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BACKGROUND. Metabolomic profiling in individuals with chronic kidney disease (CKD) has the 
potential to identify novel biomarkers and provide insight into disease pathogenesis.

METHODS. We examined the association between blood metabolites and CKD progression, defined 
as the subsequent development of end-stage renal disease (ESRD) or estimated glomerular filtrate 
rate (eGFR) halving, in 1,773 participants of the Chronic Renal Insufficiency Cohort (CRIC) study, 962 
participants of the African-American Study of Kidney Disease and Hypertension (AASK), and 5,305 
participants of the Atherosclerosis Risk in Communities (ARIC) study.

RESULTS. In CRIC, more than half of the measured metabolites were associated with CKD 
progression in minimally adjusted Cox proportional hazards models, but the number and strength 
of associations were markedly attenuated by serial adjustment for covariates, particularly 
eGFR. Ten metabolites were significantly associated with CKD progression in fully adjusted 
models in CRIC; 3 of these metabolites were also significant in fully adjusted models in AASK 
and ARIC, highlighting potential markers of glomerular filtration (pseudouridine), histamine 
metabolism (methylimidazoleacetate), and azotemia (homocitrulline). Our findings also highlight 
N-acetylserine as a potential marker of kidney tubular function, with significant associations with 
CKD progression observed in CRIC and ARIC.

CONCLUSION. Our findings demonstrate the application of metabolomics to identify potential 
biomarkers and causal pathways in CKD progression.
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Introduction
Metabolomics refers to the systematic analysis of  small molecules (typically < 1,500 daltons) in a bio-
logic specimen (1). Because metabolites (e.g., sugars, amino acids, organic acids, nucleotides, lipids) are 
downstream of  transcriptional and translational processes, they represent the summative effects of  gene 
and protein expression and interaction with the environment. Characterized by the progressive retention 
of  small molecules, chronic kidney disease (CKD) is particularly well suited for metabolomic interroga-
tion. Given estimates that > 10% of  the US population has CKD (2), the identification of  noninvasive 
metabolite markers of  disease progression — ideally linked to disease pathogenesis — represents an 
important opportunity to improve estimation of  CKD prognosis and point to potential pathways that 
may be targeted for novel drug therapy.

The interaction between the kidney and circulating metabolites is complex. Metabolites like urea 
and creatinine primarily undergo filtration at the glomerulus, but they also undergo subsequent tubular 
absorption and secretion, respectively. Metabolites can also be synthesized by the tubular epithelium, as 
with 1,25-dihyroxyvitamin D. Classic studies of  plasma sampling from the renal artery and vein have 
shown that the kidneys are also responsible for the net production of  several amino acids (3, 4). Final-
ly, circulating metabolites can drive biological processes in the kidney, as bioenergetic fuels, ligands for 
specific receptors, substrates for posttranslational modifications, or chemoattractants that trigger inflam-
mation (5). Thus, metabolite alterations in CKD can signify impair filtration, absorption, secretion, or 
metabolism, as well as act as functional mediators of  disease.

In the current study, we applied liquid chromatography–mass spectrometry (LC-MS) based pro-
filing to identify metabolite markers of  CKD progression in the Chronic Renal Insufficiency Cohort 
(CRIC) study, with replication in the African-American Study of  Kidney Disease and Hypertensin 
(AASK) and the Atherosclerosis Risk in Communities (ARIC) study (6–9). These analyses spanned 
over 8,000 individuals with a broad range of  baseline kidney function, age, race, sex, geography, 
and comorbidities. In our analyses, statistical models were serially adjusted to assess how covariates 
impact the association of  metabolites with CKD progression, highlighting, in particular, the impact of  
confounding by glomerular filtration rate in CKD biomarker discovery. Furthermore, cross-sectional 
analyses were performed to examine the correlation of  metabolite predictors of  CKD progression with 
baseline measures of  kidney function. Finally, exploratory animal studies informed by the metabo-
lomics results in patient cohorts were conducted to demonstrate a potential causal role for a select 
metabolic pathway in kidney disease pathogenesis.

Results
Description of  study cohorts. Characteristics of  the study sample are shown in Table 1, with 1,773 CRIC 
Study participants, 962 AASK study participants, and 5,305 ARIC study participants. Mean age (58.8 
[CRIC] and 54.6 years [AASK]) and estimated glomerular filtration rate (eGFR; 42.5 mL/min/1.73 m2) 
or measured GFR (mGFR 42.8 mL/min/1.73 m2) were similar in CRIC and AASK, respectively, whereas 
individuals in ARIC were older (mean age 75.7 years) and had higher eGFR (mean 68.8 mL/min/1.73 m2) 
at baseline. The median urine protein/creatinine ratio (PCR) was 129.3 mg/g in CRIC and 80.0 mg/g in 
AASK, and the median urine albumin/creatinine ratio (ACR) was 10.7 mg/g in ARIC. AASK had 100% 
self-reported Black participants, whereas 41.7% of  CRIC Study participants and 17.8% of  ARIC study par-
ticipants self-identified as Black individuals, respectively. The prevalence of  diabetes was 49.1% in CRIC 
and 32.7% in ARIC, whereas no AASK study participants had diabetes. In CRIC, 675 individuals (38.2%) 
had CKD progression, as defined by incident end-stage renal disease (ESRD) or ≥ 50% decline in eGFR 
from baseline, over a mean follow-up of  6.8 years (Figure 1). In ARIC, 242 individuals (4.6%) had CKD 
progression by this definition over 6.4 years of  mean follow-up. In AASK, 366 individuals (38.0%) had 
CKD progression, as defined by incident ESRD or doubling of  serum creatinine concentration (equivalent 
to a ~57% decline in GFR), over a mean follow-up of  7.0 years.

