dys-
lipidemia that are not necessarily related to the extent of  the weight loss (26–28). Such weight loss–inde-
pendent effects of  bariatric surgery often occur within a few days to weeks after the surgery and may be 
related to (acute) changes in caloric intake, the microbiome, and/or gastrointestinal hormones (27, 29). 
However, the concurrent changes that take place after the surgery make it difficult to unravel the line of  
events that ultimately leads to improved glucose and lipoprotein metabolism.

Computational modeling has proven to be effective for analyzing complex biological systems data 
and understanding hidden cause-and-effect relations (30, 31). In this regard, several computational 
models of  human lipoprotein metabolism have been developed to analyze stable isotope–labeled trac-
er data (32–34). In human lipoprotein metabolism studies, tracer techniques usually are used under 
steady-state (fasting) conditions, where the influx and outflux of  the trace are equal and all regulatory 
elements are assumed to be fixed (35). However, humans spend the majority of  their time under non-
steady-state (postprandial) conditions. Moreover, postprandial metabolism is more strongly related to 
metabolic and cardiovascular disorders (36, 37). The tracer methodology and computational modeling 
have been used to study the nonsteady-state kinetics of  simpler metabolic networks, including plas-
ma FFAs (38) and glucose metabolism (39). However, current modeling approaches fail in using iso-
tope-labeled tracer data to accurately describe the dynamics of  human lipoprotein metabolism under 
postprandial conditions without using unnatural feeding regimens, such as continuous feeding of  
small amounts during kinetics studies (40, 41). These methods can give valuable insights, but they do 
not reflect the natural eating habits of  humans and they also do not comprehensively describe hepatic 
and intestinal lipoprotein dynamics.

Recently, a physiologically relevant computational model was developed to describe the non-
steady-state dynamics of  the hepatic and intestinal lipoprotein metabolism on the basis of  stable iso-
tope–labeled tracer data collected during a mixed-meal test (42). Although this model provides valu-
able insights about the postprandial kinetics of  hepatic and intestinal lipoproteins, it does not include 
a physiologically relevant gastrointestinal module. Furthermore, this model does not account for the 
postprandial effects of  insulin on lipoprotein metabolism. Therefore, it cannot be used to investigate 
the effects of  the anatomical changes caused by bariatric surgery and/or insulin-mediated processes 
on lipoprotein metabolism.

In the present study, we use a detailed, multicompartmental model of  hepatic and intestinal lipo-
protein metabolism to investigate the postprandial interactions between glucose and lipid pathways in 
patients with severe obesity and after bariatric surgery–induced weight loss. We recruited 24 patients 
and performed detailed postprandial lipoprotein kinetics experiments at baseline and at 1 year after 
RYGB. We also performed hyperinsulinemic-euglycemic clamps (HECs) to assess the interactions 
between lipoprotein and glucose–insulin kinetics. Taken together, our model provides deep insight into 
the postprandial lipoprotein metabolism of  patients with severe obesity and into the changes induced 
by bariatric surgery.
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Results
Patient characteristics. The study population comprised 24 patients with severe obesity (Table 1). At 1-year 
follow-up, RYGB resulted in significant weight loss in all patients. In addition, RYGB was associated with 
important improvements in metabolic health, including reduced intrahepatic TG (IHTG) content, plasma 
lipid concentrations, insulin sensitivity, and glycemia (Table 1).

Postprandial concentrations of  VLDL1 TG and apoB, and VLDL2 TG are reduced after RYGB. All patients under-
went a lipoprotein kinetics study that included a mixed-meal test at baseline and 1 year after the surgery. During 
the study, plasma VLDL1 and VLDL2 apoB (Figure 1, A and B), TG (Figure 1, C and D), CM TG (Figure 1E), 
and total plasma TG (Figure 1F) were measured up to 10 hours. At 2 hours, patients were asked to consume a 
mixed meal, and the postprandial phase started. In Figure 1, box plots show the presurgery (red) and postsurgery 
(blue) AUCs calculated for the postprandial state. One of the key differences between pre- and postsurgery apoB 
and TG profiles was the response to the mixed meal. Before surgery, meal ingestion was followed by pronounced 
VLDL1 and VLDL2 apoB (Figure 1, A and B, red) and TG (Figure 1, C and D, red) accumulation in the plasma. 
However, after the surgery, VLDL1 and VLDL2 apoB (Figure 1, A and B, blue) and TG (Figure 1, C and D, 
blue) concentrations were only moderately increased after the meal. After the surgery, the VLDL1 apoB AUC 
was significantly reduced (Figure 1A), whereas VLDL2 apoB AUC remained unchanged (Figure 1B). On the 
other hand, both VLDL1 and VLDL2 TG AUCs were significantly reduced after the surgery (Figure 1, C and D). 
The average TG to apoB ratio, which is calculated as the ratio of the TG to apoB AUCs, did not change in the 
VLDL1 fraction (31.1 ± 7.1 vs. 28.8 ± 8.2 mg TG/mg apoB), but it was reduced in the VLDL2 fraction (8.7 ± 2.3 
vs. 6.3 ± 1.9 mg TG/mg apoB; P < 0.001) after the surgery. This indicates a decline in average VLDL2 particle 
size after the surgery. The CM TG AUC (Figure 1E) and plasma TG AUC (Figure 1F) were also significantly 
reduced after the surgery. Our modeling results show that postsurgery reduction in the postprandial CM TG 
concentration resulted from reduced lipid absorption from intestine and enhanced CM TG clearance rate. After 
the surgery, the estimated CM TG clearance rate was increased by 72% on average (P < 0.001).

