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Introduction
Pulmonary arterial hypertension (PAH) is characterized by an obstructive vasculopathy involving distal pul-
monary arterioles leading to right heart failure and early mortality (1). In PAH, inflammation stimulates 
transcriptional responses that control metabolic reprogramming of  vascular cells (2), driving fibroproliferative 
arterial remodeling (3). Although targeting dysregulated metabolism in PAH is feasible clinically (4), efficacy 
has been hampered due, in part, to cellular heterogeneity within vascular lesions and limited information on 
the role of  metabolism to the PAH pathophenotype. Indeed, the metabolic hypothesis of  PAH emerged from 
reductionist observations in tumor cells implicating an inherent shift toward glycolytic metabolism that is 
linked to changes in cell phenotype (5). By contrast, unbiased and integrated analytic strategies emphasizing 
functionally important transcriptomic pathways to predict the metabolic profile of  vascular cells in vivo are 
well positioned to advance understanding of  PAH pathobiology, but have not been reported previously.

A central goal of  molecular imaging is to provide functional metabolic information in vivo. The most 
established methods involve radiotracers, such as fluoro-deoxy-glucose (FDG), coupled with PET scanning. 
Indeed, studies have shown increased FDG uptake in the lungs of  patients with PAH and experimental 

In pulmonary arterial hypertension (PAH), inflammation promotes a fibroproliferative pulmonary 
vasculopathy. Reductionist studies emphasizing single biochemical reactions suggest a shift 
toward glycolytic metabolism in PAH; however, key questions remain regarding the metabolic 
profile of specific cell types within PAH vascular lesions in vivo. We used RNA-Seq to profile the 
transcriptome of pulmonary artery endothelial cells (PAECs) freshly isolated from an inflammatory 
vascular injury model of PAH ex vivo, and these data were integrated with information from human 
gene ontology pathways. Network medicine was then used to map all aa and glucose pathways 
to the consolidated human interactome, which includes data on 233,957 physical protein-protein 
interactions. Glucose and proline pathways were significantly close to the human PAH disease 
module, suggesting that these pathways are functionally relevant to PAH pathobiology. To test 
this observation in vivo, we used multi-isotope imaging mass spectrometry to map and quantify 
utilization of glucose and proline in the PAH pulmonary vasculature at subcellular resolution. Our 
findings suggest that elevated glucose and proline avidity underlie increased biomass in PAECs and 
the media of fibrosed PAH pulmonary arterioles. Overall, these data show that anabolic utilization 
of glucose and proline are fundamental to the vascular pathology of PAH.
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disease models in vivo (6–9). However, imaging the lung at tissue scale resolution available with PET cannot 
characterize the cellular basis for FDG avidity, and thus, FDG-PET fails to capture cell-specific metabolic 
information relevant to PAH vascular pathobiology. Multi-isotope imaging mass spectrometry (MIMS) is a 
new imaging modality that merges in vivo stable isotope tracer methodology with nanoscale secondary ion 
mass spectrometry (NanoSIMS) (10).

Changes in stable isotopic labeling as detected with MIMS indicate differential metabolic activity — 
which we refer to as “reprogramming” — but do not reveal granular details about the identity of  down-
stream metabolic pathways in the same manner as mass spectrometry–based flux analyses of  cultured 
cells or tissues. Instead, the power of  MIMS is attributable to the quantification of  stable isotope tracers 
in subcellular domains at near electron microscopy resolution. Hence, MIMS provides metabolic infor-
mation that is conceptually similar to PET, but with the advantage of  using the full array of  nontoxic 
stable isotope tracers (11), with the possibility of  multiplexing up to 4 tracers (12), and at a resolution 
that localizes tracer signals to individual cells and subcellular structures (10, 13). MIMS has been used 
to address diverse biological questions concerning DNA synthesis, cell turnover, and aa and fatty acid 
metabolism in model organisms and humans (10, 14–18). MIMS has not previously been used to study 
the pulmonary vasculature or PAH.

In this study, we performed transcriptomic analyses of  pulmonary artery endothelial cells (PAECs) 
isolated from an inflammatory vascular injury model of  PAH ex vivo without cell culture. These data were 
combined with human gene ontology information to serve as the basis of  a potentially novel network medi-
cine approach that profiled the proximity of  all aa and glucose pathways to the PAH disease module within 
the consolidated human interactome, which is a robust and validated network that includes information 
on 233,957 physical protein-protein interactions (19, 20). From this analysis, glucose and proline pathways 
were significantly close in proximity to the PAH disease module in silico. We then developed a MIMS 
approach to test this observation by generating multiplexed high-resolution maps of  proline and glucose 
utilization in the PAH pulmonary vasculature in vivo. The MIMS findings validated our network predic-
tions and indicated that reprogramming of  glucose and proline metabolism underpin increased biomass in 
PAECs and the media of  fibrosed PAH pulmonary arterioles.

Results
The pulmonary endothelial transcriptomic profile of  inflammatory PAH. PAECs from rats were isolated as 
reported previously by immunomagnetic bead selection without the use of  cell culture (21). PAEC 
identity was determined by fluorescence-activated cell sorting gated for CD31 + Griffonia simplicifolia 
isolectin-B4 (GS-IB4) double positivity (Supplemental Figure 1; supplemental material available online 
with this article; https://doi.org/10.1172/jci.insight.163932DS1). Anti-CD31 and anti-vWF double 
immunofluorescence was used to confirm that the pulmonary endothelium was intact in control and 
PAH pulmonary arterioles in situ (Supplemental Figure 2), which is described in greater detail in the 
Supplemental Methods and Supplemental Table 1.