FUNDING. This study was supported by the NIH (U01 DK106981, U01 DK106982, U01 DK085689, R01 
DK108803, and R01 DK124399).
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Metabolite profiling identifies markers of  CKD progression in the CRIC Study. The volcano plot in Figure 2A 
shows the association of  blood metabolites with CKD progression in Cox proportional hazards models 
adjusted for age, sex, race, and study center (Model 1) in CRIC. As shown, numerous metabolites were 
associated with CKD progression, with 267 metabolites significant at a FDR significance threshold of  0.05. 
Additional adjustment for comorbidities, specifically BMI, systolic blood pressure, diabetes, cardiovascular 
disease, smoking, alcohol use, and APOL1 genotype had only a mild impact (Model 2, Figure 2B), and 
additional adjustment for proteinuria (Model 3, Figure 2C) had a moderate impact on the strength of  associ-
ations. By contrast, additional adjustment for eGFR (Model 4, Figure 2D) markedly reduced the strength of  
metabolite associations with CKD progression, with the lowest P value of  association at ~1 × 10–7, compared 
with ~ 1 × 10–130, ~ 1 × 10–115, and ~ 1 × 10–60 for Models 1, 2, and 3, respectively. Ten metabolites remained 
significantly associated with CKD progression at the chosen FDR threshold across all 4 models (Table 2 and 
Figure 2D). Except for tryptophan, all metabolites had a HR > 1, whereby higher metabolite levels were 
associated with an increased risk of  CKD progression. Complete results for all metabolites are shown in 
Supplemental Table 1 (supplemental material available online with this article; https://doi.org/10.1172/
jci.insight.161696DS1). In addition, stratified analyses by diabetes status for the 10 significant metabolites 
demonstrated similar results among individuals with or without diabetes (Supplemental Table 2).

Replication of  select metabolite markers of  CKD progression in AASK and the ARIC study. Of  the 10 metabo-
lites significantly associated with CKD progression in all models in CRIC, 9 were also measured in AASK 
and 8 were also measured in ARIC (Table 3). Three of  these metabolites — pseudouridine, homocitrulline, 
and methylimidazoleacetate — were significantly associated with CKD progression in AASK and ARIC 
in fully adjusted Cox proportional hazards models similar to the fully adjusted model utilized in CRIC. 
Four metabolites — tryptophan, creatinine, 4-acetamidobutanoate, and N-acetylserine — had significant 
associations with CKD progression in either AASK or ARIC, but not both, in fully adjusted models.  
Methylguanidine was significantly associated with CKD progression in AASK but was not measured in 
ARIC. Allantoin did not replicate in either AASK or ARIC.

Metabolite markers of  CKD progression are highly correlated with eGFR. Kidney function affects the level 
of  many circulating metabolites, in many cases because the metabolite undergoes renal clearance — i.e., 
through filtration, metabolism, secretion, or some combination thereof  (10–12). As shown in Figure 3, 
blood metabolites demonstrated a left-skewed distribution toward stronger inverse correlations with eGFR 
in CRIC. Consistent with its direction of  association with CKD progression, tryptophan had a positive 
correlation with eGFR (r = 0.54) and was the single most positively correlated metabolite with eGFR in 

Table 1. Baseline characteristics of the study sample

CRIC AASK ARIC
n 1,773 962 5305
Age, years 58.8 (10.8) 54.6 (10.6) 75.7 (5.2)
Women 44.2% 38.9% 57.1%
White 48.4% 0.0% 82.2%
Black 41.7% 100.0% 17.8%
Hispanic 9.9% 0.0% 0.0%
BMI, kg/m2 32.2 (7.8) 30.6 (6.6) 28.7 (5.6)
Systolic blood pressure, mmHg 126.5 (21.0) 150.3 (24.2) 130.0 (18.1)
eGFR, mL/min/1.73 m2 42.5 (17.0) 42.8 (14.9)A 68.8 (18.7)
PCR, mg/g (median, [25th percentile, 75th percentile]) 129.3 [52.4–655.0] 80.0 [28.4–359.3]
ACR, mg/g (median, [25th percentile, 75th percentile]) 10.7 [6.4–23.3]
Cardiovascular disease 36.1% 51.7% 26.0%
Diabetes 49.1% 0.0% 32.7%
APOL1 high-risk genotype 20.7% 23.4%B 13.1%
CKD progression, n (%) 675 (38.2%) 366 (38.0%) 242 (4.6%)
Time to CKD progression, years 6.8 (4.8) 7.0 (3.4) 6.4 (2.0)
ESRD, n (%) 577 (32.5%) 274 (28.5%) 38 (0.7%)
Time to ESRD, years 9.0 (5.0) 7.5 (3.4) 6.5 (1.9)

Values are mean ± SD unless otherwise noted. AMeasured GFR (mGFR) reported in AASK. BGenotyping available in subset of 610 individuals in AASK.

https://doi.org/10.1172/jci.insight.161696
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CRIC. All of  the other metabolites associated with CKD progression were inversely correlated with eGFR. 
The correlation coefficient for creatinine (measured by the metabolomics platform) with eGFR was –0.81. 
The inverse correlation with eGFR for several predictors of  CKD progression in CRIC was even stronger, 
with r = –0.90 for pseudouridine, r = –0.86 for methylguanidine, and r = –0.85 for 4-acetamidobutanoate. 
Pseudouridine has already been highlighted as a candidate marker for glomerular filtration (13), and meth-
ylguanidine is a known breakdown product of  creatinine. Homocitrulline (r = –0.77), methylimidazoleace-
tate (r = –0.69), and N-acetylserine (r = –0.62) were also strongly correlated with eGFR. In some cases, this 
may be indicative of  other physiologic relationships with kidney function, where adjustment for eGFR has 
the potential to attenuate important biologic signals.

For example, homocitrulline is a nonstandard amino acid formed via the addition of  cyanate to 
lysine’s free amino side chain, a process known as carbamylation (14). Because cyanate is a dissociation 
product of  urea, protein carbamylation increases with progressive azotemia (elevated levels of  urea and 
other nitrogenous compounds in blood). Indeed, the magnitude of  the correlation between homocitrul-
line and blood urea nitrogen (BUN) concentration (r = 0.77) was as strong as the correlation between 
homocitrulline and eGFR (r = –0.77) and stronger than the correlation between homocitrulline and 
serum creatinine concentration (r = 0.68) in CRIC.

Acy1 deficiency increases susceptibility to adenine-induced kidney injury. N-acetylserine is an additional 
example where eGFR adjustment may attenuate a causal association. After undergoing glomerular filtra-
tion, N-acetylated amino acids are reabsorbed by the proximal tubule, where they undergo hydrolysis by 
aminoacylases, with return of  free amino acids to the blood stream (15). In prior reports, children with 
mutations in ACY1, the gene encoding aminoacylase-1, were reported to have elevated urinary levels of  
several N-acetylated amino acids, including N-acetylserine (16–18). Kidney tissue is known to have the 
highest levels of  Acy1 expression, followed by the liver, with localization in the renal tubular epithelium 
(15). Based on immunofluorescence, we found that ACY1 is predominantly expressed in the proximal 
tubule (Supplemental Figure 1). To test whether N-acetylserine metabolism might play a functional role in 
CKD pathogenesis, we compared the impact of  adenine diet in global Acy1–/– mice and Acy1+/+ littermates. 
We found that absence of  the ACY1 enzyme resulted in a trend for higher blood levels of  its substrate, 
N-acetylserine, and that this difference was significantly magnified following 1 and 3 weeks on adenine diet 
(Supplemental Figure 2, A–C). Acy1–/– and Acy1+/+ mice had similar levels of  serum creatinine at baseline 
and 1 week, but ACY1 deficiency resulted in a greater elevation in serum creatinine on the adenine diet at 
3 weeks (Supplemental Figure 2D). Consistent with this, Acy1–/– mice also had increased interstitial fibrosis 
relative to Acy1+/+ mice on an adenine diet (Supplemental Figure 2, E and F).

Discussion
The kidneys significantly impact circulating metabolites, particularly small, polar molecules that are nor-
mally excreted in urine. As kidney function worsens, blood levels of  these metabolites increase. However, 
inverse correlation with eGFR does not necessarily indicate that a metabolite undergoes glomerular fil-
tration, as the metabolites may undergo tubular secretion or metabolism within the kidney. Alternatively, 
alterations in diet, gut microbiota, or insulin sensitivity that accompany kidney disease may impact the 

Figure 1. CKD progression across the study cohorts. Flow diagrams depicting the total number of study participants, the number of study participants 
selected for metabolomic profiling, exclusions from data analysis, and the number of study participants who did or did not have CKD progression in the 
CRIC Study (left), AASK (middle), and the ARIC Study (right). ESKD, end-stage kidney disease.

https://doi.org/10.1172/jci.insight.161696
https://insight.jci.org/articles/view/161696#sd
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metabolome (19). Finally, a metabolite could have an inverse relationship with eGFR if  it is nephrotoxic 
or part of  a causal pathway to eGFR decline. Rigorous adjustment for kidney function and its risk factors 
is appropriate for identifying the most robust metabolite biomarkers of  CKD progression. However, these 
adjustments also have the potential to obscure or attenuate biologically informative associations.

Our fully adjusted analyses identified 3 metabolites — pseudouridine, methylimidazoleacetate, and 
homocitrulline — associated with CKD progression in CRIC, AASK, and ARIC. Pseudouridine, a modi-
fied nucleoside found in RNA, has been consistently highlighted in metabolomic studies of  CKD and CKD 
progression in adults and children (10, 20, 21). It is strongly correlated with eGFR and, along with other pro-
posed filtration markers, has been found to provide more accurate GFR estimation than creatinine or cysta-
tin C alone (13). Subsequent measurement of  its fractional excretion has shown that, in addition to undergo-
ing glomerular filtration, pseudouridine undergoes partial net reabsorption (22). Notably, creatinine and its 
breakdown product methylguanidine were also associated with CKD progression, with replication for both 
in AASK (but not in ARIC), underscoring the ability of  filtration markers to impart risk information even 
among individuals with directly measured GFR. Methylimidazoleacetate is the end product of  histamine 
catabolism, with urinary levels utilized as an indicator of  histamine turnover in the body (23). However,  
neither histamine nor methylimidazoleacetate has previously been implicated in CKD or its progression.

As noted, homocitrulline is the product of  lysine carbamylation, a nonenzymatic process that increases 
with the rise in blood urea levels in CKD (14). Because this posttranslational modification alters protein struc-
ture, charge, and function, azotemia-induced protein carbamylation may be a deleterious causal factor in this 
context. Several studies have linked protein carbamylation with adverse outcomes — including erythropoietin 
resistance, heart failure, and mortality in ESRD (24–27) — and increased risk of  CKD progression in a pilot 
study of  150 participants from the CRIC Study (28). These and other studies assessed protein carbamylation 
either by measuring carbamylated albumin levels or by assaying homocitrulline released after protein digestion  

Figure 2. Metabolite profiling identifies markers of CKD progression in the CRIC Study. (A–D) Volcano plots depicting the HR (x axis) and P value (y axis) 
for CKD progression for each metabolite in Cox proportional hazards models adjusted for Model 1: age, sex, race, and study center (A); Model 2: Model 1 + 
BMI, systolic blood pressure, diabetes, cardiovascular disease, smoking, alcohol use, and APOL1 genotype (B); Model 3: Model 2 + log PCR (C); and Model 4: 
Model 3 + eGFR (D). The 10 metabolites significantly associated with CKD progression at FDR < 0.05 in Model 4 are labeled in panel D (n = 1,773).

https://doi.org/10.1172/jci.insight.161696
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(29, 30). Our results raise the possibility that free homocitrulline levels in blood may serve as a surrogate for 
protein carbamylation in CKD. More work is required to assess the relationship between free homocitrulline 
levels and other assays of  protein carbamylation to determine which is the best predictor of  disease progres-
sion and to determine if  modulating azotemia and/or carbamylation can impact clinical outcomes.

Although the association between N-acetylserine and CKD progression observed in CRIC and 
ARIC was not significant in AASK, this signal has also been highlighted in other studies. For example, 
3 N-acetylated amino acids, including N-acetylserine, were previously associated with progression to 
ESRD among 158 individuals with type 1 diabetes and CKD (20). Four N-acetylated amino acids, 
including N-acetylserine, were associated with ESRD or eGFR halving among 246 children with CKD 
stage 1 or 2 attributed primarily to glomerular disease or congenital abnormalities of  the kidney or 
urinary tract (21). As outlined, N-acetylated amino acids undergo filtration and then proximal tubu-
lar absorption, where hydrolysis yields free (“salvaged”) amino acids that are returned to circulation 
(15). Thus, elevations in N-acetylserine or other acetylated amino acids in blood could reflect impaired 
proximal tubule metabolic function, providing additive information about kidney health beyond eGFR. 
More broadly, a growing body of  literature supports the prognostic value of  markers of  kidney tubular 
health — for example, blood metabolite markers of  kidney tubular secretory function (31, 32) or uri-
nary protein markers of  tubule cell injury (e.g., kidney injury molecule 1, monocyte chemoattractant 
protein 1) and dysfunction (e.g., α1-microglobulin, uromodulin/Tamm-Horsfall protein) (33).

In addition to providing insight on kidney tubular function, our exploratory studies raise the possibility  
that N-acetylserine, or its cognate enzyme ACY1, may be functional participants in CKD pathogenesis. 
We found that mice lacking ACY1 have a trend for elevated blood levels of  N-acetylserine and that this 
biochemical impairment is markedly worsened with the onset of  kidney injury. Furthermore, we found 
that mice lacking ACY1 had greater severity of  adenine-induced injury relative to WT littermates, as 
evidenced by serum creatinine levels and tubulointerstitial histopathology. These findings raise several 
possibilities. First, N-acetylserine may be nephrotoxic, either in its circulating form or within the prox-
imal tubule cell. Second, N-acetylserine may be a surrogate for other ACY1 substrates, including other 
N-acetylated amino acids, that are harmful in excess. A recent study showed that reducing the ratio of  
circulating N-acetylated amino acids to free amino acids by exogenous administration of  ACY1 protein 
acutely improves glucose tolerance in mice (34). Third, given the diverse role of  protein acetylation in 
cellular processes, including modulation of  gene expression, protein stability, and signal transduction, 
impaired salvage of  acetyl groups could be harmful to the proximal tubule (35). Fourth, impaired salvage 
of  free amino acids could also be deleterious, although this seems less likely given the small quantitative 
contribution of  acetylated amino acids to the total free amino acid pool. More work is required to dis-
entangle these possibilities in model systems and to explore their potential relevance to human CKD. To 
date, only ~15 individuals (mostly children) with ACY1 mutations have been reported, with a range of  
associated neurocognitive deficits but with no description of  renal phenotypes (16–18, 36).