Figure 1 also shows that after the surgery, postprandial plasma VLDL apoB and TG exhibit faster 
dynamics. After the surgery, plasma VLDL1 and VLDL2 apoB and TG levels peaked earlier, compared with 
presurgery. After the surgery, postprandial plasma VLDL1 apoB peak time was decreased from 4.8 ± 1.5 to 
3.3 ± 0.7 hours (P < 0.0005), and plasma VLDL2 apoB peak time was reduced from 6.0 ± 1.6 to 4.1 ± 1.2 
hours (P < 0.0001). Similar peak-time reductions were observed for plasma VLDL1 TG (4.8 ± 1.5 vs. 3.3 ± 
0.6 hours; P < 0.0005) and VLDL2 TG (5.7 ± 1.6 vs. 3.7 ± 0.8 hours; P < 0.0001) after the surgery. More-
over, postsurgery plasma VLDL1 and VLDL2 apoB and TG concentrations returned to their respective 
baselines within the observation time frame; this was not the case before the surgery.

A similar pattern was evident for CM TG and plasma TG time courses. Before the surgery, meal intake 
was followed by a significant increase in CM TG (Figure 1E, red) and plasma TG (Figure 1F, red) concen-
trations. After the surgery, postprandial CM TG and plasma TG elevations were lower as compared with 
presurgery status (Figure 1, E and F, blue). Our results show that after the surgery, CM TG peak time does 
not change much (4.9 ± 0.4 vs. 4.6 ± 0.6 h). The lack of  reduction in CM TG peak time may be due, in 
part, to the slower meal consumption after the surgery (10 vs. 30 minutes; see Methods and Supplemental 
Methods for details). However, total plasma TG peak time is reduced after the surgery (5.9 ± 0.9 vs. 5.1 ± 
0.8 h; P < 0.01). After surgery, CM TG and plasma TG levels also returned to their baselines within the 
observation time frame (Figure 1, E and F, blue).

RYGB is associated with reduced postprandial VLDL1 TG and apoB production and increased postprandial 
VLDL2 TG clearance. To gain more insight into the mechanisms underlying the observed changes in lipo-
protein kinetics, isotopic enrichment data from different pools were assessed and analyzed using the com-
putational model described in Methods. In Figure 2, pre- and postsurgery isotopic enrichment data from 
VLDL1 and VLDL2 apoB (Figure 2, A and B) and TG (Figure 2, C and D) pools, as well as plasma leucine 
(Figure 2E) and glycerol (Figure 2F) pools, are shown along with the model simulations. The results in 
Figures 1 and 2 show that the dynamics of  the plasma concentrations and enriched materials in different 
pools are accurately captured by the computational model, allowing the calculation of  the parameters that 
describe VLDL1 and VLDL2 apoB and TG kinetics in detail. Pre- and postsurgery kinetic parameters were 
estimated for each patient, and their averages are given in Table 2.

After the surgery, VLDL1 apoB production rate was decreased (Table 2), whereas VLDL2 apoB direct 
production rate, which is the rate at which apoB is directly secreted in the form of VLDL2 from liver, did 
not change. As a consequence, the relative fraction of  apoB that was directly secreted as VLDL2 from liver 
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was increased from 32% ± 14% to 43% ± 16% (P <0.05) after the surgery. On the other hand, the fractional 
transfer rate (FTR) of  apoB from the VLDL1 pool to the VLDL2 pool tended to increase. Consequently, the 
total VLDL2 apoB production rate, which is the sum of the VLDL2 apoB that is directly secreted from liver 
and the VLDL2 apoB that is derived from the VLDL1 pool in circulation, is slightly increased, but this change 
did not reach statistical significance. The VLDL1 TG production rate was significantly reduced, as was the 
VLDL2 TG direct production rate. These findings indicate a noticeable shift in the distribution of  hepatic TG 
secretion toward VLDL2 (18% ± 12% vs. 23% ± 11%; P < 0.1) after the surgery. Together with the increase 
observed in the VLDL1 TG FTR, the total VLDL2 TG production rate remained the same after surgery.

After surgery, the VLDL1 apoB fractional catabolic rate (FCR) did not change (Table 2), whereas the 
VLDL2 apoB FCR tended to increase. In line, the VLDL1 apoB fractional direct catabolic rate (FDC), which 
is the rate at which VLDL1 apoB is directly removed from the circulation, did not change. After the surgery, 
a remarkable increase took place in VLDL TG catabolic rates, whereby VLDL1 TG FCR tended to increase 
from 27.7 ± 23.4 to 34.0 ± 17.0 pools/d (P = 0.1) and VLDL2 TG FCR was significantly increased from 
10.8 ± 6.1 to 17.0 ± 10.1 pools/d (P = 0.002). However, the VLDL1 TG FDC did not change after surgery.