From a total of  25,808 unique pulmonary endothelial genomic features captured by RNA-Seq analysis 
(i.e., FDR < 0.05, inclusive of  coding and noncoding genetic elements), we identified 3,857 (14.9%) that 
were differentially expressed between control (N = 6) and inflammatory (monocrotaline) PAH rats (N = 6) 
(P < 1.0 × 10–4), of  which we identified human orthologs for 2,626 (68.0%) protein-coding genes (Figure 
1, A and B; and Supplemental Figure 3A). (These data are referred to hereafter as differentially expressed 
genes in PAH in vivo). Gene set enrichment analysis confirmed upregulation of  inflammatory as well 
as numerous other signaling pathways with established relevance to human PAH (reviewed in ref. 22) 
(Supplemental Figure 3B). Human orthologs of  differentially expressed genes in PAH in vivo were then 
mapped to the consolidated human interactome (19, 23, 24), resulting in a network of  important physical 
protein-protein interactions that included 1,836 proteins and 6,748 interactions (Supplemental Figure 3C). 
We then compared this pulmonary endothelial cell PAH network with the previously described human 
PAH disease module inclusive of  357 genes (19, 23, 24) and found a highly significant overlap between 
these 2 networks (P < 1.04 × 10–9) (Supplemental Figure 3D) as well as between the pulmonary endothelial 
in inflammatory PAH with other inflammatory (positive control) diseases in the human interactome (Sup-
plemental Table 2). These observations are consistent with our observation that findings using the inflam-
matory PAH model (25) advance a novel therapeutic approach for patients with PAH (26) and support the 
translational relevance of  the current study.
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The association between aa-specific pathways and PAH. We pursued a holistic approach to profiling the 
relevance of  metabolism in PAH by focusing on all aa pathways, since protein synthesis is a key driver 
of  fibroproliferative vascular remodeling in PAH (1). Given the previously established contributions 
of  glucose metabolism to PAH pathobiology, we included glucose as a positive control and to identify 
its potential interactions with other key anabolic pathways. First, we calculated the network proximity 
(by mean shortest path length) to the PAH disease module for Gene Ontology (GO) gene sets orga-
nized by individual aa and glucose pathway (Table 1). Second, pulmonary endothelial genes that were 
also differentially expressed in PAH in vivo were organized (using GO annotation) by individual aa 
and glucose pathways (Table 2).

We reasoned that determining the proximity of  metabolites to the PAH module in the human inter-
actome when using both the human GO and differentially expressed genes in PAH in vivo data sets 
together would inform the pathways most relevant to human PAH, thereby increasing experimental rigor. 
We correlated the proximity to the human PAH module for GO genes versus differentially expressed 
genes in PAH in vivo stratified for each aa and glucose (r = 0.66, P = 0.015). To find pathways with the 
highest agreement between the GO versus PAH in vivo data sets and that were close in proximity to the 
PAH module, recursive removal of  individual aa (or glucose) was performed and changes in the Pearson 
correlation coefficients were plotted as an “elbow” curve. In this analysis, removal of  a weakly correlated 
aa or glucose data point improves the overall regression more than removal of  a strongly correlated point. 

Figure 1. Network medicine predicts pulmonary endothelial proline and glucose pathways are functionally important in PAH. (A) Design and exper-
imental throughput for the current project. PAECs were isolated from control and inflammatory PAH rat lungs, and differentially expressed (DE) genes 
between these groups were mapped to the consolidated human interactome, which contains information on more than 230,000 physical protein-protein 
interactions (PPIs). The GO database was also used to map genes associated with each aa and glucose pathway. The derivative outputs inform biological 
experiments focusing on the pulmonary endothelial proline and glucose programs in PAH using MIMS. SD, Sprague-Dawley. (B) Pulmonary endothelial 
DE genes between control and inflammatory PAH are presented by volcano plot. The genomic features that were up- and downregulated significantly 
(FDR < 0.05, P < 0.05; P values were obtained using the exact binomial test executed in EdgeR) were mapped to the consolidated interactome to identify 
functionally important, pulmonary endothelial PPIs in PAH. (C) The proline/glucose-PAH bipartite network and the proline/glucose-PAH bipartite network 
restricted to include only proline/glucose genes that were DE in PAH in vivo. See Supplemental Figure 5 for expanded networks from C.
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From this method, we identified 8 pathways with high agreement between the human GO and PAH in 
vivo data for network proximity to the PAH disease module: leucine, proline, lysine, glutamine, cysteine, 
arginine, asparagine, and glucose (Supplemental Figure 4A).

This analysis directed our focus to several candidate pathways for further investigation. We prioritized 
the proline pathway for further study based on the importance of  proline to collagen (27, 28), our prior 
findings showing that PAECs regulate vascular fibrosis in PAH (19), and the relevance of  vascular fibrosis 
to vascular resistance and PAH outcome clinically (29). To assess the sensitivity and specificity of  network 
proximity findings involving proline, we tested 4 established fibrotic pathophenotypes from the literature: 
hypertrophic cardiomyopathy (30), idiopathic pulmonary fibrosis (31), keloid (32), and systemic sclerosis 
(33). Proline genes from the GO database as well as the subset of  proline genes that were differentially 
expressed in PAH in vivo were significantly closer in network proximity to each of  these respective disease 
modules than random expectation (Table 3 and Supplemental Table 3). By contrast, proline pathways 
were not significantly close to the disease modules for hyperhomocysteinemia, erythema nodosum, and 
rubella, which are pathophenotypes mediated by abnormalities in methyl transferases, the type IV immune 
response, and autoimmune cross-reactivity against gland organs, respectively, and are used here as negative 
disease controls (Table 3). The proximity between proline pathways, PAH, and other disease modules within  
the interactome is visualized in 3D in narrated Supplemental Video 1.

