Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
TAp63, a methotrexate target in CD4+ T cells, suppresses Foxp3 expression and exacerbates autoimmune arthritis
Kensuke Suga, … , Osamu Ohara, Hiroshi Nakajima
Kensuke Suga, … , Osamu Ohara, Hiroshi Nakajima
Published May 22, 2023
Citation Information: JCI Insight. 2023;8(10):e164778. https://doi.org/10.1172/jci.insight.164778.
View: Text | PDF
Research Article Immunology

TAp63, a methotrexate target in CD4+ T cells, suppresses Foxp3 expression and exacerbates autoimmune arthritis

  • Text
  • PDF
Abstract

Methotrexate (MTX) is a standard, first-line therapy for rheumatoid arthritis (RA); however, its precise mechanisms of action other than antifolate activity are largely unknown. We performed DNA microarray analyses of CD4+ T cells in patients with RA before and after MTX treatment and found that TP63 was the most significantly downregulated gene after MTX treatment. TAp63, an isoform of TP63, was highly expressed in human IL-17–producing Th (Th17) cells and was suppressed by MTX in vitro. Murine TAp63 was expressed at high levels in Th cells and at lower levels in thymus-derived Treg cells. Importantly, TAp63 knockdown in murine Th17 cells ameliorated the adoptive transfer arthritis model. RNA-Seq analyses of human Th17 cells overexpressing TAp63 and those with TAp63 knockdown identified FOXP3 as a possible TAp63 target gene. TAp63 knockdown in CD4+ T cells cultured under Th17 conditions with low-dose IL-6 increased Foxp3 expression, suggesting that TAp63 balances Th17 cells and Treg cells. Mechanistically, TAp63 knockdown in murine induced Treg (iTreg) cells promoted hypomethylation of conserved noncoding sequence 2 (CNS2) of the Foxp3 gene and enhanced the suppressive function of iTreg cells. Reporter analyses revealed that TAp63 suppressed the activation of the Foxp3 CNS2 enhancer. Collectively, TAp63 suppresses Foxp3 expression and exacerbates autoimmune arthritis.

Authors

Kensuke Suga, Akira Suto, Shigeru Tanaka, Yutaka Sugawara, Takahiro Kageyama, Junichi Ishikawa, Yoshie Sanayama, Kei Ikeda, Shunsuke Furuta, Shin-Ichiro Kagami, Arifumi Iwata, Koichi Hirose, Kotaro Suzuki, Osamu Ohara, Hiroshi Nakajima

×

Figure 3

TAp63 knockdown in SKG CD4+ T cells ameliorates arthritis.

Options: View larger image (or click on image) Download as PowerPoint
TAp63 knockdown in SKG CD4+ T cells ameliorates arthritis.
(A) CD25–CD4+...
(A) CD25–CD4+ T cells from SKG mice were infected with retroviruses of mTAp63KD or nonsilencing (n.s. or NS) in Th17-polarizing conditions, and infected NGFR+ cells were sorted (TAp63KD SKG CD4+ T cells or n.s. SKG CD4+ T cells, respectively) and injected i.v. into SCID mice. Joint swelling was monitored twice a week for 50 days. (B) Changes in ankle thickness (left panel) or arthritis score (right panel) in mice transferred with NS SKG CD4+ T cells and TAp63KD SKG CD4+ T cells. Each symbol and vertical line represent the mean ± SEM. Data are compiled from 3 independent experiments (n = 7–8 each). *P < 0.05 by 2-way ANOVA. (C and D) Representative photograph of hind paw (C) and photomicrographs of ankle joints (D) of mice injected with PBS, NS SKG CD4+ T cells, or TAp63KD SKG CD4+ T cells. Scale bar: 100 μm. ***P < 0.001 by 1-way ANOVA followed by Tukey’s test. Histologic scores for the ankle joints of mice injected with PBS, NS SKG CD4+ T cells, or TAp63KD SKG CD4+ T cells. (E) Representative flow cytometric analyses of RORγt versus Foxp3 and the frequencies of Foxp3+ cells, RORγt+ cells, and Foxp3+RORγt+ cells of NGFR+CD4+ T cells, as well as the ratio of Foxp3+ to RORγt+ cells (right panel) in NGFR+CD4+ T cells at the timing of cell transfer. Data are reported as mean ± SEM. n = 5 (NS) and n = 4 (mTAp63KD). (F) Representative flow cytometric analyses of RORγt versus Foxp3 and the frequencies of Foxp3+ cells, RORγt+ cells, and Foxp3+RORγt+ cells of NGFR+CD4+ T cells, as well as the ratio of Foxp3+ to RORγt+ cells (right panel) in splenic NGFR+CD4+ T cells 14 days after the cell transfer. Data are reported as mean ± SEM. n = 4 (NS) and n = 6 (mTAp63KD). *P < 0.05 by unpaired t test.

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts