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Introduction
COVID-19, the disease caused by SARS-CoV-2, continues to impose a terrible burden on populations and 
health systems worldwide. In the early phase of  the pandemic, several demographic risk factors emerged as 
associated with severe disease outcomes, including increasing age (1–5), male biological sex (1, 3, 6), and 
obesity (7–9). The biological basis of  increased risk related to these key patient covariates remains incom-
pletely understood. There is rising concern about inadequate consideration of  these patient covariates in 
COVID-19 study design and outcome reporting (10–13). Additionally, despite targeting a broad spectrum 
of  host defense processes, many COVID-19 therapeutic trials have yielded disappointing results (14, 15). 
Identification of  relevant immunological differences among these demographic groups of  patients with 
COVID-19 may meaningfully inform clinical trial design.

Previous studies (16–20) have revealed shifts in immune cell populations and gene expression signa-
tures that are particularly pronounced in critical disease and might thus obscure variations attributable to 
other factors. Therefore, to identify risk factor–related variation in immune responses, we enrolled a cohort 
of  38 patients hospitalized with hypoxic COVID-19 pneumonia of  relatively uniform clinical severity and 
performed single-cell RNA-Seq (scRNA-Seq) on leukocytes isolated from whole blood collected within a 
day of  admission.

Risk of severe disease and death due to COVID-19 is increased in certain patient demographic 
groups, including those of advanced age, male sex, and obese body mass index. Investigations of 
the biological variations that contribute to this risk have been hampered by heterogeneous severity, 
with immunologic features of critical disease potentially obscuring differences between risk groups. 
To examine immune heterogeneity related to demographic risk factors, we enrolled 38 patients 
hospitalized with clinically homogeneous COVID-19 pneumonia — defined as oxygen saturation 
less than 94% on room air without respiratory failure, septic shock, or multiple organ dysfunction 
— and performed single-cell RNA-Seq of leukocytes collected at admission. Examination of 
individual risk factors identified strong shifts within neutrophil and monocyte/dendritic cell (Mo/
DC) compartments, revealing altered immune cell type–specific responses in higher risk COVID-19 
patient subgroups. Specifically, we found transcriptional evidence of altered neutrophil maturation 
in aged versus young patients and enhanced cytokine responses in Mo/DCs of male versus female 
patients. Such innate immune cell alterations may contribute to outcome differences linked to 
these risk factors. They also highlight the importance of diverse patient cohorts in studies of 
therapies targeting the immune response in COVID-19.
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Comparison of  patient subgroups in the context of  key demographic risk factors for severe COVID-19 
infection — advanced age (65 years or older), male sex, and obesity (BMI 30.0 or higher) — revealed intrigu-
ing cell lineage–specific effects among the major leukocyte types. Whereas transcriptomic differences between 
patients with COVID-19 and controls were strongest in T/NK cells, most COVID-19 risk factor subgroups 
showed higher divergence in other leukocyte cell types, varying across the comparisons. We observed prom-
inent transcriptomic shifts in the innate arm of the immune system, with strong neutrophil differences in the 
age comparison and monocyte/dendritic cell (Mo/DC) differences in the sex and BMI comparisons. This 
analysis reveals that particular risk factors for severe COVID-19 infection are associated with divergent leuko-
cyte gene expression patterns that suggest heterogeneous immune responses. These findings underscore the 
importance of  representing diverse demographic groups in COVID-19 therapeutic trials, particularly those 
that target the actions of  distinct leukocyte subsets.

Results
A cohort of  patients hospitalized with clinically homogeneous hypoxic COVID-19 pneumonia. Thirty-eight patients 
presenting to the University of  Michigan hospital and 3 healthy controls were enrolled in the study (Table 1 
and Supplemental Table 1; supplemental material available online with this article; https://doi.org/10.1172/
jci.insight.166110DS1). Patients aged 18 and older were eligible to participate if  they were hospitalized with 
confirmed SARS-CoV-2 infection by a PCR-based assay and required supplemental oxygen at the time of  
enrollment based on oxygen saturation less than 94% on room air. Patients were not eligible if  they exhibited 
respiratory failure requiring invasive mechanical ventilation, septic shock, or multiple organ dysfunction at 
enrollment or received cytokine inhibitory therapy (targeting IL-6, IL-6R, IL-1, or Janus kinase). To capture 
both PBMCs and neutrophils, buffy coats were isolated from whole blood and subjected to scRNA-Seq on the 
Chromium (10x Genomics) platform. The resulting quality-controlled leukocyte atlas contained 35,932 cells. 
After batch correction (21), cells were clustered using the R package Seurat and annotated based on canonical 
cell type marker genes. We identified 5 broad cell types: neutrophils, Mo/DCs, T/NK cells, B cells, and plate-
lets (Figure 1, A and B). All cell types included cells from both patients with COVID-19 and healthy control 
samples, although proportions of  neutrophils were expanded and T cells contracted in COVID-19 samples 
(Figure 1A and Supplemental Table 2).

We performed subclustering of the 5 major immune cell types detected in our analysis. For each cell type, 
we compared the transcriptomes of cells from patients with COVID-19 and healthy controls to identify differ-
entially expressed genes (DEGs) and used the count of DEGs exhibiting adjusted P values less than or equal 
to 0.05 and greater than or equal to a 1.2-fold change as a proxy for transcriptomic variation. We adjusted for 
4 major covariates that have been shown to affect COVID-19 outcomes: age, sex, BMI, and self-identified race 
(1–9, 22, 23). This analysis revealed leukocyte transcriptomic differences between patients with COVID-19 and 
healthy controls most pronounced in T cells and Mo/DCs (Table 2 and Supplemental Table 3). Low neutro-
phil recovery from our 3 control patients (N = 45) (Supplemental Table 2) precluded meaningful calculation of  
DEGs in comparison with patients with COVID-19.

To explore how patient characteristics contribute to variation in immune responses to COVID-19, we divid-
ed the samples of patients with COVID-19 into risk factor subgroups for age, sex, and obesity. Due to the insuf-
ficient representation of non-White race patients and the absence of Hispanic patients in our cohort, dedicated 
analyses of the covariates of race and ethnicity were not possible; however, given the inclusion of Black patients 
in our cohort and the significance of this risk factor, adjustment for race was still performed. We then tabulated 
DEGs for each cell type in each risk factor subgroup comparison while adjusting for the 3 other major covariates. 
The most divergent cell types varied across these analyses (Table 2). To further understand these subgroup-relat-
ed differences, we proceeded with dedicated analyses of highly divergent cell types in each of these comparisons.

Neutrophils from aged patients with COVID-19 are distinguished by an attenuated IFN response signature. When 
comparing patients with COVID-19 65 years of  age and older (n = 17) to patients younger than 65 years of  
age (n = 21), neutrophils showed the highest number of  DEGs (Table 2). Inspection of  the 15 most down-
regulated DEGs (Supplemental Figure 1A) revealed reduced expression of  multiple IFN-stimulated genes 
(ISGs) (IFITM3, IFIT1, TNFSF10, IFIH1) in neutrophils of  aged patients. The top downregulated DEG was 
CLEC12A, an inhibitory receptor that downmodulates neutrophil activation (24, 25) and amplifies type I IFN 
responses in BM-derived DCs (26). The 15 top upregulated DEGs included multiple mitochondrial tran-
scripts (MT-CYB, -CO1, -CO2, -CO3, and -ND3) (Supplemental Figure 1A), suggestive of  increased stress (27) 
or neutrophil immaturity (17).
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For a more holistic understanding of  transcriptional differences between neutrophils from aged and 
young patients with COVID-19, we performed upstream regulator analysis using Ingenuity Pathway Analysis 
(IPA, QIAGEN). This analysis seeks to identify upstream transcriptional regulators that can explain observed 
gene expression changes based on a database of  expected effects between transcriptional regulators and their 
target genes gleaned from the literature. Upstream regulator analysis can predict which transcriptional reg-
ulators might be involved in gene expression changes and whether these regulators are likely activated or 
inhibited. Ribosomal transcripts were filtered out of  the DEG lists before analysis, as these tended to vary en 
bloc; the same was done for mitochondrial transcripts. Significant results (P < 0.05) were filtered for cytokines 
with scores suggesting either significant activation (z score ≥ 2) or significant inhibition (z score ≤ –2) in aged 
neutrophils (Supplemental Figure 1B). The cytokine IL-4 showed the highest activation score in the neutro-
phils of  aged compared with young patients with COVID-19. IL-4 inhibits neutrophil effector functions by 
restricting expansion and attenuating migration into tissues via downregulation of  CXCR2 (28), which was 

Table 1. Key demographic variables of patients with COVID-19 included in the study

Patient ID Age (yr) Sex BMI Race
COVID01 78.0 Male 33.0 White
COVID02 44.1 Male 27.6 White
COVID03 58.8 Female 50.7 Black/AA
COVID04 64.2 Male 25.3 White
COVID05 69.2 Female 35.2 White
COVID06 64.1 Male 24.8 White
COVID07 51.0 Female 33.4 White
COVID08 81.4 Male 22.4 White
COVID09 44.9 Male 34.6 White
COVID10 68.4 Female 44.9 White
COVID11 72.1 Male 31.7 White
COVID12 74.8 Male 29.3 White
COVID13 40.1 Female 35.8 Black/AA
COVID14 36.8 Male 23.6 Asian
COVID15 64.8 Male 34.5 White
COVID16 54.2 Male 34.5 White
COVID17 75.2 Female 35.0 White
COVID18 66.8 Male 32.5 White
COVID19 63.3 Male 37.5 White
COVID20 58.7 Male 37.0 White
COVID21 50.8 Male 26.7 White
COVID22 71.7 Male 35.4 White
COVID23 55.8 Male 43.1 White
COVID24 63.0 Male 27.2 White
COVID25 90.9 Male 26.1 White
COVID26 67.9 Male 29.0 White
COVID27 59.6 Male 27.9 White
COVID28 23.4 Female 42.9 White
COVID29 71.9 Female 44.4 White
COVID30 76.9 Male 33.4 White
COVID31 74.0 Male 31.1 White
COVID32 82.7 Male 21.7 White
COVID33 44.6 Male 79.0 White
COVID34 90.5 Female 31.3 White
COVID35 59.8 Female 24.5 Unknown
COVID36 68.1 Female 29.6 White
COVID37 41.1 Female 23.6 Black/AA
COVID38 29.4 Male 42.0 White

Blue and pink denote categorization as lower and higher risk, respectively, in subgroup analyses. Uncolored denotes values not examined in subgroup 
analyses (including race). AA, African American; BMI, body mass index in kg/m2.

https://doi.org/10.1172/jci.insight.166110
https://insight.jci.org/articles/view/166110#sd


4

R E S E A R C H  A R T I C L E

JCI Insight 2023;8(16):e166110  https://doi.org/10.1172/jci.insight.166110

significantly downregulated (P = 5.00 × 10–25) in the neutrophils of  aged patients with COVID-19 in our data 
set. Only type I IFNs (IFN-α2, IFN-β1, and IFN-ε) showed significant inhibition scores, consistent with ISG 
depletion in neutrophils from aged patients with COVID-19 among the DEGs (Supplemental Figure 1A). 
Together, analyses of  age-biased DEGs in patients with COVID-19 suggested neutrophils of  aged patients 
could have altered functional capacity, with attenuation of  the transcriptional IFN responses that are activated 
in normal antiviral modules.

Aged patients show expansion of  immature neutrophils and failure to expand ISG-high neutrophils during 
COVID-19 infection. To further investigate the source of  the divergent ISG signal and other DEGs emerg-
ing from the age comparison, we examined the neutrophil subclustering analysis in detail. Four subclus-
ters were identified (Figure 2, A and B). We annotated the smallest subcluster as immature neutrophils 
based on the expression of  markers such as LTF, LCN2, and CEACAM8 and the remainder as mature 
neutrophils. The largest mature neutrophil subcluster was distinguished by the expression of  numerous 
ISGs, including IFITM3 and IFIT1/2/3 (Figure 2, B and C). This subcluster was therefore annotated as 
ISG-high neutrophils, consistent with a population previously identified by Combes et al. to distinguish 
mild/moderate from severe COVID-19 (20). The next subcluster comprised neutrophils with lower RNA 
content and was marked by high expression of  long noncoding RNAs (lncRNAs) MALAT1 and NEAT1. 
The final subcluster showed increased expression of  S100 genes. Insufficient recovery of  neutrophils 
from healthy control samples precluded meaningful comparison with the neutrophils from patients with 
COVID-19 (Supplemental Table 2).

We next divided patients with COVID-19 into risk factor subgroups and calculated the proportions of  the 
4 neutrophil subclusters across these comparisons, uncovering distinct neutrophil subcluster profiles across 
the higher risk groups (Figure 2D). Compared to young patients, aged patients showed expansion of  imma-
ture neutrophils (Figure 2, D and E). Aged patients further showed a shift in the mature neutrophil popula-
tion away from ISG-high neutrophils and toward low-RNA neutrophils (Figure 2, D–F), with percentages 
of  these 2 mature neutrophil subsets differing significantly by age (P = 0.043, 0.020, and 0.158 for ISG-high, 
low-RNA, and S100 neutrophils, respectively). To investigate the developmental relationships of  the 3 mature 
neutrophil subsets, we performed pseudotime characterization of  all neutrophils in our analysis (Figure 2G). 
This revealed a single primary pseudotime trajectory spanning from immature to mature neutrophils. S100-
high neutrophils appeared more immature, whereas ISG-high and low-RNA neutrophils were located later 
in pseudotime, corroborating a similar analysis by Combes et al. (20). The extensive pseudotime overlap 

Figure 1. A leukocyte single-cell atlas of a clinically uniform cohort of patients with COVID-19. (A) Uniform manifold approximation and projection (UMAP) plot 
of 35,932 cells colored by cell type and split by disease state. Bar plot, cell type proportions split by disease state. (B) Dot plot of representative marker genes for 
each cell type. Color scale, average marker gene expression. Dot size, percentage of cells expressing marker gene.

https://doi.org/10.1172/jci.insight.166110
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between the terminal ISG-high and low-RNA neutrophil subclusters suggests that in COVID-19 infection, 
neutrophils mature into either an ISG-high or an ISG-low, transcriptionally quiescent terminal state. The 
latter state is overrepresented among neutrophils of  aged patients with COVID-19.

ISG-high neutrophils are intact in male and obese subgroups of  patients with COVID-19. We then assessed wheth-
er the neutrophil shifts observed in aged patients with COVID-19 were specific to this risk subgroup or a 
hallmark of  all higher risk subgroups in this analysis. Interestingly, male patients showed an opposite pattern, 
with expansion of  ISG-high neutrophils and contraction of  low-RNA and immature neutrophils relative to 
female patients (Figure 2D). Obese patients also showed expansion of  ISG-high neutrophils and contraction 
of  low-RNA neutrophils relative to normal BMI patients (Figure 2D); however, unlike for age, differences in 
proportions of  these neutrophil subsets were not significant for sex or BMI (data not shown). Older age was 
the only risk factor analyzed that was associated with contraction of  ISG-high neutrophils, reflecting a shift 
of  mature neutrophils toward an ISG-low terminal differentiation state. The absence of  a universal neutrophil 
signature associated with higher risk subgroups indicates that whether and how neutrophil transcriptional 
shifts might predict or influence COVID-19 outcomes could vary by risk factor. It is noteworthy that neutro-
phils emerged as the most transcriptionally divergent subset only in the age comparison (Table 2). While this 
data set cannot be used to link shifts in neutrophil phenotype to outcomes, it is possible that these neutrophil 
shifts may be pathogenic and contribute to age-associated outcome differences in COVID-19.

Male patient Mo/DC transcriptomes demonstrate enhanced activation scores for IFN and other cytokines. We next 
considered the effect of sex as a covariate. Comparison of leukocytes from male (n = 26) versus female (n = 12) 
patients with COVID-19 revealed the highest transcriptional divergence in Mo/DCs (Table 2). Examination 
of the top DEGs enriched and depleted in male versus female COVID-19 Mo/DCs (Supplemental Figure 2A) 
revealed appropriate recovery of Y-linked genes (DDX3Y, EIF1AY, and UTY) and XIST, which enables X chro-
mosome inactivation and, thus, is increased in female cells. Genes enriched in male Mo/DCs relative to female 
Mo/DCs included multiple ISGs (IFI27, IFI6, and ISG15), prompting us to perform an upstream regulator 
analysis to identify cytokines predicted to promote sex-biased Mo/DC gene expression patterns in patients 
with COVID-19. Numerous cytokines showed significant activation scores in male Mo/DCs relative to female 
Mo/DCs, including IFNs, TNF, IL-6, and IL-1β, whereas only the IL-1 receptor antagonist (IL1RN) showed 
a significant inhibition score relative to female Mo/DCs (Supplemental Figure 2B).

We then performed Mo/DC subclustering. Subclusters were identified and annotated as CD14+ Mos 
(corresponding to classical Mos), CD16+CD14lo (nonclassical) Mos, CD14+CD16+ (intermediate) Mos, 
and DCs based on their expression of  CD14, FCGR3A (encoding CD16), and MHC class II transcripts 
(Figure 3, A and B). We first compared COVID-19 versus control patient cells, validating the anticipated 
contraction of  CD16+CD14lo Mos and DCs (16) (Figure 3, C and D). Comparison of  male versus female 
patients with COVID-19 revealed contraction of  CD16+CD14lo Mos in men, contrary to a prior report 
(29), with proportions of  other Mo/DC subtypes otherwise similar (Figure 3, C and E). Unlike for neutro-
phils, subclustering did not identify discrete populations of  ISG-high cells; rather, top ISGs upregulated in 
COVID-19 versus control Mo/DCs mapped diffusely across the population (data not shown). Deeper anal-
ysis of  sex differences within CD14+ Mos, which constituted the vast majority of  Mo/DCs, revealed that 
CD14+ monocyte sex DEGs (Supplemental Figure 2C) overlapped highly with the sex DEGs identified in 
the full Mo/DC analysis above (Supplemental Figure 2A), including demonstration of  ISG upregulation in 
male patients relative to female patients.

Table 2. Counts of DEGs for each cell type across the indicated subgroup comparisons

Neutrophil Mo/DC T/NK cell B cell Platelet
All participants Total (Ctrl/COVID) N/A 1,470 1,699 485A 126

COVID only
Age (< 65 yr/65 yr+) 302 86 153 45A 7
Sex (female/male) 119 148 87 47A 3
BMI (< 25.0/30.0+) 184 483 112 N/A 11

DEGs are adjusted for covariates of age, sex, BMI, and race, except in the relevant comparisons. Significance was defined as adjusted an P value less than 
or equal to 0.05 and greater than or equal to 1.2-fold change. Risk factor subgroups show numbers of DEGs only among COVID-19 patient cells. Coloring 
intensity across each row reflects the number of DEGs normalized to the maximum of each row. Comparisons in which 1 or both groups has more than 100 
cells are marked not applicable (N/A). AB cell DEG counts tabulated after exclusion of 3 outliers as discussed in the text.
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Together, our analysis of  biological sex in patients with COVID-19 revealed the most pronounced 
effects in the Mo/DC compartment, where men exhibited significantly higher activation scores for many 
cytokines, including TNF and IL-1β, and the most powerful discriminating transcriptomic signal was pro-
found enhancement of  IFN response scores in Mo/DCs of  men relative to women.

BMI comparison reveals only modest evidence of  enhanced cytokine responses in Mo/DCs of  obese patients with 
COVID-19. We next considered the covariate of  BMI. Comparison of  obese (N = 23) versus normal BMI 
(N = 6) patients also highlighted Mo/DCs as the most transcriptionally divergent cell type (Table 2). Exam-
ination of  the top DEGs enriched and depleted in Mo/DCs of  patients with COVID-19 with obese versus 

Figure 2. Effects of risk factors on neutrophil shifts in COVID-19. (A) UMAP plot of 11,023 neutrophils colored by subcluster. (B) Dot plot of repre-
sentative marker genes for each neutrophil subcluster. Color scale, average marker gene expression. Dot size, percentage of cells expressing marker 
gene. (C) Feature plot of representative IFN-stimulated gene IFIT1 showing normalized expression values. (D) Heatmap of relative expansion or 
contraction of each neutrophil subcluster in each risk factor subgroup comparison (excluding control patients). Blue, increased in the higher risk 
subgroup (aged, male sex, obese). Red, increased in the lower risk subgroup (young, female sex, normal BMI). Value shows log2 ([number of cells 
in higher risk subgroup]/[total number of cells in both subgroups]). (E) UMAP plot of neutrophils of patients with COVID-19 split by age group. Bar 
plot, proportion of neutrophils in each subcluster split by age group. (F) Box-and-whisker plots of percentages of each of the 3 mature neutrophil 
subclusters in patients with COVID-19. Box plots show the interquartile range (box), median (line), and minimum and maximum (whiskers). P values 
are shown for 2-tailed heteroscedastic Student’s t test. (G) Pseudotime plots of neutrophils from all patients with COVID-19 and controls colored by 
pseudotime (left) and subcluster (right).
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normal BMIs (Supplemental Figure 2D) revealed an interesting contrast to the sex analysis (Supplemental 
Figure 2A). While both higher risk groups (obese and male) showed upregulation of  CXCL8, top DEGs 
otherwise showed a largely reciprocal enrichment pattern, with markers of  the higher risk group in 1 com-
parison resembling those of  the lower risk group in the other (i.e., obese resembled female and normal 
BMI resembled male). This included several ISGs that were upregulated in both male and normal BMI 
patients. For further context, we performed upstream regulator analysis of  Mo/DC BMI DEGs via IPA 
(Supplemental Figure 2E). Unlike in the sex comparison, very few cytokines showed significant activation 
scores in Mo/DCs from obese patients with COVID-19 relative to those with normal BMI. IL-1β was again 
activated, as was IFN-γ, albeit with a much lower activation score than in the sex comparison due to the 
presence of  many ISGs among both increased and decreased genes.

Figure 3. Effects of risk factors on Mo/DC shifts in COVID-19. (A) UMAP plot of 8,420 Mo/DCs colored by cell type. (B) Dot plot of representative marker 
genes for each Mo/DC type. Color scale, average marker gene expression. Dot size, percentage of cells expressing marker gene. (C) Heatmap of relative 
expansion or contraction of each Mo/DC type in comparison of patients with COVID-19 versus controls (disease column) and in each risk factor subgroup 
comparison (excluding control patients). Blue, increased in the higher risk subgroup (aged, male sex, obese). Red, increased in the lower risk subgroup 
(young, female sex, normal BMI). Value shows log2 ([number of cells in higher risk subgroup]/[total number of cells in both subgroups]). (D) UMAP plot of 
Mo/DCs split by disease state. Bar plot, proportion of Mo/DCs in each subcluster split by disease state. (E) UMAP plot of Mo/DCs of patients with COVID-19 
split by sex. Bar plot, proportion of Mo/DCs in each subcluster split by sex. (F) UMAP plot of Mo/DCs of patients with COVID-19 split by BMI group. Bar plot, 
proportion of Mo/DCs in each subcluster split by BMI group.
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The Mo/DC subclustering analysis revealed further dissimilarity between sex and BMI comparisons, 
with obese patients showing expansion of  CD16+CD14lo Mos (Figure 3, C and F). Thus, while both obesity 
and male biological sex predispose patients to more severe COVID-19, obese patients do not show the same 
strong activation scores for IFN and other cytokines in Mo/DCs or Mo subset shifts as male patients in com-
parison with their respective counterparts.

T/NK cell profiles during COVID-19 infection show subtler variation across risk factor subgroups. DEG counts 
suggested that T/NK cells were not the most transcriptionally divergent immune cell type in age, sex, or 
BMI comparisons; however, T/NK cells did show the highest DEG count in a comparison of  patients with 
COVID-19 and controls (Table 2). Further analysis of  T/NK cells in patients with COVID-19 versus controls 
broadly corroborated prior findings. T/NK cells were overall contracted in patients with COVID-19 versus 
controls (Figure 1A). Top DEGs enriched in the T/NK cells of  patients with COVID-19 included ISGs and 
genes encoding cytotoxic granular proteins and S100s (Supplemental Figure 3A). Upstream regulator analysis 
showed strong activation scores for many cytokines, including IFNs, TNF, and IL-1β, in the T/NK cells of  
patients with COVID-19 (Supplemental Figure 3B).

T/NK cell subclustering and annotation demonstrated the presence of all T cell subsets in both controls and 
patients with COVID-19 (Figure 4, A and B). Comparison of the T/NK cell subsets of patients with COVID-19 
and controls revealed relative expansion of CD4+ T cells with cytotoxic activity (CD4+ CTLs), CD8+ effector 
memory T cells (TEM), NK cells, and CD56brightCD16dim NK cells in patients with COVID-19 (Figure 4C). This 
increased representation of cytotoxic T/NK cell types likely contributed to the emergence of genes encoding 
cytotoxicity factors among the top T/NK cell COVID-19–enriched DEGs (Supplemental Figure 3A). However, 
prior work suggests the actual cytotoxic function of these cells in severe COVID-19 is likely impaired (30). In the 
risk factor subgroup comparisons, T/NK cell shifts in age and sex comparisons overall showed many similarities 
with the comparison of patients with COVID-19 and controls (Figure 4, C and D). The BMI comparison includ-
ed very few cells in the normal BMI subgroup, limiting interpretability. Given that the risk factor subgroups show 
less transcriptomic divergence within T/NK cells than other major immune cell types, shifts within T/NK cell 
subsets may be less likely to underlie the risk factor outcome differences.

B cell expansion in COVID-19 is driven by outliers and not predicted by the examined risk factors. During preliminary 
subclustering for quality control prior to DEG calculation (Supplemental Figure 4, A and B), B cells were the 
only major cell type to show numerous subclusters composed almost exclusively of cells from 3 patients with 
COVID-19 (Supplemental Figure 4C). Several of these clusters showed high expression of plasmablast mark-
ers such as CD27 and genes encoding the constant regions of IgA and IgG (Supplemental Figure 4, A and B), 
suggesting a function in secretion of antigen-specific Abs. In particular, subcluster 5 expressed XBP1, POU2AF1, 
and IRF4, consistent with the XBP1+ plasma cells found to be significantly expanded in some patients with 
COVID-19 (31, 32). Only 2 B cell subclusters showed typical donor diversity (Supplemental Figure 4C), and no 
B cells were identified for a substantial portion of the patients (15 of 38, 39%) (Supplemental Table 5). Subcluster 
1 was identified as naive B cells based on the expression of markers such as TCL1A and IGHD, while subcluster 4 
was identified as memory B cells based on expression of MS4A1 (Supplemental Figure 4B). In preliminary sub-
clustering of neutrophils, Mo/DCs, or T/NK cells for quality control, no similar patient outliers were identified.

