

Figure S1. *Flow chart and quality control of the study*. A. Study design. B. Uterus and body weight in sham and OVX groups. Two-way ANOVA followed by Fisher's LSD test. *p<0.05, **p<0.01, ****p<0.001, ****p<0.0001.

Figure S2. *Trabecular bone responses*. μ CT analysis of trabecular bone at L5 vertebrae in sham and OVX groups treated with vehicle, TPTD, or ABL. Data are expressed as mean \pm SEM. Individual dots represents the number of mice in each group. Two-way ANOVA followed by Fisher's LSD test. *p<0.05, **p<0.01, ****p<0.001, ****p<0.0001.

Figure S3. *Trabecular bone responses*. Histomorphometry analysis of trabecular bone at L5 vertebrae in sham and OVX groups treated with vehicle, TPTD or ABL. **A)** Representative images of Von Kossa Staining (upper panel) and calcein double labeling (lower panel). **B)** Dynamic and cellular histomorphometry analysis. Data are expressed as mean \pm SEM. Individual dots represents the number of mice in each group. Two-way ANOVA followed by Fisher's LSD test. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

Figure S4. *Biomechanics analysis of femoral mid-diaphysis.* **A)** Biomechanical parameters in sham and OVX groups treated with vehicle, TPTD or ABL. Data are expressed as mean \pm SEM. Individual dots represents the number of mice in each group. Two-way ANOVA followed by Fisher's LSD test. *p<0.05, **p<0.01. **B)** Correlations between μ CT-derived femoral structural parameters and ultimate moment evaluated by linear regression analysis.

Figure S5. *Validation of osteocyte-enriched population*. qRT-PCR analysis of *Kera* and *Sost* expression in OB- and Ocy-enriched fractions. Data are expressed as mean \pm SD. Individual dots represents the number of mice in each group. Unpaired Student t-test; **p<0.01, ****p<0.0001.

Figure S6. Bulk RNA-seq. HeatMap of genes relevant to osteoclast differentiation.

Figure S7. *Bulk RNA-seq.* Wnt and TGF signaling regulation by TPT or ABL4 treatment in sham or OVX groups. **A)** Pathway enrichment score estimated by ssGSEA. **B)** *Sfrp4* and *Fzd1* (blue) are genes belonging to the Wnt signaling regulated by both TPTD and ABL. *Id2* (red), a gene of the TGF signaling pathway is regulated only by ABL.