Table 2. Metabolite markers of CKD progression in the CRIC Study

Model 1 Model 2 Model 3 Model 4
Metabolite HR P value HR P value HR P value HR P value
Tryptophan 0.21 (0.18–0.25) 3.1 × 10–75 0.27 (0.23–0.32) 4.0 × 10–46 0.34 (0.27–0.41) 8.3 × 10–25 0.55 (0.44–0.70) 7.3 × 10–7

Pseudouridine 4.73 (4.17–5.37) 3.1 × 10–129 5.32 (4.61–6.14) 6.3 × 10–115 4.10 (3.46–4.86) 9.8 × 10–60 2.23 (1.62–3.08) 1.1 × 10–6

Creatinine 20.62  
(15.96–26.64) 1.5 × 10–118 23.70  

(17.85–31.46) 2.9 × 10–106 13.97  
(10.11–19.33) 3.0 × 10–57 4.02 (2.12–7.60) 1.9 × 10–5

Homocitrulline 2.08 (1.94–2.24) 4.3 × 10–88 2.08 (1.92–2.25) 2.2 × 10–70 1.81 (1.66–1.98) 4.2 × 10–40 1.28 (1.14–1.44) 2.3 × 10–5

4-Acetamidobutanoate 3.28 (2.98–3.61) 3.1 × 10–130 3.36 (3.02–3.74) 5.7 × 10–110 2.53 (2.24–2.85) 8.4 × 10–52 1.51 (1.25–1.83) 2.6 × 10–5

Methylguanidine 2.04 (1.92–2.17) 3.8 × 10–117 2.10 (1.96–2.24) 8.9 × 10–106 1.82 (1.69–1.97) 6.2 × 10–57 1.35 (1.17–1.57) 5.9 × 10–5

Allantoin 2.28 (2.06–2.52) 9.3 × 10–59 2.08 (1.86–2.31) 1.1 × 10–40 1.68 (1.50–1.87) 1.6 × 10–20 1.21 (1.09–1.34) 3.2 × 10–4

Methylimidazoleacetate 1.70 (1.62–1.79) 3.4 × 10–92 1.71 (1.61–1.80) 3.4 × 10–79 1.52 (1.43–1.62) 3.7 × 10–39 1.16 (1.07–1.26) 4.5 × 10–4

N-acetylserine 2.23 (2.03–2.46) 7.8 × 10–59 2.30 (2.06–2.56) 5.5 × 10–51 2.07 (1.81–2.37) 1.4 × 10–26 1.31 (1.13–1.54) 5.6 × 10–4

C20:0 LPE 2.20 (1.60–3.02) 1.2 × 10–6 2.28 (1.64–3.16) 8.4 × 10–7 2.10 (1.48–2.97) 3.4 × 10–5 1.81 (1.28–2.57) 8.4 × 10–4

LPE, lysophosphatidylethanolamine. Model 1: age, sex, race, study center; Model 2: Model 1 + BMI, systolic blood pressure, diabetes, cardiovascular disease, 
smoking, alcohol use, and APOL1 genotype; Model 3: Model 2 + log PCR; Model 4: Model 3 + eGFR. HRs are per doubling.
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Prioritizing metabolites associated with CKD progression in fully adjusted models is one approach 
for biomarker and biologic discovery. Using an alternative approach, we previously conducted an anal-
ysis in AASK that started with the knowledge that genetic variants in NAT8 are associated with CKD 
(37). We found that NAT8 variants are associated with blood levels of  14 N-acetylated amino acids, 
which in turn were also associated with CKD progression, albeit at a relatively permissive statistical 
threshold (at P < 0.0036). N-acetylserine was not one of  the NAT8-associated metabolites, raising the 
possibility that it is amino acid N-acetylation/deacetylation in general, rather than a single metabo-
lite or enzyme, that is important in CKD pathogenesis. In a separate example of  how genomics can 
enhance understanding of  human metabolomic associations, Afshinnia et al. conducted a combined 
analysis of  blood lipidomics and kidney tissue transcriptomics among individuals with type 2 diabet-
ic kidney disease (38). This study showed that genes driving enhanced lipogenesis in the kidney could 
be responsible for the observed blood lipidomic alterations. Finally, rather than focus on longitudinal 
prediction of  CKD progression, Chen et al. focused on metabolites that best discriminated cross-sec-
tionally across different stages of  CKD (39). This group identified 5-methoxytryptophan as a metabo-
lite that is decreased with more severe CKD and then utilized mouse and cellular models to highlight a  
potential renoprotective role for this molecule. As these examples demonstrate, a range of  transdisci-
plinary approaches can be utilized to augment the value of  metabolomics studies of  human CKD.