Insulin-mediated stimulation of  lipoprotein lipolysis is enhanced after surgery. After surgery, the homeostatic 
model assessment of  insulin resistance (HOMA-IR) was significantly reduced (4.4 ± 2.5 vs. 1.2 ± 0.7; P 
< 0.005), and it was positively related to VLDL1 apoB and TG production. After the surgery, there was a 
significant positive correlation between HOMA-IR and VLDL1 apoB (r = 0.61; P < 0.005; Figure 3A, blue) 
and TG (r = 0.65; P <0.005; Figure 3B, blue) production rates. In the presurgery condition, trends between 
VLDL1 apoB and TG production and HOMA-IR were the same, but the correlations were not statisti-
cally significant. When pre- and postsurgery data were combined and analyzed together, the correlations 
between HOMA-IR and VLDL1 apoB production (r = 0.39; P < 0.01; Figure 3A, black) and VLDL1 TG 
production (r = 0.53; P < 0.005; Figure 3B, black) remained significant. On the other hand, VLDL2 apoB or 
TG production was not correlated with HOMA-IR before or after surgery.

Table 1. Clinical and biochemical characteristics of included patients (N = 24) before and after surgery

Parameter Before surgery After surgery P values
Sex (female; male), no. 12;12
Age (years) 46.1 ± 11 47.1 ± 11
Weight (kg) 135.1 ± 23.4 98.6 ± 18.6 <0.005
Body fat content (%) 45.6 ± 5.9 30.9 ± 10.6 <0.005
FFM (kg) 73.3 ± 14.8 66.6 ± 12.9 <0.01
Excess weight (kg) 57.8 ±20.0 21.3 ± 16.6 <0.005
BMI (kg/m2) 43.4 ± 6 31.7 ± 5.1 <0.005
IHTG content (%) 9.9 ± 9.0 4.0 ± 1.7 <0.01
Plasma cholesterol (mmol/L) 4.9 ± 0.8 4.1 ± 0.6 <0.005
HDL cholesterol (mmol/L) 1.2 ± 0.2 1.5 ± 0.3 <0.005
LDL cholesterol (mmol/L) 3.1 ± 0.7 2.2 ± 0.6 <0.005
Plasma TG (mmol/L) 1.3 ± 0.6 0.8 ± 0.5 <0.005
apoB (mg/dL) 81.5 ± 16.6 67.1 ± 19.7 <0.005
Fasting FFA (mmol/L) 0.66 ± 0.18 0.63 ± 0.14 0.25
Fasting glucose (mmol/L) 5.0 ± 0.6 4.5 ± 0.3 <0.005
Fasting insulin (pmol/L) 143.2 ± 77.1 41.5 ± 23.7 <0.005
HOMA-IR 4.4 ± 2.5 1.2 ± 0.7 <0.005
Basal EGP (μmol/kg FFM/min) 12.6 ± 1.5 12.2 ± 1.9 0.5
Basal lipolysis (μmol/kg/min) 2.5 ± 0.8 3.8 ± 1.7 <0.01
Insulin suppression of EGP during 
step 1 of clamp (% of basal) 75.2 ± 14.0 93.1 ± 17.5 <0.01

Insulin suppression of lipolysis 
during step 1 of clamp (% of basal) 52.6 ± 20.2 80.3 ± 9.4 <0.005

Insulin stimulation of Rd during step 
2 of clamp (% of basal) 404.5 ± 156.5 544.2 ± 111.7 <0.005

Data are given as mean ± SD. Paired-sample t test was used to test the statistical significance of the differences 
between pre- and postsurgery values. FFM, fat-free mass.
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Because insulin regulates both glucose and lipid homeostasis, we aimed to quantify the contribution 
of  insulin to the regulation of  postprandial lipoprotein metabolism, by incorporating an insulin-mediated 
stimulation of  lipoprotein lipolysis pathway into the computational model. The responsiveness of  the lipo-
protein lipolysis pathway to circulating insulin can be expressed as the lipoprotein lipolysis insulin sensitiv-
ity index (ISI), which was estimated by model from the individual patient experimental data as described 
in the Supplemental Methods. In 5 patients, the model detected no insulin effect on lipoprotein lipolysis 
before surgery, but there was a detectable effect at 1-year follow-up. In all patients, the postsurgery lipopro-
tein lipolysis ISI was significantly increased (0.2 ± 0.15 vs. 0.42 ± 0.21; P < 0.001; Figure 4A). Further-
more, parameters of  insulin sensitivity from the clamp studies were directly correlated to the model-derived 
lipolysis ISI in patients after surgery (Figure 4, B–D).

Discussion
Data from this study demonstrate that bariatric surgery is not only associated with significant weight loss and 
improved metabolic health but also with decreased postprandial VLDL1 production, increased postprandial 
VLDL2 clearance, and improved insulin sensitivity of  the lipolysis pathway. Using physiology-based kinetic 
modeling, we provide deeper insight into the complexity of  human lipoprotein homeostasis. We show that 
the reduction in plasma VLDL apoB after bariatric surgery is a consequence of  seemingly opposing effects on 
VLDL1 versus VLDL2 apoB kinetics: VLDL1 apoB production was reduced, with an unaltered VLDL1 apoB 
catabolic rate, whereas the VLDL2 apoB direct production rate was unaltered, but its clearance rate tended to 

Figure 1. Plasma apoB and TG concentration time courses. (A–F) Presurgery (red) and postsurgery (blue) plasma VLDL1 and VLDL2 apoB (A and B), TG (C 
and D), plasma CM TG (E), and plasma TG (F) concentrations measured during the lipoprotein kinetics studies. Filled circles and error bars show data as 
mean ± SD. Solid curves show model simulations generated with model parameters estimated from average data (Supplemental Table 2). Dotted vertical 
lines mark mixed-meal ingestion time points. The box plots show the presurgery (red) and postsurgery (blue) AUCs calculated for the postprandial state 
(2–10 hours). Statistical significance was tested with a paired-sample t test. ****P < 0.0005.
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be increased. Together, these findings imply a shift from the hepatic secretion of  large VLDL1 particles before 
surgery toward the secretion of  smaller VLDL2 particles after surgery. Consistent with such a shift, we found 
that the relative fraction of  hepatic apoB that was secreted in the form of VLDL2 increased by more than 
33% after surgery. Moreover, bariatric surgery–induced weight loss was associated with decreased VLDL TG 
concentrations in both fractions, and our computational modeling indicated that this reduction was due to 
decreased VLDL1 TG production as well as increased VLDL1 and VLDL2 TG turnover.

Previously, Padilla et al. (41) studied the impact of  gastric bypass and sleeve gastrectomy on hepatic 
apoB kinetics under constant feeding conditions. They reported a significant decrease in plasma VLDL 
apoB after both gastric bypass and sleeve gastrectomy surgeries, due to reduced hepatic production and 
increased fractional catabolic rate. For the gastric bypass, their report showed a trend toward a decrease 
in hepatic apoB production, but the apoB fractional catabolic rate remained the same (41). However, their 
study did not account for the different VLDL subfractions and, more importantly, their data were collected 
under a constant feeding regimen, which does not reflect natural eating habits. Several other studies inves-
tigated postprandial plasma lipid profiles after bariatric surgery. In patients with obesity and/or type 2 dia-
betes, it was shown that postprandial plasma TG and plasma cholesterol concentrations were significantly 
reduced during a mixed-meal test that was performed 2 weeks after the sleeve gastrectomy or gastric bypass 
(43). In a follow-up study, similar postprandial reductions in plasma TG and cholesterol concentrations 
were reported 2 years after the surgery (44). In a third study, a standard oral fat-load test was performed 3 
months after sleeve gastrectomy, and a significant reduction in postprandial VLDL CM-remnant TG con-
centration was reported (45). Although, the reported postsurgery changes in plasma TG concentrations in 

Figure 2. Leucine and glycerol enrichment time-courses. Presurgery (red) and postsurgery (blue) population averages for 
enrichment data (filled circles with error bars) and the model simulations (solid lines). (A and B) VLDL1 and VLDL2 apoB 
[5,5,5-2H3]-leucine (Leu.) enrichments (Enr.). (C and D) VLDL1 and VLDL2 TG [1,1,2,3,3-2H5]-glycerol (Gly.) enrichments. (E) 
Plasma [5,5,5-2H3]-leucine enrichment. (F) Plasma [1,1,2,3,3-2H5]-glycerol enrichment. Data are presented as mean ± SD.



7

R E S E A R C H  A R T I C L E

JCI Insight 2023;8(16):e166905  https://doi.org/10.1172/jci.insight.166905

these studies are consistent with our findings, the design of  these studies did not allow the researchers to 
investigate the production or the turnover kinetics of  lipoproteins. Hence, they could not provide mechanis-
tic insights of  reduced plasma concentrations.

An advantage of  our computational modeling–based approach was that the detailed insight could be 
obtained in pre- and postsurgery dynamic regulation of  lipoprotein metabolism during the postprandial 
state. Our data show that in the presurgery phase, there is a profound VLDL accumulation in plasma during 
the postprandial state. In line with earlier reports, we hypothesize that this is primarily due to the competi-
tion for LPL-mediated lipoprotein lipolysis (46–50). The competition between different lipoprotein species 
for lipolysis pathways becomes particularly evident in the postprandial state as the digested lipids enter the 
circulation in the form of  CMs. Studies show a positive relation between particle size and the lipolysis rate 
(51–53), which gives CMs the priority for lipolysis by LPL. Hence, in the postprandial state, increased CM 
size in the circulation promotes competition and results in a significant reduction in VLDL apoB and TG 
FCRs and FTRs. Our results show that, after surgery, postprandial plasma VLDL apoB and TG concen-
trations do not increase much (Figure 1, blue), compared with the presurgery condition (Figure 1, red), for 
3 reasons. First, after surgery, hepatic apoB and TG production are significantly reduced. Second, reduced 
postsurgery intestinal lipid absorption and increased CM TG clearance rate result in lower plasma CM TG 
(Figure 1E, blue). Although, reduced intestinal lipid absorption is a model estimate and has not been verified 
by measuring lipids in stool samples, it is consistent with previous studies showing a significant reduction 
in intestinal lipid absorption after RYGB surgery (54–58). Hence, in the postprandial state, the competition 
between hepatic and intestinal lipoproteins for the lipolysis pathways remains weak. Third, after surgery, 
postprandial stimulation of  lipoprotein lipolysis by insulin is greatly improved (Figure 4A). As a conse-
quence of  these factors, after surgery, postprandial VLDL apoB and TG accumulation in plasma remains 
modest. Furthermore, elevated plasma TG and apoB concentrations return to their baselines within the time 
course of  the study (8 hours), whereas postprandial lipids remain elevated for more than 8 hours, on average, 
in the presurgery condition. This implies that, after surgery, after consuming a meal, the plasma lipid profiles 
are more likely to return to their baselines before the next meal is consumed and this effectively prevents 
residual lipids from the previous meal to further increase plasma lipid concentrations.