Donomotors		sham		OVX			
rarameters	VEH	TPTD	ABL	VEH	TPTD	ABL	
m-CT							
BV/TV (%)	21.314±0.668	27.459±0.487 ^A	28.965±1.247 ^A	18.427±0.972 ^{aBC}	23.583±0.813 ^{BCD}	24.936±0.742 ^{AbCD}	
BMD (mgHA/cm ³)	224.333±4.910	241.375±4.338	250.500±10.428ª	193.111±8.832 ^{ABC}	205.000±5.880 ^{BC}	215.625±6.478 ^{bCd}	
BS/BV (mm ² /mm ³)	40.481±0.762	35.136±0.661 ^A	32.806±0.661 ^A	44.857±1.564 ^{ABC}	37.053±1.033 ^{aCD}	36.799±0.800 ^{acD}	
Conn.D. (1/mm ³)	113.678±7.323	163.550±11.063 ^A	157.925±7.813 ^a	117.978±8.597 ^{Bc}	170.525±22.378 ^{AD}	188.838±7.046 ^{AD}	
SMI	0.790±0.062	0.164 ± 0.072^{A}	-0.004±0.108 ^A	0.968±0.086 ^{BC}	0.525±0.102 ^{aBCD}	0.472 ± 0.082^{abCD}	
Tb.N (1/mm)	3.847±0.074	3.953±0.089	3.879±0.089	3.748±0.124	3.564±0.109 ^{bc}	3.700±0.100	
Tb.Th (mm)	0.057±0.001	0.064 ± 0.001^{A}	0.069 ± 0.001^{Ab}	0.052 ± 0.001^{ABC}	0.062 ± 0.001^{ACD}	0.063 ± 0.001^{ACD}	
Tb.Sp (mm)	0.259±0.006	0.263±0.006	0.273±0.06	0.267±0.010	0.292±0.010 ^{Acd}	0.283±0.009 ^{ab}	
Histomorphometry							
BFR/BS (µm ³ /µm ² /day)	0.679±0.029	0.755±0.028	0.795±0.053 ^d	0.598±0.041°	0.825 ± 0.030^{D}	0.958±0.107 ^{AbcD}	
BFR/BV (%/day)	3.667±0.161	4.699±0.255 ^a	4.301±0.320 ^d	3.228±0.242 ^{Bc}	4.804±0.203 ^{aD}	5.432±0.672 ^{AcD}	
MAR (µm/day)	1.466±0.061	1.699±0.034	1.799±0.114	1.414±0.082	1.820±0.059	2.121±0.303 ^{Abd}	
MS/BS (%)	47.780±1.951	44.426±1.260	44.233±1.159	42.320±1.770 ^a	45.604±1.809	46.068±1.493	
N.Ob/B.Pm (/mm)	6.474±1.597	21.875±3.878 ^A	14.703±1.442 ^{ab}	3.591±1.069 ^{BC}	24.550±3.258 ^{ACD}	24.951±1.377 ^{ACD}	
N.Oc/B.Pm (/mm)	3.107±0.717	7.057±0.427 ^A	8.101±0.750 ^A	6.123±0.163 ^{Ac}	4.965±0.451 ^{abC}	4.671±0.450 ^{abC}	
Ob.S/BS (%)	8.792±2.022	29.478±5.158 ^A	20.364±1.877 ^{ab}	4.884 ± 1.402^{BC}	30.794±3.981 ^{AcD}	33.359±1.368 ^{ACD}	
Oc.S/BS (%)	5.824±1.338	14.951±1.116 ^A	17.636±2.044 ^a	12.411±0.599 ^{BC}	9.759±1.032 ^{Bc}	9.504±1.021 ^{Bc}	
OS/BS (%)	4.939±1.655	14.082±4.139 ^a	8.972±1.429 ^G	4.344±0.657 ^B	14.379±2.838 ^{AD}	18.542±2.146 ^{ACD}	
O.Th (µm)	3.130±0.142	3.090±0.151	3.035±0.112	3.046±0.165	2.948±0.069	3.136±0.151	

Table S1. μ CT and histomorphometry analyses of L5 vertebrae.

Data are expressed as Mean \pm SEM. Two-Way ANOVA followed by Fisher's LSD test. a=P<0.05 and A=P<0.01 compared to sham-VEH; b=P<0.05 and B=P<0.01 compared to sham-TPTD; c=P<0.05 and C=P<0.01 compared to sham-ABL; d=P<0.05 and D=P<0.01 compared to OVX-VEH; e=P<0.05 and E=P<0.01 compared to OVX-TPTD.

Table S2. Serum bone formation and resorption markers.

Descent from	sham			OVX		
rarameters	VEH	TPTD	TPTD ABL	VEH	TPTD	ABL
СТХ	19.221±3.089	20.135±0.744	16.054±0.980	26.289±4.729°	22.389±2.519	19.463±1.462
P1NP	37.323±3.912	33.283±2.672	22.569±2.022ª	52.966±8.200 ^{aBC}	51.955±4.037 ^{abC}	45.279±4.294 ^{bC}

Data are expressed as Mean \pm SEM. Two-WAY ANOVA followed by Fisher's LSD test. a=P<0.05 and A=P<0.01 compared to sham-VEH; b=P<0.05 and B=P<0.01 compared to sham-TPTD; c=P<0.05 and C=P<0.01 compared to sham-ABL; d=P<0.05 and D=P<0.01 compared to OVX-VEH; e=P<0.05 and E=P<0.01 compared to OVX-VEH; e=P<0.05 and E=P<0.05

 Table S3. Femur Biomechanical analysis.

Devementaria		sham		OVX			
rarameters	VEH	TPTD	ABL	VEH	TPTD	ABL	
App. bending modulus (GPa)	9.551±0.416	9.939±0.712	10.749±0.466	9.937±0.630	10.713±0.228	10.109±0.725	
App. ultimate stress (MPa)	188.096±6.605	214.030±8.712ª	222.671±8.473 ^A	203.947±11.740	211.193±2.698	212.706±10.378	
App. toughness to fracture (mJ/mm ³)	8.417±0.808	9.901±0.880	11.041±0.873	11.006±0.659	10.921±1.336	10.160±1.016	
App. toughness to ultimate moment (mJ/mm3)	4.479±0.369	4.473±0.299	4.561±0.297	4.019±0.408	4.155±0.318	4.275±0.258	
Bending rigidity (Nmm ²)	1186.857±30.467	1176.375±91.965	1276.750±76.553	1076.429±49.277°	1252.500±36.819	1139.375±79.433	
Ultimate moment (Nmm)	37.257±0.912	40.400±3.078 ^e	42.100±2.481	35.671±1.326°	39.675±0.564	38.638±1.987	
Work to fracture (mJ)	6.994±0.576	7.693±0.563	8.674±0.492	8.317±0.479	8.720±0.955	7.891±0.769	
Work to ultimate moment (mJ)	3.746±0.270	3.579±0.351	3.590±0.144	3.053±0.338	3.353±0.257	3.351±0.258	

Data are expressed as Mean±SEM. Two-WAY ANOVA followed by Fisher's LSD test. a=P<0.05 and A=P<0.01 compared to sham-VEH; b=P<0.05 and B=P<0.01 compared to sham-TPTD; c=P<0.05 and C=P<0.01 compared to sham-ABL; d=P<0.05 and D=P<0.01 compared to OVX-VEH; e=P<0.05 and E=P<0.01 compared to OVX-TPTD.

Table S4. BSEM analysis of the osteocyte lacunar size.

Parameters		sham		OVX			
	VEH	TPTD	ABL	VEH	TPTD	ABL	
%LcA	1.303±0.068	1.262±0.102	1.184±0.095	1.369±0.091	$1.051{\pm}0.079^{ad}$	1.17±0.053	
LcD $(10^{4}/\mu m^{2})$	4.394±0.286	4.766±0.335	4.926±0.372	4.234±0.235	3.848±0.33°	4.487±0.136	
LcA (μ m ²)	29.855±1.060	26.583±1.266 ^A	24.029±0.717	32.449±1.861 ^{BC}	27.544±0.801 ^{cD}	26.111±1.01 ^{aD}	
Freq of LcA <30 µm ²	53.575±3.637	65.641±3.552ª	71.119±2.596 ^A	50.292±4.699 ^{BC}	$65.263 {\pm} 2.576^{aD}$	67.39±3.232 ^{AD}	
Freq of LcA \geq 30 μ m ²	46.59±3.668	34.359±3.552ª	28.356±2.51 ^A	49.483 ± 4.728^{BC}	$34.737 {\pm} 2.576^{aD}$	32.61±3.232 ^{AD}	
Freq of LcA <20 μm ²	25.579±2.567	32.655±4.963	39.654±2.191 ^A	18.193±1.9 ^{BC}	28.776±3.704 ^{cd}	35.835±1.356 ^{aD}	
Freq of LcA 20-30 μm ²	27.996±1.858	32.986±2.251	31.466±1.772	32.099±4.299	36.32±2.792ª	31.555±2.239	
Freq of LcA 30-40 μm^2	26.411±2.411	21.146±2.101	20.973±1.7	26.158±2.836	23.283±1.779	19.689±2.337 ^{ad}	
Freq of LcA 40-50 μm^2	13.023±1.992	8.452±1.345	5.757±0.684ª	11.511±3.218°	7.968±1.815 ^e	8.178±1.507	
Freq of LcA 50-60 µm ²	5.476±0.879	2.578±0.758 ^a	0.591±0.31 ^A	6.55±1.807 ^{BC}	2.114±0.506 ^{aD}	2.47±0.935 ^{aD}	
Freq of LcA $\geq 60 \ \mu m^2$	1.89±0.645	2.183±0.682	1.035±0.546	5.34±2.344 ^{ac}	$1.835{\pm}0.48^{d}$	2.219±0.96	

Data are expressed as Mean±SEM. Two-Way ANOVA followed by Fisher's LSD test. a=P<0.05 and A=P<0.01 compared with sham-VEH; b=P<0.05 and B=P<0.01 compared with sham-TPTD; c=P<0.05 and C=P<0.01 compared with sham-ABL; d=P<0.05 and D=P<0.01 compared with OVX-VEH; e=P<0.05 and E=P<0.01 compared with OVX-TPTD.