Our study has several limitations. We focused on only a single, baseline time point to maximize our 
power for biomarker discovery. We acknowledge that more effort is needed to track select metabolites 
of  interest in the same individuals over time and, ideally, under different conditions to understand their 
dynamic response to diet, circadian oscillation, activity, and other factors (40–42). A thorough under-
standing of  these details is a prerequisite for clinical utility. We focused on plasma because of  our exten-
sive experience with this biofluid, opportunities for replication with other blood-based data sets, and 
challenges in metabolite measurement across the wide range of  urine dilution. Nevertheless, urine is an 
attractive biofluid for CKD risk assessment, and other groups have demonstrated its promise for metab-
olomic discovery (43–45). We have highlighted the increased confidence drawn from replication across 
2 distinct LC-MS platforms, but we also acknowledge that neither platform — and, indeed, no available 
platform — provides comprehensive coverage of  the metabolome. Finally, we examined the impact of  
global Acy1 deletion in a commonly utilized CKD model. Because this initial analysis confirmed a specific 

Table 3. Replication of metabolite markers of CKD progression in the AASK and ARIC studies

Metabolite Cohort HR P value

Tryptophan
AASK 0.71 (0.44–1.15) 1.7 × 10–1

ARIC 0.43 (0.28–0.65) 7.6 × 10–5

Pseudouridine
AASK 2.60 (1.55–4.37) 3.2 × 10–4

ARIC 2.16 (1.24–3.76) 6.7 × 10–3

Creatinine
AASK 2.22 (1.18–4.19) 1.3 × 10–2

ARIC 1.43 (0.59–3.43) 4.3 × 10–1

Homocitrulline
AASK 1.23 (1.01–1.51) 4.3 × 10–2

ARIC 1.23 (1.03–1.46) 2.0 × 10–2

4-Acetamidobutanoate
AASK 1.23 (0.95–1.60) 1.2 × 10–1

ARIC 1.59 (1.21–2.11) 1.0 × 10–3

Methylguanidine
AASK 1.27 (1.07–1.50) 6.8 × 10–3

ARIC nd nd

Allantoin
AASK 0.85 (0.62–1.16) 3.1 × 10–1

ARIC 1.02 (0.70–1.48) 9.1 × 10–1

Methylimidazoleacetate
AASK 1.76 (1.29–2.39) 3.5 × 10–4

ARIC 1.64 (1.27–2.12) 1.7 × 10–4

N-acetylserine
AASK 1.22 (0.83–1.79) 3.1 × 10–1

ARIC 2.68 (1.71–4.18) 1.5 × 10–5

Model adjusted for age, sex, race (ARIC only), center (ARIC only), BMI, systolic blood pressure, diabetes (ARIC only), 
cardiovascular disease, smoking, APOL1 genotype (ARIC only), log PCR (log ACR in ARIC), and eGFR (mGFR in AASK). 
HRs are per doubling.
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role for ACY1 in N-acetylserine metabolism, as well as a potential role in renal protection, disease model-
ing following kidney-specific Acy1 deletion is a logical future direction.

In summary, metabolite profiling in the CRIC, AASK, and ARIC studies identifies metabolites asso-
ciated with CKD progression, including markers of  glomerular filtration, azotemia, and proximal tubu-
lar metabolism. In addition to reinforcing a physiologic perspective on how the kidney interacts with the 
circulating metabolome, our study demonstrates the potential for metabolomics to motivate interest in 
select, potentially causal, metabolic pathways.

Methods
Study population. Between 2003 and 2008, the CRIC Study recruited 3,939 individuals with mild to moder-
ate kidney disease at 13 sites across the United States (6, 7). Study participants were between the ages of  21 
and 74 years, with an eGFR of  20–70 mL/min/1.73 m2. By design, approximately 50% of  the study sub-
jects had diabetes, and individuals with polycystic kidney disease or on active immunosuppressive agents 
for glomerulonephritis were excluded. A total of  1,800 randomly selected participants who attended the 
year 1 visit underwent blood metabolomic profiling using the Broad Institute Metabolomics Platform (12). 
The AASK was a prospective cohort of  1,094 African Americans with kidney disease (8). Originally a 
trial of  blood pressure management, participants were randomized to a higher versus lower blood pressure 
target, and an ACE-inhibitor, a calcium channel blocker, or a beta blocker; the trial phase was followed by 
a cohort phase, with the full follow-up encompassing an average of  16 visits over up to 12 years (46, 47). A 
total of  962 individuals at the baseline visit underwent blood metabolomic profiling by Metabolon Inc. The 
ARIC study is composed of  15,792 individuals between the ages of  45 and 64 years prospectively enrolled 
from 4 communities in the United States (9). Visit 1 was conducted between 1987 and 1989, and follow-up 
is ongoing. For this study, we included 5,305 participants without ESRD at visit 5 (between 2011 and 2013) 
who had blood metabolomic profiling by Metabolon Inc.

Metabolomics. Detailed methods, including characterization of  technical and intraperson analyte 
variation among individuals with CKD, for both the Broad Institute and Metabolon metabolomics 
methods have been published (12).

For CRIC, fasting samples stored at –80°C underwent profiling at the Broad Institute using a combination 
of  3 LC-MS injections. Data were acquired using LC-MS systems composed of  Nexera X2 U-HPLC systems 
(Shimadzu Scientific Instruments) coupled to Q Exactive/Exactive Plus orbitrap mass spectrometers (Thermo  
Fisher Scientific). Positively charged polar analytes were measured in samples extracted with acetonitrile/
methanol/formic acid and separated by hydrophilic interaction LC (HILIC), with MS analyses carried out 
using positive ion mode electrospray ionization (ESI); this method was also used to measure N-acetylated 
amino acids in 10 μL of mouse plasma samples. Negatively charged polar analytes were measured in samples 
extracted with methanol and separated on an NH2 column, with MS analyses in negative ion mode ESI. Pos-
itively charged lipids were measured in samples extracted with isopropanol and separated on a C8 column, 

Figure 3. Metabolite predictors of CKD progression are correlated with eGFR in CRIC. Histogram showing 
frequency distribution of Spearman correlations of all measured metabolites with eGFR in CRIC (n = 1,773), with 
select metabolites associated with CKD progression labeled.
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with MS analyses carried out using positive ion mode ESI. Raw metabolomics data were processed using 
TraceFinder (Thermo Fisher Scientific), and identification of  metabolite peaks was conducted by matching 
measured retention times and masses to mixtures of  reference metabolites analyzed in each batch and to an 
internal database of  compounds that have been characterized.