In this study, we also demonstrated significant improvements in postsurgery insulin-responsiveness indi-
ces, and a positive correlation between insulin resistance and hepatic VLDL1 production after the surgery. 
Insulin reduces hepatic VLDL secretion by reducing apoB lipidation and promoting apoB degradation in the 
hepatocyte (59–61). The HOMA-IR index was significantly reduced after surgery. We showed that HOMA-IR  
was positively correlated with postsurgery VLDL1 TG and apoB production (Figure 3, A and B) but not 
with VLDL2 apoB or TG production. This finding emphasizes the role that insulin plays in the regulation 
of  hepatic lipoprotein production, whereby patients with high insulin resistance tend to produce greater 

Table 2. Pre- and postsurgery kinetic parameters

Parameter Before surgery After surgery P values
VLDL1 apoB production rate (mg/d) 867.9 ± 510 667.9 ± 624.2 0.05
VLDL1 apoB FTR (pools/d) 6.2 ± 7.8 8.2 ± 7.7 0.16
VLDL1 apoB FCR (pools/d) 18.0 ± 11.6 21.1 ± 13.1 0.14
VLDL1 apoB FDC (pools/d) 11.9 ± 5.7 13.0 ± 6.8 0.19
VLDL1 TG production rate (g/d) 34.2 ± 18.2 23.4 ± 15.2 0.005
VLDL1 TG FTR (pools/d) 2.8 ± 2.5 5.4 ± 6.3 0.02
VLDL1 TG FCR (pools/d) 27.7 ± 23.4 34.0 ± 17.0 0.10
VLDL1 TG FDC (pools/d) 24.9 ± 21.8 28.6 ± 12.6 0.20
VLDL2 apoB direct production rate (mg/d) 404.7 ± 254.8 409.7 ± 315.2 0.46
VLDL2 apoB total production rate (mg/d) 611.3 ± 328.2 647.6 ± 439.3 0.31
VLDL2 apoB FCR (pools/d) 5.4 ± 2.9 6.7 ± 4.1 0.06
VLDL2 TG direct production rate (g/d) 7.5 ± 8.2 6.5.3 ± 4.4 0.31
VLDL2 TG total production rate (g/d) 10.6 ± 8.9 10.5 ± 7.3 0.49
VLDL2 TG FCR (pools/d) 10.8 ± 6.1 17.0 ± 10.1 0.002

VLDL1 and VLDL2 apoB and TG kinetics before and after surgery. Data are presented as mean ± SD; statistical 
significance is tested by paired-sample t test.
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amounts of  large hepatic lipoproteins. The lack of  association between VLDL2 apoB or TG production and 
HOMA-IR might be explained by independent regulation of  hepatic VLDL1 and VLDL2 apoB production, 
as suggested before (10, 11). This indicates that the production of  larger hepatic lipoprotein particles is 
increased with insulin resistance, but the production of  smaller lipoprotein particles is not affected. The lack 
of  a statistically significant association between presurgery insulin resistance indices and estimated kinetic 
parameters might be due to the relatively high insulin resistance and large interpatient variability in compar-
ison with the relatively small population size. Nevertheless, when pre- and postsurgery data were analyzed 
together, the correlations between HOMA-IR and VLDL1 apoB and TG production (Figure 3, A and B, 
black) remained significant. This may indicate that, after surgery, the associations between HOMA-IR and 
VLDL1 apoB and TG production do not change but become more pronounced.

We also show in this study a postsurgery improvement in insulin-mediated stimulation of  the lipo-
protein lipolysis pathway. Insulin is known to stimulate lipoprotein lipolysis by its impact on LPL at both 
the transcriptional and posttranslational levels (62, 63). To quantify the responsiveness of  the lipoprotein 
lipolysis pathway to circulating insulin, we have introduced the lipoprotein lipolysis ISI, which was esti-
mated for each patient by using individual experimental data with the model. Our results, indeed, show 
that insulin-mediated stimulation of  lipoprotein lipolysis was improved after the surgery, as reflected in 
the significantly increased lipoprotein lipolysis ISI (0.20 ± 0.15 vs. 0.42 ± 0.20; P < 0.001; Figure 4A). 
Moreover, calculated postsurgery lipoprotein lipolysis ISI values were strongly correlated with measured 
insulin-mediated adipose tissue lipolysis suppression (Figure 4B), endogenous glucose production (EGP) 
suppression (Figure 4C), and glucose disposal rate (Rd) stimulation (Figure 4D) indices. because the 
lipoprotein lipolysis ISI is defined as the sensitivity of  the lipoprotein lipolysis pathway to the fractional 
increase in insulin over the baseline, we compared lipoprotein lipolysis ISI with the clamp-derived sen-
sitivity indices normalized over the fractional increase in insulin during the clamp studies. However, the 
associations between lipoprotein lipolysis ISI and clamp-derived insulin sensitivity parameters were not 
present for presurgery data (Supplemental Figure 5; supplemental material available online with this 
article; https://doi.org/10.1172/jci.insight.166905DS1). This may be due, in part, to the fact that model 
could not detect an insulin-mediated lipoprotein lipolysis stimulation in the data of  5 of  the 24 patients 
before surgery. Nevertheless, a linear trend between lipoprotein lipolysis ISI and insulin-mediated lip-
olysis suppression was evident in the combined pre- and postsurgery data (Supplemental Figure 5B), 
which was not the case for other clamp-derived insulin-sensitivity parameters (Supplemental Figure 5, 
C and D). The dynamics of  the insulin-mediated suppression of  the hepatic apoB production was also 
incorporated into the model as a delayed forcing signal generated by the portal vein insulin; the portal 
vein insulin signal was derived from plasma insulin data. However, insulin-mediated effects on the hepat-
ic apoB production pathway remained undetectable due to the uncertainty associated with portal vein 
insulin concentration and resulting parameter estimates. Therefore, insulin-mediated suppression of  the 
hepatic apoB production was removed from the final version of  the model.