Proline and glucose pathways are significantly close to the PAH disease module. Since glucose is the dominant 
energy source fueling endothelial cells (34), we next aimed to determine if  proline pathways with func-
tional importance to PAH could also involve glucose pathways. We observed that glucose pathway genes 
were significantly close in network proximity to the human PAH module for both the GO data set (network 
proximity, 1.39; P = 1.3 × 10–14) and the data set from differentially expressed gene in PAH in vivo (network 
proximity, 1.23; P = 1.6 × 10–9). Bipartite protein-protein interaction networks showing the interactions 
between proline, glucose, and PAH are provided in Figure 1C (expanded views in Supplemental Figure 5), 
and these collective data are visualized in 3D in narrated Supplemental Video 2. These data identify the 
proline nodes YAP1, ABL1, PFN1, FKBP7, and CCND1 as differentially expressed in PAH in vivo and 
connected to a glucose node in the human PAH module (glucose nodes are listed in Supplemental Figure 

Table 1. Network proximity of GO-based aa pathways to the PAH module in the consolidated human 
interactome

Amino acid Associated genes 
(N)

Network proximity  
to PAH  

disease module
P value Adjusted  

P value

Alanine 32 1.78 0.86 0.86
Arginine 107 1.45 0.0003 0.0008
Asparagine 35 1.66 0.48 0.61
Aspartic acid 18 1.0 7.5 × 10–7 2.7 × 10–6

Cysteine 491 1.41 6.5 × 10–14 3.5 × 10–13

Glutamic acid 30 1.70 0.632 0.74
Glutamine 113 1.43 7.8 × 10–5 2.4 × 10–4

Glycine 60 1.62 0.287 0.44
Histidine 38 1.66 0.467 0.61
Leucine 200 1.57 0.0315 0.059
Lysine 444 1.22 1.6 × 10–9 7.0 × 10–9

Methionine 61 1.62 0.306 0.45
Phenylalanine 20 1.66 0.499 0.48
Proline 91 1.42 0.00011 3.2 × 10–4

Serine 1,706 1.32 3.4 × 10–45 4.8 × 10–44

Threonine 1,308 1.26 1.4 × 10–54 5.9 × 10–53

Tyrosine 1,069 1.28 2.6 × 10–49 5.5 × 10–48

Tryptophan 25 1.76 0.79 0.83
Valine 13 1.38 0.0369 0.066
Glucose 477 1.39 2.1 × 10–15 1.3 × 10–14

P values were obtained using the z test. Adjusted P values were calculated by the Benjamini-Hochberg procedure.
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4B). Further, the number of  interactions involving a differentially expressed proline gene in PAH in vivo 
with a glucose gene in the PAH module was significantly greater compared with interactions involving a 
differentially expressed proline gene in PAH in vivo with a random PAH module gene (13 vs. 5.4 ± 2.8 
interactions; P = 0.0033). These collective data suggest a distinct and functionally relevant relationship 
among proline and glucose metabolic pathways in PAH pathobiology.

Development of  MIMS imaging of  15N-proline metabolism in PAH vessels. Our network analyses demonstrat-
ed proximity between proline and glucose pathways and the PAH disease module. When coupled with the 
critical importance of  proline as substrate for collagen biosynthesis, these analyses provided a rationale to 
examine proline metabolism in vivo with MIMS for the purpose of  testing 2 a priori predictions: (1) PAECs 
in inflammatory PAH demonstrate evidence of  reprogramming of  proline metabolism, and (2) the network 
proximity of  glucose and proline pathways translates into colocalization of  glucose and proline incorpora-
tion into the remodeling pulmonary arterial wall.

We first developed a new 15N-proline MIMS imaging protocol, as MIMS had not been used to study the 
lung or to study proline metabolism to our knowledge. Therefore, we first established a MIMS approach to 
map proline utilization at high spatial resolution in the pulmonary vasculature and include here a synopsis 
of  our potentially novel methodology. Our proline labeling protocol reflected prior in vivo experience with 
other aa tracers, such as 15N-glutamine (15). We performed initial analysis of  lung sections using approaches  
that we have applied to the heart and systemic vasculature (35–37). We imaged lung sections in “chain 
analysis” mode where sequential adjacent square fields (typically 40–60 μm in diameter) are captured and 
stitched together. This initial analysis demonstrated stereotypical lung histological features and confirmed 
detectable 15N-proline labeling (Supplemental Figure 6); however, the yield of  target vessels was low relative 
to the high analytical time required because the more prevalent airways and alveoli result in analytical dead 
space. To address this throughput challenge, we imaged lung sections with differential interference contrast 
(DIC) microscopy to identify vessels prior to MIMS analysis. Pulmonary vessels were identifiable in the 
resin-embedded sections mounted on silicon wafers. We then incorporated a DIC-guided selection of  ves-
sels into our analytical protocol (Supplemental Figure 7), such that each imaging field captured a vessel or 
a substantial fraction of  a vessel. A vessel wall from a PAH rat labeled with 15N-proline is shown in Figure 

Table 2. Network proximity of GO-based aa pathways restricted to DE pulmonary endothelial genes 
between control versus inflammatory PAH in vivo

Amino acid Associated  
DE genes (N)

Network proximity 
 to PAH  

disease module
P value Adjusted  

P value

Alanine 4 2.0 0.86 0.86
Arginine 10 1.2 0.0070 0.016
Asparagine 2 2.0 0.78 0.83
Aspartic acid 4 1.0 0.012 0.024
Cysteine 83 1.37 6.04 × 10–6 2.0 × 10–5

Glutamic acid 3 1.33 0.16 0.25
Glutamine 13 1.15 0.0012 0.003
Glycine 8 1.38 0.083 0.14
Histidine 4 1.75 0.62 0.73
Leucine 36 1.44 0.0116 0.024
Lysine 49 1.22 2.4 × 10–7 9.3 × 10–7

Methionine 5 1.2 0.043 0.074
Phenylalanine 3 1.67 0.499 0.61
Proline 13 1.2 0.0016 0.004
Serine 344 1.18 3.1 × 10–37 3.4 × 10–36

Threonine 266 1.15 5.2 × 10–35 4.5 × 10–34

Tyrosine 250 1.18 1.1 × 10–27 8.2 × 10–27

Tryptophan 8 1.25 0.028 0.055
Valine 2 1.5 0.322 0.46
Glucose 77 1.23 3.2 × 10–10 1.6 × 10–9

P values were obtained using the z test. Adjusted P values were calculated by the Benjamini-Hochberg procedure.
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2A, in which 12C14N, 31P, and 32S mass images demonstrate stereotypical and complementary histological 
details. Variability in 12C14N intensity demonstrates cellular and tissue morphology. Areas without cellular 
or extracellular tissue material appear black. In contrast, certain tissue features appear hyperintense, such 
as undulating elastin bands. 31P images identify nuclei analogous to fluorescent DNA stain due to the high 
phosphorus content of  chromatin (10, 16). 32S images resemble 12C14N images with notable exceptions, 
including high signal from intracellular granules found in granulocytes and low signal in nuclei (10, 16). As 
such, images representing the 31P over 32S ratio further distinguish nuclei (Figure 2B).

These mass images guided selection of  regions of  interest (ROI) corresponding to cellular constituents 
of  the pulmonary arteries: RBCs based on stereotypical features and intraluminal location; endothelial 
cells by an elongated appearance and direct interface with the lumen; and medial cells designated as those 
located deep in the endothelium. We visualized the isotopic ratio as a hue saturation intensity (HSI) trans-
formation in which the lower bound of  the scale (blue) is set to the natural background abundance and the 
high end of  the scale is set to elucidate regions where the isotope ratio is above the background indicative 
of  tracer incorporation (Figure 2C). Our initial examination confirmed effective labeling of  the vessel wall 
in PAH rat lungs with obvious heterogeneity in signal intensity, inclusive of  small punctate areas of  intense 
labeling (hotspots: Figure 2C). In contrast, the elastin appeared relatively unlabeled. To assess regions of  
labeling in a quantitative and unbiased fashion, we leveraged a feature in the OpenMIMS software to 
identify the most intense hotspots (5 × 5 pixels, N = 200) and the least intense spots (5 × 5 pixels, N = 
200) (Supplemental Figure 8). The 15N-proline hotpots were highly concentrated in extranuclear regions of  
the pulmonary endothelium, whereas 15N-poor spots were concentrated in the elastin extracellular matrix 
consistent with the visual impression. We next performed correlative imaging with transmission electron 
microscopy (TEM) (Figure 2D). Even though the standard MIMS samples are not prepared with tradi-
tional TEM contrast agents, we were able to visualize many of  the same structural features with TEM, 
including nuclei and elastin bands. Extracellular regions, enriched with collagen fibers, were also evident in 
the TEM image, where we detected 15N labeling.

These data establish a 15N-proline labeling and MIMS protocol to quantitatively measure proline 
metabolism at subcellular resolution. With MIMS, we tracked 15N-proline into remodeling lung arteries 
in the inflammatory PAH model and observed heterogeneous incorporation in the vessel wall, including 
the collagen-rich extracellular matrix.

Reprogramming of  proline and glucose metabolism in endothelial cells. To test for metabolic alterations in 
PAH pulmonary endothelial cells in vivo, we analyzed PAH vessels relative to control (vehicle) rats after 
administration of  a cocktail containing both 15N-proline and 2H-glucose (Figure 3A). We used a 2H-glucose 
dose that was similar by weight to that we have previously used in murine studies (15). 12C14N, 31P, and 
32S mass images demonstrate consistent vascular remodeling as indicated by thickening of  the vessel wall 
and increased cellularity (Figure 3B). Isotope ratio images demonstrated augmentation of  15N-proline and 
2H-glucose labeling (Figure 3B), which was confirmed by extraction of  single-cell-level ratio data (Figure 

Table 3. The network proximity of inflammatory PAH genes associated with proline to other fibrotic 
diseases in the interactome

Disease modules Network proximity  
of DE proline genes P value

PAH 1.2 0.002
Hypertrophic cardiomyopathy 1.5 0.002
Idiopathic pulmonary fibrosis 1.6 0.003
Keloid 1.0 1.5 × 10–9

Systemic sclerosis 2.0 0.006
Hyperhomocysteinemia 2.0 0.376
Erythema nodosa 2.0 0.590
Rubella 2.2 0.860

The DE genes from inflammatory PAH that were also associated with proline pathways were collected. The network 
proximity of these data to the PAH disease module and modules of other fibrotic diseases and negative control 
diseases in the human interactome was calculated (also see narrated Supplemental Video 1). P values were obtained 
using the z test.
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3C). In a merged analysis, the 15N-proline labeling was increased 2.2-fold in PAH endothelial cells rela-
tive to control (PAH median 32.6%, IQR 27.0–39.9, above background vs. control median 14.4%, IQR 
11.6–16.7), and the 2H-glucose labeling was increased 1.8-fold in PAH endothelial cells relative to control 
(PAH median 30.7%, IQR 22.3–38.2, above background vs. control median 17.0%, IQR 10.6–27.4) (Figure 
3C). A directionally similar augmentation was observed in the medial cells as the 15N-proline labeling was 
increased 1.6-fold in PAH mural cells relative to control (PAH median 24.8%, IQR 18.7–30.1, above back-
ground versus control median 15.1%, IQR 11.4–17.3) and the 2H-glucose labeling was increased 1.3-fold in 
PAH medial cells relative to control (PAH median 25.3%, IQR 21.0 33.2, above background versus control 
median 18.5%, IQR 12.1–26.9) (Figure 3C). However, the magnitude of  medial labeling was not as high as 
in the pulmonary endothelium (Figure 3, D and E; and Supplemental Figure 9A).

We also examined RBC labeling distributions, reasoning that they would be a good control for 
consistency of  label delivery within and between groups. RBCs demonstrated detectable proline and 
glucose labeling. Small subpopulations of  highly labeled outliers were observed in vehicle and PAH rats 
at a frequency that may represent immature RBCs (38). Importantly, the similar glucose and proline 
labeling of  RBCs across animals, including both PAH and controls, suggested uniform label delivery 
to the model (Supplemental Figure 9B). Collectively, these stable isotopic labeling data demonstrate  

Figure 2. Quantitative mapping of proline utilization at high spatial resolution in PAH vessels. (A) Representative pulmonary artery from the inflam-
matory PAH model in a resin-embedded section stained with toluidine blue. This section is adjacent to a section mounted on a silicon wafer for MIMS 
imaging (right). Single ion images provide histological details and stereotypical vascular features. The 12C14N image reveals tissue boundaries including the 
endothelial-lumen interface. Elastin appears hyperintense (white). The 31P image identifies nuclei due to the phosphorus content of chromatin. 32S images 
resemble 12C14N images, but the nuclei appear dark. (B) As such, the ratio of 31P to 32S yields particularly pronounced nuclei. Endothelial cells were identi-
fiable by their flattened appearance and direct interface with the lumen (arrows). (C) Hue saturation intensity images display the isotope ratio measure-
ments and map incorporation of 15N-proline. The lower end of the scale (blue) is set to the background ratio (0.37%) and expressed as a percentage above 
background (represented by 0). The upper end of the scale is set to reveal differences in labeling (0.75% = 100% above background). (D) Correlative imaging 
of adjacent thin section by TEM. Inset shows collagen fibers (small arrows). Large arrowheads: elastin; N, nucleus; L, lumen. Region of extracellular matrix 
with abundant collagen fibers is labeled with 15N-proline (0.4544%). The indicated square region where there is no tissue (resin) is approximately at natural 
abundance (0.3744%). Scale bar: 20 μm (toluidine blue), 5 μm (MIMS, A–C).
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metabolic changes in the pulmonary arteries in the inflammatory PAH model, which cannot be 
explained by technical differences in label delivery.

In 15N-proline ratio images, we also observed higher labeling intensity in the pulmonary endothelial 
layer, relative to the media. Line profiling of  the 15N-proline signal as a function of  depth in the vessel 
wall provided quantitative validation of  this observation, as did the cell level labeling distributions: the 
median 15N labeling of  endothelial cells in PAH vessels was significantly higher than corresponding 
medial cells in the same animals (Figure 3E). In a prior study, we examined glucose labeling with MIMS 
in inflammatory atherosclerotic lesions in mice (35) and in that context did not observe augmented 
endothelial labeling relative to medial cells (Supplemental Figure 10). Nonetheless, the degree to which 
the endothelial MIMS signal is specific to PAH pathology, or a more general phenomenon of  inflamed 
tissues (Supplemental Table 2), remains an important unanswered question. Collectively, these analyses 
of  15N-proline and 2H-glucose tracer incorporation into pulmonary vessels in the inflammatory PAH 
model suggest reprogramming of  glucose and proline metabolism, with marked proline avidity in the 
pulmonary endothelium as predicted by our network analyses.

Anabolic convergence of  glucose and proline as substrate for biomass in remodeling vessels. Having demonstrated  
augmentation of  substrate utilization in PAH vessels, we next tested for correlation between proline and 
glucose labeling. This type of  correlative analysis is possible, as MIMS allows for the simultaneous detec-
tion of  several isotopes in the same nanovolume of  sputtered sample material. We first examined this 
question at the cellular level, finding a strong correlation between 2H-glucose and 15N-proline labeling 

Figure 3. Reprogramming of proline and glucose metabolism in remodeled pulmonary arteries. (A) Stable isotope labeling protocol. MCT, mono-
crotaline. (B) MIMS images of pulmonary vessel from control rat (top row) and inflammatory PAH vessels (bottom 3 rows). Stereotypical features 
of remodeling vessels are evident in 12C14N, 31P, and 32S images, including thickening of the walls and increased cellularity. HSI images demonstrate 
increased 2H-glucose (2H/1H image) and 15N proline labeling (15N/14N image) in the walls of remodeling vessels. Bottom row, arrowheads indicate 2 
intensely labeled nucleated WBCs in the lumen. Scale bars: 10 μm. (C) Dot plots of endothelial (top) and medial cell (bottom) proline (left) and glucose 
(right) labeling in inflammatory PAH vessels versus control vessels. Data in violin plots are presented as median, IQR. Each dot represents a nucleated 
cell. P values calculated by the nested ANOVA method. (D) The 15N/14N ratio for pixels of the indicated region of the vessel wall mapped as a function of 
distance from the origin in the lumen (top). (E) Median endothelial cell labeling relative to median medial cell labeling (n = 3 PAH rats; P values calcu-
lated by the Student’s paired 2-tailed t test). Representative images provided in each instance.
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in endothelial cells in the inflammatory PAH vessels but not in control vessels (Figure 4A). In contrast, 
glucose labeling predicted proline incorporation in medial cells in both inflammatory PAH and control.

We next sought to map proline and glucose utilization at higher resolution. While the NanoSIMS 
instrument can achieve a lateral resolution less than 50 nm, this comes at a throughput cost; therefore, rou-
tine operation is at the 100–200 nm range of  lateral resolution. We performed higher resolution imaging, 
however, in a subset of  vessels to map label incorporation into subcellular and extracellular domains. In 
these analyses, we identified numerous labeling hotspots of  particularly elevated 2H-glucose and 15N-proline 
labeling intensity. Of  note, there were also puncta with preferential labeling by just 1 of  the tracers (Figure 
4B). We next assessed the degree to which the 2 labels associated in the vessel wall using the OpenMIMS 
software, focusing on the most intense hotspots (5 × 5 pixels, n = 40) for both 2H-glucose and 15N-proline 
(Figure 4, C and D). Many, but not all, of  the hotspots for 2H-glucose label also tended to be high in 
15N-proline and vice versa. Finally, we also performed correlative TEM imaging and found 2H-glucose and 
15N-proline labeling of  collagen-rich extracellular areas in the vessel wall (Figure 4E). (The correlative his-
tological pattern of  pulmonary arterial fibrosis in the PAH model is provided in Supplemental Figure 11.)

Importantly, the labeling pattern of  these putative fibrotic regions was heterogeneous. Labeling hotspots 
suggest areas in which intense biosynthetic action occurred during the 24-hour labeling period preceding 
rat sacrifice. By contrast, domains with minimal labeling are consistent with previously remodeled regions 
or components characterized by slower turnover, such as the elastin fibers (Figure 2D and Supplemental 
Figure 8). Since MIMS ostensibly involves analysis of  tissue components such as proteins and nucleic acids 
that are preserved by tissue fixation and dehydration (15), including extracellular matrix (Figure 4E), these 
data collectively suggest convergence of  glucose and proline metabolism to support generation of  biomass 
in the remodeling vessel. Moreover, the heterogeneity of  glucose and proline labeling, which was apprecia-
ble at the cellular (Figure 3 and Supplemental Figure 12) and subcellular levels (Figure 4 and Supplemental 
Figure 12), indicates nanoscale differences in anabolic utilization of  glucose and proline that would not be 
appreciable with tissue-scale methods, such as FDG-PET.

Our MIMS data suggest that PAECs are highly avid for both glucose and proline. These data were 
supported by findings in a separate cohort of  control and inflammatory-PAH rats in which right ven-
tricular systolic pressure (RVSP) assessed by cardiac catheterization correlated positively with mRNA 
expression quantity of  the proline transporter SLC38A1 (r = 0.7, P = 0.021) and glucose transporter 
SLC2A1 (r = 0.75, P = 0.01). The expression profile of  SLC38A1 and SLC2A1 were strongly correlated  
(r = 0.94, P < 2.2 × 10–16) as well (Supplemental Figure 13). Overall, these findings are internally 
consistent with our network medicine and MIMS data suggesting activation of  glucose and proline 
regulatory pathways in inflammatory PAH.

Discussion
We implemented what we believe to be a novel network medicine methodology to study metabolism in 
PAH, initiated through the analysis of  functionally relevant metabolic pathways for all aa and glucose 
using pulmonary endothelial transcriptomic data from an inflammatory model of  PAH and computational 
data from humans. These data predicted that proline and glucose pathways are interrelated and import-
ant in human fibrotic pathophenotypes, including PAH. However, we recognized the limitations of  infer-
ring metabolic function from computational strategies alone. To validate these computational findings, we 
developed a MIMS imaging approach that revealed augmentation of  glucose and proline utilization in 
inflammatory PAH vessels, including the pulmonary endothelium. Collectively, findings from this study 
suggest that plasma proline and glucose substrates converge to support biomass generation in remodeling 
pulmonary arterioles, thereby expanding the metabolic basis of  PAH.

Prior studies on metabolism in pulmonary vascular disease have emphasized the Warburg phenom-
enon (5), interrogated single biochemical reactions linked to mitochondrial or monogenic abnormalities 
(39, 40), or utilized multiplex platforms to identify metabolomic signatures that characterize patient 
subgroups (41, 42). Here, we used network medicine to integrate various big data elements (i.e., meta-
bolic pathways, transcriptomics, and protein-protein interactions) for experimental validation. In doing 
so, this work achieves a scientific benchmark (43) in which interconnecting omics optimize the speci-
ficity and rigor of  outputs (44, 45). Since an overarching objective of  this study was to ignore a priori 
assumptions regarding potential links between specific aa and PAH, a strategy such as network med-
icine that could reduce the initial data set according to functionally relevant pathways was essential.  
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Nevertheless, this work is, to our knowledge, the first to show that interfacing gene ontology with tran-
scriptomic data acquired ex vivo as a collective — and analyzed further by calculating the proximity 
of  these outputs to a human disease module — is effective for generating potentially novel and testable 
discoveries of  direct relevance to human disease.

Figure 4. Anabolic convergence of glucose and proline as substrate for biomass in remodeling vessels. (A) Top: MIMS quantification of proline utilization 
correlates with glucose utilization in the endothelial cells of inflammatory PAH vessels, but not control vessels. Bottom: MIMS quantification of proline 
utilization by medial cells correlates with glucose in both PAH and control vessels. Correlations assessed by linear regression model. (B) High-resolution 
MIMS imaging demonstrates punctate hotspots of hyperutilization of glucose and proline. Line arrows, hyperintense in both glucose and proline; arrow-
heads, hyperintense in proline but not glucose. Scale bar: 5 μm. (C) 15N-labeling distributions for glucose hotspots (n = top 40), which are largely above the 
mean for the vessel wall (inclusive of nonhotspots and hotspots) (red line) and partially overlap with the distribution of top 40 15N-proline hotspots (gray). 
(D) Complementary analysis to C as the 2H-glucose labeling for the top 15N-proline hotspots partially overlaps with the distribution of top 40 2H-glucose 
hotspots. In C and D, the mean signal for each vessel wall is provided as a reference (red line). Hotspots were 5 × 5 pixels. (E) TEM adjacent to section 
imaged with MIMS. TEM image inset demonstrates extracellular matrix with collagen fibers arrayed in both cross section (left) and longitudinally (right). 
ROI were generated to correspond to regions of ECM on the TEM and the data extracted and expressed as a percent above background (table) indicative of 
glucose and proline labeling. Scale bars: 500 nm.
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Like cancer, PAH can be viewed as a state of  pathological biomass generation, because thickening of  
the distal pulmonary arterial wall is dramatic and driven by a combination of  cellular proliferation and 
extracellular matrix deposition. Augmented proline incorporation into the vessel wall is in line with this 
paradigm, since (i) expansion of  biomass cannot occur without protein synthesis and (ii) proline itself  is 
a critical aa substrate for collagen biosynthesis and fibrosis (28). By mapping proline incorporation into 
the remodeling vessel at high spatial resolution with MIMS, however, we found marked heterogeneity 
in the regions of  15N-proline labeling, including significantly higher proline utilization in the pulmonary 
endothelial layer. We have demonstrated previously the role of  the endothelium in collagen biosynthesis 
(19, 46); therefore, these data provide in vivo functional support that the endothelium is particularly 
susceptible to metabolic reprogramming, even relative to mural cells, and overall is an active player in 
biomass generation in remodeling vessels.

Prior to our study, the most direct, functional evidence of  metabolic reprogramming in PAH in vivo 
involved FDG-PET demonstration of  augmented tracer uptake in the lungs of  experimental animal models 
and human patients (6–9). There are 4 key methodological aspects of  MIMS that are distinct from PET 
and contextualize the significance of  increased glucose labeling in the wall of  the remodeling pulmonary 
vasculature. (i) Moving from tissue scale resolution with PET down to subcellular resolution with MIMS 
directly localizes increased avidity for glucose to affected arteries in the pulmonary vasculature. (ii) FDG 
tracer tracks glucose uptake but not its downstream metabolism because the deoxygenated form of  glucose 
cannot be used for glycolysis. In contrast, stable isotopically enriched glucose is incorporated into metabol-
ic pathways and, therefore, tracks both uptake and downstream metabolism. Like PET, however, MIMS 
tracer measurements do not provide specificity of  downstream metabolites. (iii) Tissues are processed 
ex vivo with histological methods, including aldehyde fixation and alcohol dehydration, and, therefore, 
MIMS ostensibly detects tracer incorporation into the fixable biomass (15). (iv) Multiplexing demonstrates 
colocalization of  glucose labeling with putative incorporation of  proline into newly synthesized protein. 
Therefore, our MIMS analyses validate the collective FDG-PET literature in PAH but at a resolution that 
provides arguably the most direct in vivo evidence of  glucose reprogramming in remodeling vessels.

Intracellular glucose metabolism is arguably more complex than proline metabolism, with a greater 
variety of  metabolic fates for glucose relative to proline. Maximal ATP production for each glucose molecule 
involves completion of  glycolysis and oxidative phosphorylation; however, metabolites at multiple nodes in 
this energy generating pathway can be shunted to support components of  biomass, including nucleic acid, 
aa, and fatty acid synthesis. It is well established that cancer cells use glucose intermediates for biomass, even 
when there is sufficient oxygen to support oxidative phosphorylation and maximal energy generation. Our 
detection of  glucose incorporation into new biomass in remodeled vessels is also consistent with metabolic 
features commonly exhibited by tumors, thereby providing in vivo support to the granular ex vivo cellular 
flux analyses of  PAH cells that have established the concept of  glycolytic reprogramming in PAH (6, 40, 47).

Although our computational methods and prior work directed emphasis on proline, numerous 
other metabolic targets have been shown to be important in PAH. Some molecules, such as glutamine 
(48) and L-2-hydroxyglutarate (49), emerged from our computational analyses or have been identified 
as important in PAH previously, and were not tested directly in this study. We used validated resources 
to collect genes associated with aa/glucose regulatory pathways; however, it is likely that those data-
bases, as is the case for the interactome (50) and the PAH disease module (19, 23, 24), are incomplete. 
In the case of  the GO database, some genes are associated with functions broadly related to aa bio-
functionality, such as prolyl hydroxylation in the case of  proline, thereby limiting the specificity of  rel-
evant results to metabolism per se. Furthermore, the relationship between mRNA transcript quantity  
and protein expression is variable in some studies (51). Thus, overall, the absolute precision of  our 
computational methods cannot be known, which reinforced the need for a unique, high-resolution  
imaging modality such as MIMS to validate our models. We used a well-published and valid PAH 
animal model to test our network medicine findings (16, 22), but alternative models could have been 
used, which might have generated different results.

Rat PAECs were isolated for transcriptomic analysis using a method published by our group (21) that 
does not require the use of  cell culture or sequential cell passaging on plastic, which we pursued in this 
study to avoid inadvertently manipulating the PAH-pulmonary endothelial transcriptome. Although our 
fluorescence-activated cell sorting approach to PAEC identification was rigorous and suggested that the cell 
population used in this study was homogenous, the possibility that nonendothelial cells were included in 
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bulk RNA-Seq could not be excluded, emphasizing the importance of  validating our pulmonary endothelial  
transcriptomic and in silico findings empirically with MIMS.

One limitation of  this study is that our MIMS metabolic measurements were conducted in a single 
inflammatory PAH model and we did not directly analyze our findings in human patients with PAH. The 
extensive decades-long history of  using stable isotope tracers even in the most vulnerable human popula-
tions (11), coupled with our prior experience conducting first-in-human MIMS experiments (16), lays the 
foundation to study the pulmonary vasculature in human patients with PAH. Looking to the future, the 
biggest challenge with any human MIMS imaging of  an internal organ like the lung is that tracer adminis-
tration must be timed with surgical sampling that is part of  usual clinical care. In a study of  cardiomyocyte 
DNA synthesis in infants with congenital heart disease, for example, this was accomplished by labeling 
patients prior to planned surgical repair (37). Although the lung tissue of  patients with PAH is not routinely 
sampled, we envision a translational strategy focused on studying the small subset of  patients with PAH 
who undergo lung transplantation, where stable isotope tracers could be administered in the preoperative 
period with subsequent sampling of  the explanted lung for MIMS analysis.