Due to their highly skewed B cell profiles, B cells deriving from the 3 outlier donors were excluded from 
DEG calculations. DEG counts did not identify B cells as the most transcriptionally divergent leukocyte type 
for any subgroup comparison (Table 2). Of note, none of the major demographic risk factors examined in this 
study was shared by all 3 outliers (Supplemental Table 1 and Supplemental Figure 4D). This suggests that other 
factors may influence B cell shifts more strongly than the covariates of age, sex, BMI, or race.

Platelet transcriptomes vary minimally among the examined risk factor subgroups of  patients with COVID-19. 
Multiple reports have implicated platelets in COVID-19 disease severity by examining patient platelet tran-
scriptomes using bulk RNA-Seq (33–35). We therefore also investigated platelets as potential contributors 
to variation among the risk factor subgroups of  patients with COVID-19. While comparison of  healthy 
controls and COVID-19 patient platelet transcriptomes revealed 126 DEGs, platelet DEG numbers for risk 
factor subgroup comparisons were far fewer than for any other cell type examined (Table 2), suggesting tran-
scriptomic homogeneity among subgroups.

Discussion
Here, we present the analysis of scRNA-Seq data from 38 patients hospitalized for hypoxic COVID-19 pneu-
monia with clinically homogeneous disease at presentation. We exploited the clinical consistency of our cohort 
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to examine the leukocyte transcriptome shifts associated with demographic risk factors for severe COVID-19. 
Covariate associations were most pronounced among innate immune cells. Age showed the strongest effects in 
neutrophils, whereas sex and BMI showed the strongest effects in Mo/DCs (Table 2). Surprisingly, immune cell 
profiles were not consistent across higher risk subgroups; for example, aged patients with COVID-19 showed 
loss of ISG-high neutrophils, whereas male and obese patients showed expansion of ISG-high neutrophils 
(Figure 2D). While our deliberate selection of a cohort with clinically homogeneous disease limits our ability 
to associate these immune cell profiles with clinical outcomes, our results reveal the critical importance of  

Figure 4. Effects of risk factors on T/NK cell shifts in COVID-19. (A) UMAP plot of 10,839 T/NK cells colored by cell type and split by disease state. Bar plot, 
proportion of T/NK cells in each subcluster split by disease state. (B) Dot plot of representative marker genes for each T/NK cell subset. Color scale, aver-
age marker gene expression. Dot size, percentage of cells expressing marker gene. (C) Heatmap of relative expansion or contraction of each T/NK cell type 
in comparison of patients with COVID-19 versus controls (disease column) and in each risk factor subgroup comparison (excluding control patients). Blue, 
increased in the higher risk subgroup (aged, male sex, obese). Red, increased in the lower risk subgroup (young, female sex, normal BMI). Value shows log2 

([number of cells in higher risk subgroup]/[total number of cells in both subgroups]). (D) UMAP plots and bar plots of T/NK cells split by risk factor sub-
group. Only cells of patients with COVID-19 from the indicated risk factor subgroups are presented on each plot. MAIT, mucosal-associated invariant T.
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diverse patient inclusion in COVID-19 studies. This is particularly essential considering that many of the drugs 
investigated for treatment of COVID-19 have targeted the immune response rather than the virus itself  (36). 
Our findings further suggest that extrapolation of clinical trial results to demographic groups not represented in 
such trials should be done with caution and could result in negative patient outcomes.

In our study, aged patients with COVID-19 showed expansion of circulating immature neutrophils and 
contraction of ISG-high neutrophils (Figure 2D). Abnormal neutrophil populations in COVID-19 have been 
documented to exhibit immature characteristics, consistent with emergency granulopoiesis (16, 18, 19). This 
shift toward immaturity is associated with a negative prognosis (16, 18, 19) and may even contribute to the 
suppression of T cell proliferation in patients with severe COVID-19 (37). It is unclear how contraction of ISG-
high neutrophils among aged patients with COVID-19 might influence disease outcomes. ISG-high neutrophils 
have been reported in multiple COVID-19 studies (18, 20, 37) and were identified by Combes et al. as the only 
neutrophil subset distinguishing mild/moderate from severe disease (20), suggesting a protective effect. Indeed, 
multiple studies have found defective IFN responses in patients with severe COVID-19 (20, 38–43), although 
there are also a few reports of excessive IFN responses being associated with worse patient outcomes (44, 45). 
ISG-high neutrophils were also marked by prominent expression of CXCR2 (P < 2.23 × 10–308) (Figure 2A) and 
CXCR1 (9.27 × 10–69) (data not shown), which encode receptors for IL-8/CXCL8 and related chemokines that 
enable trafficking to inflamed tissue. Whether this enhances capacity for disease defense or pathologic tissue 
damage remains to be determined.

In aged patients, reduced numbers of  ISG-high neutrophils were balanced by expansion of  the low-
RNA neutrophils that demonstrated high expression of  lncRNAs NEAT1 and MALAT1. Several popu-
lations of  mature neutrophils marked by NEAT1 were also identified by Combes et al. that did not differ 
significantly in proportion between mild/moderate and severe disease; however, in that same study, neu-
trophil NEAT1 and MALAT1 were among the most significantly increased genes tracking in patients with 
severe versus mild/moderate COVID-19 (20). A prior study utilizing scRNA-Seq to investigate neutrophils 
demonstrated that the gene number and total unique molecular identifiers (UMIs) both increase in neutro-
phils during bacterial infection, consistent with increased transcriptional activity (17); thus, low-RNA neu-
trophils may indeed represent a less active mature neutrophil subset. Further, weak expression of  CXCR2 
compared with ISG-high neutrophils suggests reduced capacity of  low-RNA neutrophils for migration into 
inflamed tissues. Of  note, S100-high neutrophils, reported to be anticorrelated with ISG-high neutrophils 
and correspond to a severe fate (20), were equally represented in aged and young patients with COVID-19 
(Figure 2, D–F). Together, our age analysis suggests that during COVID-19 infection, neutrophils of  aged 
patients are less likely to mature into ISG-high neutrophils, instead entering an alternative terminal differ-
entiation state characterized by low-RNA expression and lacking putative antiviral properties conferred by 
ISG upregulation.

In our analysis of  sex, the Mo/DCs of  male patients with COVID-19 showed enhanced cytokine 
response scores, including IFN-induced gene expression changes. This was interesting given that robust 
ISG expression in the mononuclear phagocyte pool has been reported to be associated with mild COVID-19 
(20). Specific DEGs emerging from this analysis were suggestive of  the male sex conferring increased risk. 
Male Mo/DCs showed upregulation of  SELL, encoding CD62L/L-selectin, and PLAC8, a prematuration 
marker that distinguishes a sepsis-associated immature monocyte state (46); both were previously identified 
as markers of  a Mo population detected almost exclusively in patients with severe COVID-19 versus those 
with mild disease or healthy controls (18). Furthermore, baricitinib, a JAK1/2 inhibitor with IFN-block-
ing activity, has shown benefits in several therapeutic trials (47–49); however, in a study demonstrating its 
effectiveness in combination with remdesivir in reducing time to recovery from COVID-19, the effect was 
significant among men but not women (48). In addition to highlighting the importance of  stratified anal-
yses in COVID-19 therapeutic trials, this sex difference in the therapeutic benefit of  JAK inhibition could 
represent a clinical corollary for the enhanced IFN activation signature we observed in Mo/DCs of  male 
patients with COVID-19.

While various cytokine response scores were dramatically increased in male patient Mo/DCs relative 
to those of  female patients, they were only modestly increased in obese patient Mo/DCs relative to patients 
with healthy BMIs. Accordingly, relative IFN activation scores were attenuated in obese patients more than 
in male patients, with only IFN-γ emerging from the upstream regulator analysis of  BMI Mo/DC DEGs 
(Supplemental Figure 2E) and with a much lower activation score than in the analysis of  sex Mo/DC DEGs 
(Supplemental Figure 2B). The attenuation of  the IFN signal in obese patients may reflect baseline differences 
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in obese individuals. A previous study found that healthy obese patients showed globally reduced expression 
of  ISGs across both classical and nonclassical circulating Mos (50). This was reported to contribute to tran-
scriptional skewing of  Mos toward a regulatory phenotype that also involved increased expression of  immu-
noregulatory molecules such as CD52 (50), one of  the top markers for obese Mo/DCs. Thus, it is possible that 
the variable immune cell transcriptional signatures of  higher risk subgroups during COVID-19 infection result 
from preexisting immunological differences across patient demographics. Nonetheless, these differences may 
still shape patient responses to COVID-19 infection and immune-targeting therapeutics.

Our study has several limitations. First, the immune cell transcriptional shifts described here cannot 
be linked to differences in clinical outcomes given our intentional selection of  patients with similar disease 
severity at hospitalization. It is possible that these shifts reflect differences between risk subgroups that 
render patients in the higher risk subgroup more susceptible to severe disease; conversely, it is also possi-
ble that these shifts reflect protective immune cell transcriptomic signatures that prevented the higher risk 
patients from presenting with critical disease. Stratified analyses of  larger data sets with greater variation in 
clinical outcomes may clarify whether these demographic factor-dependent signatures are associated with 
or contribute to disease risk or protection. Second, our cohort likely included patients in different stages 
of  COVID-19 disease. Variation in representation of  disease stages across the risk factor subgroups could 
contribute to the observed transcriptomic differences. Third, without a similarly sized cohort of  patients 
hospitalized for hypoxemic non–SARS-CoV-2 pneumonia for comparison, we cannot determine whether 
the transcriptomic signatures observed here may be specific to COVID-19 or common to patients hospi-
talized with respiratory viral infection. Similarly, without a comparable number of  controls, we cannot 
ascertain whether these signatures are also present in healthy controls, reflecting baseline immunological 
differences. These represent important future directions for increasing understanding of  immunological 
variation across demographic risk groups in disease and health to support health equity in future thera-
peutic development and clinical trial design. Fourth, our COVID-19 cohort contained only 3 individuals 
who self-identified as being of  the Black race and 1 individual who self-identified as being of  the Asian 
race. No patients identified as Hispanic. Black race and Hispanic ethnicity are associated with more severe 
COVID-19 outcomes (23). As our cohort contained several Black individuals, we adjusted for Black race 
in our DEG analyses; however, our study was not powered to examine transcriptomic differences across 
racial or ethnic groups. This is another important question meriting further investigation in future studies. 
Finally, our study was not designed to evaluate or account for reported interactions among the covariates 
examined here (51–54). These limitations notwithstanding, the findings presented here provide potentially 
novel transcriptomic evidence that COVID-19 immune cell responses vary across key patient demographic 
groups and support inclusion of  a diverse patient population in COVID-19 therapeutic trials.