Glucagon-like peptide-1 (GLP-1) is best known for its role in glucose homeostasis and insulinotropic 
effects (64–66). However, GLP-1 also plays a direct role in lipid and lipoprotein metabolism (67), and thus 
the GLP-1 receptor pathway has been the focus of  pharmacological lipid research (68). GLP-1 reduces  
intestinal CM production and secretion (69, 70), and activation of  GLP-1 receptors reduces hepatic 
VLDL production (71, 72). Moreover, GLP-1 also triggers a signal through the intrinsic gut–liver axis and  

Figure 3. Relationship between pre- and postsurgery VLDL1 apoB and TG production rates and HOMA-IR. (A and B) The regression lines for pre- and postsurgery 
data and combined data are shown in red, blue, and black, respectively. Correlation coefficients (r) and associated P values are reported in each panel.
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ameliorates diet-induced hepatic VLDL overproduction (73). These studies suggest that, other than being a 
potent insulin secretagogue, GLP-1 regulates lipoprotein metabolism in an insulin-independent manner. Our 
results show that, after RYGB surgery, fasting GLP-1 levels do not change (3.5 ± 3.9 vs. 4.1 ± 3.6 pmol/L; 
P = 0.26; Supplemental Figure 4). However, postprandial GLP-1 levels are significantly increased (AUC: 
2139.2 ± 1093.5 vs. 7204.3 ± 4106.4 pmol/min/L; P <0.005; Supplemental Figure 4), which is consistent 
with earlier reports showing a significant increase in GLP-1 levels after RYGB surgery (74–79). It is sug-
gested that elevated GLP-1 levels play an important role in several metabolic improvements and diabetes 
remission after RYGB surgery (27, 78–81). Thus, postsurgery reduction in VLDL production and improved 
insulin-mediated processes may be, in part, a consequence of  elevated GLP-1 levels.

TG homeostasis directly influences hepatic steatosis, for which our data indicate a significant reduction 
in IHTG after surgery (9.9% ± 9.0% vs. 4.0% ± 1.7%; P < 0.05) as reported before (82–84). Adiels et al. (10) 
proposed that increased hepatic fat content as a consequence of  increased FFA flux to the liver due to insulin 
resistance results in overproduction of  larger VLDL1 particles. However, it is not clear whether this associa-
tion was a direct impact of  hepatic insulin resistance or increased IHTG that was secondary to insulin resis-
tance, because insulin resistance and hepatic steatosis are common comorbidities (85, 86). Indeed, we showed 
a strong association between postsurgery HOMA-IR and VLDL1 apoB and TG production but not VLDL2, 
which is consistent with earlier reports (10, 11).

We used a physiologically based, large computational model and a comprehensive data set 
to investigate the impact of  RYGB surgery on VLDL1 and VLDL2 apoB and TG kinetics under the 
nonsteady-state postprandial condition during a mixed-meal test. The study was designed to capture 
dynamic responses to natural eating regimens as closely as possible. The complex and dynamic nature 
of  lipoprotein metabolism, together with multiple interactions occurring postprandially, made it neces-
sary to make assumptions and simplifications during the model development. We acknowledge that like 
all models that have been proposed in the literature and all the models that will follow, our model is not 
a complete account of  the entire physiological processes involved. The developed model is not intended 
to capture all the biochemical or molecular details of  the lipoprotein metabolism. The computational 
model was developed in a way to extract as much information as possible from the available data while 
preserving physiological relevance.

Figure 4. Relationship between lipoprotein lipolysis ISI and tissue specific insulin responsiveness indices. (A) 
Pre- and postsurgery lipoprotein lipolysis ISI. (B) Postsurgery insulin-mediated peripheral lipolysis suppression per 
insulin increased over basal level (Δ[%]insulin) from the clamp studies vs lipoprotein lipolysis ISI. (C) Postsurgery 
insulin-mediated EGP suppression per Δ(%)insulin versus lipoprotein lipolysis ISI. (D) Postsurgery insulin-mediated 
Rd stimulation per Δ(%)insulin versus lipolysis ISI. In each panel, the regression lines for the postsurgery data are 
shown in blue. Correlation coefficients (r) and associated P values are reported in each panel.
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Conclusion. We conclude that physiologically based mathematical modeling of  postprandial apoB and 
TG metabolism in different VLDL fractions in combination with gold standard measurements of  insulin 
sensitivity provide deep insight into the effects of  RYGB surgery on lipid handling and its interaction with 
glucose metabolism and insulin in the postprandial state. RYGB restores the homeostatic balance between 
insulin sensitivity and TG production and catabolism. Taken together, our experimental data, combined 
with computational modeling, show that RYGB in morbidly obese patients results in reduced postprandial 
VLDL TG due to reduced VLDL1 production and increased VLDL2 TG clearance rates, with improved 
responsiveness of  lipoprotein homeostasis to circulating insulin levels.