In summary, multiplexed MIMS imaging maps glucose and proline utilization at subcellular resolu-
tion in diseased pulmonary vessels in vivo and demonstrates metabolic reprogramming at a resolution not 
previously achievable with standard molecular imaging approaches. These observations were informed 
by findings from a network medicine analysis that predicted dynamic and inter-related modulation of  
glucose and proline pathways in PAH. Our MIMS measurements also provide quantitative demonstration 
of  anabolic utilization of  glucose and proline for biomass generation in remodeled pulmonary vessels, 
including colocalization with collagen fibrils — one putative endpoint of  pathologic metabolic repro-
gramming. Given the central importance of  glucose and aa to cellular homeostasis and the highly inter-
connected nature of  such pathways, it remains unknown whether metabolic dependencies in PAH can 
be therapeutically targeted with sufficient efficacy and specificity. Nonetheless, this study demonstrates a 
template of  how to apply MIMS to study the interplay between metabolism and disease pathology, which 
can also be applied to test the efficacy of  potentially novel genetic or pharmacological manipulations in 
model organisms and human patients with PAH.

Methods
Please refer to the online Supplemental Methods for additional details on study methods.

Constructing the networks. The consolidated human protein–protein interactome was assembled from 
different resources as described before, containing 16,470 proteins and 233,957 interactions (19, 23, 24). 
We mapped the differentially expressed rat genes to human orthologs using the HGNC Comparison of  
Ortholog Predictions search tool (https://www.genenames.org/tools/hcop/) and obtained 2,626 human 
genes. We then mapped these human genes to the consolidated human interactome and constructed a 
network of  1,836 proteins, and 6,748 interactions. Genes associated with aa were from the GO database 
(http://geneontology.org/). Genes associated with PAH were compiled from different resources (19, 23, 
24) and mapped to the human interactome to form a PAH disease module. Genes associated with patho-
phenotypes were compiled from Phenopedia and DisGeNET (52, 53). The bipartite networks between 
glucose/proline and PAH were generated by retaining interactions between glucose/proline genes and 
PAH genes in the human interactome.

Calculating network proximity. We used network proximity to quantify the closeness of  aa pathways to 
the PAH module (19, 23, 24). Network proximity is defined as the average minimum shortest path length 
in the interactome from an aa gene to the PAH disease module:

where ps is the minimum shortest path length in the human interactome from an aa gene s to the 
PAH disease module.

MIMS. Stable isotope tracers (Cambridge Isotope Laboratory) consisting of  2H-glucose (250 mg per 
dose) and 15N-proline (25 mg per dose) were administered to monocrotaline- (MCT-) or vehicle-treated 
rats by i.p. injection twice in the 24 hours prior to sacrifice. The lungs were perfused with 4% paraformal-
dehyde, embedded in EPON resin, sectioned to 0.5 microns, and mounted on silicon wafers. Samples 
were then analyzed with a NanoSIMS 50L instrument (CAMECA), using previously published analytical  
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methods (10, 12, 35). 15N-proline was quantified by measuring the 12C15N–/12C14N– ratio as described  
previously (10, 17) and 2H-glucose was quantified by measuring the 12C2

2H–/12C2
1H– ratio as described 

previously (12, 35). The instrument was also tuned to capture 31P– and 32S–. Image files were visualized and 
analyzed with a custom plug-in to ImageJ (NIH): OpenMIMS 3.0: https://github.com/BWHCNI/Open-
MIMS (commit ID af175e) (12). Isotope ratio data were shown as HSI images. The lower bound of  the 
scale (blue) was set at natural background as verified by analysis of  unlabeled samples and/or embedding 
resin (e.g., for 15N-data, a lower bound of  0 is equivalent to the natural background of  0.37% and an upper 
bound of  100 would correspond to a ratio of  0.74% or 2-fold enrichment). The upper bound of  the scale 
was set to demonstrate regional differences in enrichment. While scaling changes affect the color pattern, 
the underlying quantitative data remain unmodified.

Statistics. All statistical analyses were performed using Origin 9.01 or OriginPro, GraphPad Prism v7.03 
or v9.4, Cytoscape 3.5.1, and R 4.0.3 with the ggpubr 0.4.0 and tidyverse 1.3.0 packages. The significance 
of  network proximity was evaluated by creating 1,000 random modules of  the same size and comparing 
the observed proximity value with the null model (random control) through fitting normal distributions and 
P values were obtained by z test. Data are presented as the mean ± SEM unless otherwise indicated. Com-
parison between 2 groups was performed using the Student’s unpaired 2-tailed t test. The paired 2-tailed 
Student’s t test was used for analyses comparing metabolic tracer signal differences in the pulmonary endo-
thelium and vascular media within the same rat. Hypergeometric testing was applied using the fgsea R 
package to identify key MSigDB Hallmark pathways distinguishing control versus inflammatory PAH 
(as described further in the legend of  Supplemental Figure 3B). The Mann-Whitney and Kruskal-Wallis 
nonparametric tests were used to compare 2 or more non-normally distributed groups. Cell type–specific 
differences in 15N-proline or 2H-glucose labeling between MCT and control rats were assessed by nested  
ANOVA. The Pearson or Spearman (for experiments with small sample size) correlation coefficient is 
reported for linear regression. Graphical representation of  comparisons including N ≥ 3 uses the box or 
violin plot format inclusive of  mean, median, IQR, and maximum and minimum. A P value < 0.05 and 
FDR < 0.05 were considered statistically significant.

All data were included for analysis with the following exception: the right ventricular systolic pressure 
could not be measured in 1 rat due to periprocedural mortality from hemorrhage. MIMS and accompany-
ing histologic experiments used 3 biological replicates per condition. No nonlinear adjustments were made 
to representative images. Primary data were reviewed in a blinded manner when possible.

Study approval. All experiments involving animals followed established protocols that were approved 
by the IACUC at Brigham and Women’s Hospital (Protocol 2016N000401). Procedures involving animal 
welfare were performed in line with guidelines established by the Panel on Euthanasia of  the American 
Veterinary Medical Association.
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