Methods
Participant enrollment. A total of  38 patients presenting to the University of  Michigan hospital with COVID-19 
and 3 healthy controls were enrolled in the study between July 2020 and January 2021. Recruitment occurred 
within a larger clinical trial (ClinicalTrials.gov NCT04391179); however, all data presented in this study were 
generated or collected prior to clinical trial intervention of  administration of  study drug or placebo. Enroll-
ment occurred within 1 day of  hospital admission. Patients were eligible to participate if  they were hos-
pitalized for hypoxic pneumonia with confirmed SARS-CoV-2 infection by a PCR-based assay and were 
requiring supplemental oxygen. Patients were not eligible if  they were already requiring invasive mechanical 
ventilation, receiving a cytokine inhibitory therapy (targeting IL-6, IL-6R, IL-1, or Janus kinase), hypotensive 
with systolic blood pressure less than 90 mmHg, pregnant or breastfeeding, receiving dual antithrombotic 
therapy (such as the combination of  aspirin or P2Y12 inhibitor in addition to therapeutic anticoagulation), 
or classified as having had recent major bleeding defined in accordance with the criteria of  the Internation-
al Society on Thrombosis and Hemostasis. Exclusionary lab testing included aspartate aminotransferase or 
alanine aminotransferase greater than 5 times the upper limit of  normal, hemoglobin less than 8 g/dL, or 
platelets less than 50,000 per mm. Receipt of  dexamethasone prior to enrollment was not an exclusion crite-
rion; 17 of  38 patients (45%) received dexamethasone the day before enrollment, and 29 of  38 patients (76%) 
received dexamethasone on the day of  enrollment. Detailed patient characteristics, including demographics, 
laboratory data on day of  enrollment, data related to oxygen requirement on day of  enrollment, comorbidities 
and past medical history extracted from the electronic medical record, home medications extracted from the 
medical record, and information on the receipt of  dexamethasone on the day before and day of  enrollment, 
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are available in Supplemental Table 1. ICD-10 codes used for extraction of  comorbidities and past medical 
history are included in Supplemental Table 4.

Leukocyte isolation for scRNA-Seq. Whole blood was collected on the day of  enrollment and buffy coats 
were isolated as follows: Blood was collected in sodium citrate tubes and centrifuged at 400g for 10 minutes at 
room temperature with the brake off. The buffy coat, visualized as a layer between the plasma and red blood 
cells, was transferred to a separate 50 mL conical. For red blood cell lysis, 20 mL of 0.2% NaCl was added. 
After a 45- to 60-second incubation, 30 mL of 1.8% NaCl was added. Cells were washed in PBS and then 
resuspended in PBS at a concentration of  1 × 106 cells/mL for library preparation. All centrifugations were 
performed at room temperature.

ScRNA-Seq and data analysis. scRNA-Seq libraries were prepared by the University of Michigan Advanced 
Genomics Core using the Chromium single cell 3’ library and gel bead kit v3 (10x Genomics). Sequencing 
was performed on Illumina NovaSeq 6000 sequencer to generate 151 bp paired-end reads. Data processing, 
including quality control, read alignment, and gene quantification, was conducted using the Cell Ranger pipe-
line (10x Genomics). The digital expression matrix was analyzed using the R package Seurat (version 3.0.2). 
The Seurat function NormalizeData was used to normalize the raw counts and conduct further quality control, 
and variable genes were identified using the FindVariableGenes function. Cells with fewer than 500 UMIs, 
fewer than 100 genes, and greater than 10% mitochondrial expression were removed from further analysis. The 
ScaleData function was used to scale and center expression values in the data set for dimensional reduction. 
Principal component analysis and then UMAP were used to reduce the dimensions of the data, and the first 2 
dimensions were used in plots. We conducted batch correction (21) and clustered cells mapped to correspond-
ing cell types by matching cell cluster gene signatures with putative cell type–specific markers. UMAP plots of  
each leukocyte type colored by donor are shown in Supplemental Figure 5.

We then performed subclustering on the neutrophil, Mo/DC, T/NK cell, and B cell populations. The 
newly calculated subclusters were labeled using a marker gene list. Cell counts for each donor for each 
labeled cell subset are shown in Supplemental Table 5. DEGs were detected using the MAST approach 
(55). Each differential expression comparison was conducted within the cell type of  interest individually, 
adjusting for the following covariates: age, sex, race, and BMI. For risk factor subgroup analyses, we did not 
adjust for the risk factor of  interest and adjusted only for the 3 other covariates. Age values were sorted into 
the aged (≥ 65) and young (< 65) categories, and BMI was sorted into the underweight (< 18.5), normal 
weight (18.5–24.9), overweight (25–29.9), and obese (≥ 3 0.0) categories. Bonferroni correction was used for 
multiple testing, and genes with adjusted P values less than or equal to 0.05 and with a greater than or equal 
to 1.2-fold change were declared significant.

Upstream regulator analysis. DEG lists were filtered to exclude gene names starting with RPS, RPL, or MT, 
as ribosomal and mitochondrial tended to vary en bloc. IPA (QIAGEN) was used to analyze filtered DEG lists.

Statistics. Methods of statistical analysis are specified in the Seurat functions as listed above. For differential 
expression comparisons, significance was determined utilizing adjusted P values less than or equal to 0.05 with 
Bonferroni correction and a greater than or equal to 1.2-fold change. For upstream regulator analysis, a z score 
of greater than or equal to |2| was defined as significant.

Study approval. The University of  Michigan IRB approved the protocol (IRB HUM00179783). The study 
was conducted in accordance with the amended Declaration of  Helsinki. Written informed consent was 
obtained from all patients and controls.

Data availability. scRNA-Seq data are available at National Center for Biotechnology Information Gene 
Expression Omnibus GSE236177. Values for all data points found in graphs are in the Supporting Data 
Values file.
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