Methods
Design. This multicenter, observational intervention study was part of  RESOLVE (A systems biology 
approach to RESOLVE the molecular pathology of  two hallmarks of  patients with metabolic syndrome 
and its comorbidities; hypertriglyceridemia and low HDL-cholesterol), a European research program 
on the metabolic syndrome. We designed the present study to evaluate postprandial lipoprotein kinetics 
in humans before and after bariatric surgery–induced weight loss and their relation to insulin-mediated 
processes. For this purpose, we developed a physiologically based computational model of  human lipo-
protein metabolism and used this model to analyze in vivo data collected during the baseline (before 
surgery) and 1 year after the RYGB.

Study population. We recruited patients with severe obesity from the outpatient clinic of 2 obesity centers 
in the Amsterdam metropolitan area. Patients were eligible to participate in the present study if  they (a) were 
older than 18 years; (b) met criteria for bariatric surgery in accordance with national guidelines (87); (c) were 
scheduled for elective RYGB; and (d) had stable weight for at least 3 months before surgery. Exclusion criteria 
were (a) the use of alcohol (>2 units/d) or recreational drugs; (b) the use of lipid-lowering drugs, exogenous 
insulin, incretin mimetics, or psychoactive medication; (c) chilDVHood-onset obesity; or (d) any somatic dis-
order except for common obesity-related conditions (e.g., dyslipidemia, hypertension, obstructive sleep apnea).

Lipoprotein kinetics studies. Lipoprotein kinetics experiments were performed using [5,5,5-2H3]-leucine and 
[1,1,2,3,3-2H5]-glycerol to determine in vivo apoB and TG fluxes in VLDL1 and VLDL2 fractions (Supplemen-
tal Figure 1A). Experiments were performed shortly (<4 weeks) prior to the scheduled RYGB surgery and 
repeated 1 year after the operation. After an overnight fast, [5,5,5-2H3]-leucine (7 mg/kg BW; 99% enriched; 
Cambridge Isotopes) and [1,1,2,3,3-2H5]-glycerol (500 mg; >99% enriched; Cambridge Isotopes) were infused 
via a venous catheter. Two hours after tracer infusion, patients received a liquid mixed meal that consisted of  
2 bottles of  Fresubin Protein Energy (Fresenius Kabi), 40 mL of  olive oil, 2 g of  cacao powder, and 5 tablets of  
a noncaloric sweetener (Hermesetas; Hermes Sweeteners) (Supplemental Table 1). Patients were instructed  
to consume the meal within 10 minutes before surgery or within 30 minutes at 1-year follow-up. After the 
surgery, patients were given more time to consume the meal because they experienced difficulty in com-
pleting the meal within 10 minutes. At 5, 15, 30, 45, 60, 75, 90, 120, 150, 180, 240, 300, 360, 480, 600, and 
1440 minutes after infusion, venous blood samples were drawn for the determination of  [5,5,5-2H3]-leucine 
and [1,1,2,3,3-2H5]-glycerol enrichment in plasma and lipoprotein fractions.

Isolation of  VLDL subfractions. VLDL1 and VLDL2 fractions were isolated from plasma by 3-step 
gradient ultracentrifugation using a SW41 rotor (Beckman) in an Optima XPN-100 Beckman ultracentri-
fuge. In short, the density (d) of  4 mL of  plasma was adjusted to 1.1502 g/mL with NaCl. Then 0.5 mL 
of  NaBr/NaCl (d = 1.182 g/mL) and 4 mL of  plasma (d = 1.1502 g/mL) was transferred to an ultraclear 
Beckman SW41 tube. The gradient was formed by layering 2 mL of  salt solutions of  the following densi-
ties on the top of  the plasma: (a) 1.079 g/mL; (b) 1.0722 g/mL; (c) 1.0641 g/mL; and (d) 1.0588 g/mL.  
The different fractions were isolated using the following conditions: for CMs (d < 1.006 g/mL): 30 
minutes, 260,639 g; for VLDL1: 51 minutes, 260,639 g; and for VLDL2: 16.36 hours, 55,521 g. At each 
step, the upper 1 mL was aspirated and replaced by the appropriate density fraction. Isolated lipoprotein 
fractions were frozen at –80 °C until further analysis.

Determination of  isotopic enrichments. To determine leucine enrichment in apoB, VLDL1 and VLDL2 frac-
tions were precipitated with isopropanol, delipidated with ethanol-diethyl ether, dried, and hydrolyzed with 
6M HCl at 110°C for 24 hours. The samples were then prepared for analysis of leucine enrichment as described 
(88, 89). Briefly, leucine enrichment was determined on a gas chromatography–mass spectrometry (GC-MS) 
(GC-MSD5975c; Agilent Technologies) equipped with a VF17ms column operated in selected ion monitoring 
mode, using norleucine as an internal standard. To calculate isotope enrichments, the average value of the m/z 
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161:158 ratio was determined using a calibration curve with known quantities of labeled and unlabeled leucine 
(90). The resulting m/z 161:158 was expressed as molar percent excess.

To determine glycerol enrichment in TG within VLDL1 and VLDL2, the isolated fractions were pre-
cipitated with isopropanol, delipidated with alcohol/diethyl ether, and solubilized in isopropanol. The 
phospholipids were removed by adding 2 g of  activated zeolite (Merck) to each tube. After centrifugation, 
the samples were evaporated under N2 at 80°C. Isopropanol was added and the samples were transferred 
to a 1.5 mL vial. The glycerol extracts were saponified with 2% KOH in ethanol, incubated for 2 hours at 
60°C, and dried under N2. Heptafluorobutyric acid (Sigma-Aldrich) and ethyl acetate, at a 1:3 ratio, and 
standards and controls were added and incubated for 10 minutes at 70°C. After evaporation under N2, the 
samples were solved in ethyl acetate and analyzed by GC-MS as described before (89).