For AASK and ARIC, fasting samples stored at –80°C underwent profiling at Metabolon. Data were 
acquired using LC-MS systems composed of  ACQUITY UPLC systems (Waters) coupled to Q Exactive 
orbitrap mass spectrometers (Thermo Fisher Scientific). The Metabolon process spikes samples with recov-
ery standards and removes proteins with methanol. The extract is then divided into 5 fractions: 2 for sep-
arate reverse phase ultraperformance LC-MS/MS (RP/UPLC-MS/MS) with a positive ion mode ESI, 1 
for RP/UPLC-MS/MS with negative ion mode ESI, 1 for HILIC-UPLC-MS/MS with negative ion mode 
ESI, and 1 sample for back-up. Experimental peaks are identified by retention time/index, mass/charge 
ratio, and chromatographic data; to be labeled, compounds must match on all 3 criteria with the purified, 
authenticated standards in the Metabolon library.

Metabolomic data processing. Drug metabolites and metabolites missing in > 50% of samples were excluded 
from the present analysis, leaving 443 metabolites for evaluation in CRIC (median percentage missing, 0%; 
range 0%–47%). Missing values were imputed with the lowest observed level, as has been done previously 
(48, 49). Metabolites were log2-transformed to normalize their skewed distributions. Only the 10 metabolites 
significant in CRIC were evaluated in AASK and ARIC.

Outcomes. The primary study outcome was CKD progression. In CRIC and ARIC, this was defined 
as incident ESRD and/or decline in eGFR by ≥ 50%. In AASK, this was defined as incident ESRD and/
or doubling of  serum creatinine concentration (equivalent to a ~57% decline in GFR). In CRIC, eGFR 
was calculated from serum creatinine and serum cystatin C concentrations using the CRIC Study equa-
tion (50). In ARIC, eGFR was calculated from serum creatinine and serum cystatin C concentrations 
using the Chronic Kidney Disease Epidemiology (CKD-EPI) Collaboration equation (51). In CRIC and 
AASK, ESRD was ascertained per protocol throughout the study periods. In ARIC, ESRD was ascertained 
through linkage to the United States Renal Data System (USRDS) in December 2018 (52).

Covariates. For each cohort, covariates were assessed at the same visit as metabolomic profiling. In 
AASK, GFR was measured by the urinary clearance of  125I Iothalamate. PCR was determined from 
24-hour urine collection or random spot measures in CRIC and from random spot measures in AASK. 
ACR was determined from random spot measures in ARIC. In CRIC, diabetes was defined as self-reported 
use of  insulin or oral hypoglycemic medications, fasting blood glucose ≥ 126 mg/dL or a nonfasting level 
≥ 200 mg/dL, or an HbA1c ≥ 6.5%. AASK did not enroll any study participants with diabetes. In ARIC, 
diabetes was defined as the current use of  a diabetes medication, fasting blood glucose ≥ 126 mg/dL or a 
nonfasting level ≥ 200 mg/dL, or self-report of  a physician’s diagnosis of  diabetes. History of  cardiovascu-
lar disease was self-reported in CRIC and AASK. In ARIC, prevalent cardiovascular disease at visit 5 was a 
combination of  self-reported disease at visit 1 and adjudicated events between visit 1 and visit 5.

Acy1–/– mice. Acy1+/– mice were obtained from MMRRC at UC Davis (MMRRC_046467-UCD). These 
mice were generated in a C57BL/6N background using CRISPR (https://www.mmrrc.org/catalog/sds.
php?mmrrc_id=46467). In our laboratory, Acy1+/– mice were bred to generate Acy1–/– mice and Acy1+/+ 
littermates. Because Acy1 is primarily expressed in the proximal tubular epithelium, we used an adenine 
diet–induced CKD model, which is characterized by tubulointerstitial injury. Acy1–/– or Acy1+/+ male mice 
(8–10 weeks old) were placed on normal or 0.2% adenine diet (TD.130900, Envigo) for 3 weeks before 
sacrifice. Serum and kidneys were collected for further analysis.

Mouse phenotyping. Serum creatinine was measured using LC-MS. In brief, 10 μL of  mouse plasma 
was extracted with 90 μL acetonitrile/methanol (3:1 ratio) containing creatinine-d3 (Sigma-Aldrich). 
After centrifugation (11,180g for 10 minutes at room temperature), supernatant was separated using a  
2.1 × 150 mm Atlantis HILIC Silica 3 μm column (Waters). The peaks for creatine (transition 114.15/44.04) 
and creatinine-d3 (transition 117.15/47.04) were monitored in the positive ion mode on a TSQ Quantiva 
Triple Quadrupole MS (Thermo Fisher Scientific). For immunofluorescence, mouse kidney samples were 
fixed with 4% paraformaldehyde overnight, embedded in paraffin, and sectioned onto slides. Primary anti-
bodies were used as follows: rabbit anti-ACY1 (PA5-81310, lot no. UI2841839, Invitrogen); mouse anti-
AQP1 (sc25287, lot no. F1019, Santa Cruz Biotechnology Inc.); mouse anti-AQP2 (sc515770, lot no. I0519, 
Santa Cruz Biotechnology Inc.); and mouse anti-THP (sc271022, lot no. B1219, Santa Cruz Biotechnology 
Inc.) (all diluted 1:500, incubated overnight). After washing the tissue, slides were incubated for 1 hour at 
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room temperature in the dark with the secondary antibody (donkey anti–rabbit IgG–conjugated Alexa Fluor 
488 and donkey anti–mouse IgG–conjugated Alexa Fluor 568, both diluted 1:200). For IHC, mouse kidney 
samples were sectioned onto slides and incubated overnight with primary rabbit anti-ACY1 (PA5-81310, lot 
no. UI2841839, Invitrogen, diluted 1:500). After washing the tissue, slides were incubated for 1 hour at room 
temperature with secondary goat anti-rabbit HRP (65-6120, Thermo Fisher Scientific). DAB kit (34065, 
Thermo Fisher Scientific) was used according to the manufacturer’s instruction. For assessment of  kidney 
fibrosis, Sirius red staining to detect collagen fibers was performed according to the manufacturer’s protocol 
(ab150681, Abcam). Briefly, tissue sections were deparaffinized and hydrated in distilled water. Adequate 
Picrosirius red solution was applied to completely cover the tissue section and incubated for 60 minutes. 
Afterward, sections were rinsed quickly in 2 changes of  acetic acid solution and then absolute alcohol. Final-
ly, slides were cleared and mounted in synthetic resin. The area of  interstitial fibrosis (stained with Sirius red) 
was identified, after excluding the vessel area from the region of  interest, as the ratio of  interstitial fibrosis/
total tissue area and expressed as the percentage of  fibrotic area using ImageJ software (NIH). For immu-
noblotting, mouse kidney samples were homogenized using RIPA buffer with protease inhibitors (78429, 
Thermo Fisher Scientific). Protein extracts were separated by electrophoresis on SDS-PAGE and transferred 
to nitrocellulose membranes, which were then washed and incubated with blocking buffer (5% nonfat milk 
in TBS) for 1 hour at room temperature. The membranes were then incubated overnight at 4°C with the 
primary antibodies: mouse anti-fibronectin antibody (F7387, lot no. 0000137718, Sigma-Aldrich), mouse 
anti–α-SMA antibody (sc32251, lot no. C0521, Santa Cruz Biotechnology Inc.), and mouse anti–β-actin 
antibody (sc47778, lot no. J1119, Santa Cruz Biotechnology Inc.) (all diluted 1:500, incubated overnight). 
The next day, the membranes were washed and incubated with the appropriate HRP-coupled secondary 
antibodies, and signals were detected with ECL (Pierce, Thermo Fisher Scientific). Expression of  proteins 
was quantified by densitometry using ImageJ software (NIH).

Statistics. Baseline characteristics were summarized using mean ± SD or proportions, with baseline 
defined as a year-1 visit in CRIC, randomization in AASK, and visit 5 in ARIC. The relationship between 
metabolites and eGFR was assessed using Spearman correlations. Cox proportional hazards models were 
used to estimate the association between metabolites and CKD progression in a series of  sequentially 
adjusted models: Model 1 adjusted for age, sex, race, and study center; Model 2 adjusted for variables in 
Model 1 plus BMI, systolic blood pressure, diabetes, cardiovascular disease, smoking, alcohol use, and 
APOL1 genotype; Model 3 adjusted for variables in Model 2 plus log-transformed PCR; Model 4 adjusted 
for variables in Model 3 plus eGFR. Statistical significance was based on FDR < 0.05 (53). In AASK and 
ARIC, only Model 4 was run. mGFR was substituted for eGFR in AASK, and there was no adjustment for 
race, diabetes, alcohol use, or APOL1 genotype (because AASK only enrolled Black individuals, no study 
participants had diabetes, genotyping was only conducted in a subset of  study participants, and informa-
tion on alcohol use was missing); in ARIC, there was no adjustment for alcohol use, and log-transformed 
ACR was substituted for log-transformed PCR. In sensitivity analyses, analyses were repeated stratified by 
the presence of  diabetes, and an interaction term was evaluated by including the product term of  diabetes 
and metabolite in the full model. For mouse studies, statistical significance in 2-tailed Student’s t tests was 
defined as P < 0.05. All analyses were run using STATA SE 17.0.

Study approval. All participants provided written informed consent, and the study adhered to the Dec-
laration of  Helsinki and was approved by the IRBs of  the Perelman School of  Medicine at the University 
of  Pennsylvania and Johns Hopkins University. All animal studies were approved by the IACUC of  the 
Massachusetts General Hospital and conducted under their guidelines.
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