HEC. We determined basal and insulin-mediated glucose fluxes as well as lipolysis rates during a 2-step 
HEC using [6,6-2H2]-glucose and [1,1,2,3,3-2H5]-glycerol (Supplemental Figure 1B), as described elsewhere 
(91, 92). Briefly, primed continuous infusions of  [6,6-2H2]-glucose (prime: 11 μmol/kg; continuous: 0.11 
μmol/kg/min; >99% enriched; Cambridge Isotopes) and [1,1,2,3,3-2H5]-glycerol (prime: 1.6 μmol/kg; con-
tinuous: 0.11 μmol/kg/min; >99% enriched; Cambridge Isotopes) were started and continued until the end 
of  the study. Basal glucose (EGP) and glycerol (from lipolysis) production were determined after 2 hours 
of  tracer equilibration. Next, insulin-mediated suppression of  EGP and insulin-mediated suppression of  
lipolysis were determined after 2 hours of  low-dose insulin infusion (step 1: Actrapid 20 mU/m2 body 
surface area/min; Novo Nordisk Farma). Finally, insulin-stimulated Rd was determined after an additional 
2 hours of  high-dose insulin infusion (step 2: 60 mU/m2/min). During insulin infusion, blood glucose con-
centration was held at 5 mmol/L by frequent bedside monitoring and variable exogenous glucose infusion 
(enriched with 1% [6,6-2H2]-glucose to maintain stable enrichment in the plasma pool).

Biochemical analyses. Plasma glucose concentrations were determined with the glucose-oxidation method 
using a Biosen C-Line glucose analyzer (EFK Diagnostics). Insulin and cortisol were determined by immuno-
assay on an Immulite 2000 system (Diagnostic Products) with intra-assay variations of 4–5% and 3–6%, respec-
tively. Glucagon was determined by radioimmunoassay (Linco Research) with an intra-assay variation of 4–8%. 
Plasma FFAs were analyzed by enzymatic colorimetric assay (NEFA-C kit, Wako Chemicals). Plasma total 
cholesterol, LDL cholesterol, HDL cholesterol, and TG were analyzed by a Selektra autoanalyzer (Sopachem). 
Plasma apoB was determined by immunoturbidimetric assay (Wako Chemicals) by a Selektra autoanalyzer.

Calculations of  basal and insulin-mediated fluxes. We calculated glucose fluxes during HEC (EGP and the Rd) 
using modified versions of Steele equations for the steady state (basal fluxes) or nonsteady state (fluxes during 
the insulin infusion) (93, 94). Hepatic insulin sensitivity was defined as the percent suppression of EGP by step-1 
hyperinsulinemia; peripheral or muscle insulin sensitivity was defined as the percent stimulation of glucose Rd by 
step-2 hyperinsulinemia (95). Basal whole-body lipolysis was defined as the glycerol rate of appearance, which, 
in turn, was determined using the tracer dilution method (96). Adipose tissue insulin sensitivity was defined as 
the percent suppression of lipolysis by step-1 hyperinsulinemia (97). Finally, given the interindividual variation 
in insulin clearance, parameters of insulin sensitivity were normalized to insulin levels during the clamp.

Determination of  liver fat content and excess BW. IHTG was determined by proton magnetic resonance spec-
troscopy as described before (98). Excess weight was calculated as the weight that corresponds to the differ-
ence between the patient’s BMI and a cutoff  BMI value of  25 kg/m2.

Computational modeling. We used a computational modeling approach to investigate the effects of  the 
RYGB surgery on postprandial lipoprotein kinetics and to explore the complex interactions between glu-
cose and lipid fluxes. To achieve this, we translated the metabolic network of  systemic lipoprotein metabo-
lism into a physiologically based mathematical model, as illustrated in Supplemental Figure 2. The model 
describes systemic lipoprotein kinetics using 5 interconnected modules: gastrointestinal, plasma, liver, tracer 
injection, and insulin. For computational simulations and analyses, the system dynamics were described 
with a system of  ordinary differential equations. The mathematical model was then implemented into the 
MATLAB programming environment (MathWorks; R2018b). The kinetic transfer rate parameters were esti-
mated from the experimental isotopic enrichment and biochemical concentration data, using MATLAB’s 
optimization toolbox. The details of  the computational model are given in Supplemental Methods.

Statistics. All statistical analyses were performed using the MATLAB programming environment. Normally 
distributed data are presented as mean ± SD. We used median and IQR to present nonnormally distributed data. 
We used 1-tailed, paired-sample t tests to compare baseline data with 1-year follow-up data. Bivariate correla-
tions were evaluated using Pearson correlation coefficients. Findings were considered significant if  P < 0.05.
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Study approval. The study was approved by the Amsterdam University Medical Center Medical 
Ethics Committee. All participants provided written informed consent in accordance with the Decla-
ration of  Helsinki. The study was prospectively registered in the Netherlands Trial Registry (identifier 
NL4531; www.trialregister.nl).

Data availability. Computer codes for the computational model and data files are publicly available 
in the GitHub data repository at https://github.com/vehpi/lipoprotein_kinetics/tree/27f0e42919d-
638e988a3a71d7cdb570e6cb20fdb. Additional information will be provided by the corresponding author 
upon request; values for all data points in graphs are reported in the Supporting Data Values file.
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