SUPPLEMENTARY MATERIAL

Table of contents

Supplementary Tables

Supplementary Table 1 2
Supplementary Table 2 3
Supplementary Table 3 5
Supplementary Table 4 7
Supplementary Figures
Supplementary Figure 1. 8
Supplementary Figure 2. 9
Supplementary Figure 3. 10

Supplementary Table 1. Common SERPINC1 haplotype in unrelated carriers of c .1332-1336delAAGAG ($\mathrm{n}=3$)

dbsnp	MAF
$r s 2227612$	0.135
$r s 677$	0.110
rs148783362	0.013
rs61827936	0.133
rs1799876	0.470
rs5878 synonymous	0.464
rs5877 synonymous	0.450
rs2227597	0.237
rs2227596	0.349
$r s 2227595$	0.126
$r s 2227594$	0.237
$r s 2227593$	0.238
$r s 2227590$	0.243

MAF: Minor allele frequency.

Supplementary Table 2. Summary of SERPINC1 exon 7 deletions

ID	cDNA -(deleted nucleotides)	Protein (reading frame) ${ }^{\dagger}$	Amino acid sequence encoded by cDNA (exon 7) \ddagger
1	$\begin{gathered} \text { c.1237-1239del } \\ \text {-GAA } \end{gathered}$	p.Glu413del (inframe)	407 VNEEGSAAASTAVVIAGRSLNPNRVTFKANRPFLVFIREVPLNTIIFMGRVANPCVK*
2	$\begin{gathered} \text { c.1264del } \\ -A \end{gathered}$	$\begin{aligned} & \text { p.lle422Leufs*5 } \\ & (+2) \end{aligned}$	407 VNEEGSEAAASTAVVLLAVR * TPTG* ${ }^{\text {a }}$ SRPTGLSWFL*EKFL*TLLSSWAE*PTLVLSK
3	$\begin{gathered} \text { c.1272-1274del } \\ \text {-CCG } \end{gathered}$	p.Arg425del (inframe)	407 VNEEGSEAAASTAVVIAGSLNPNRVTFKANRPFLVFIREVPLNTIIFMGRVANPCVK*
4	$\begin{gathered} \text { c. } 1312 \mathrm{del} \\ -A \end{gathered}$	$\begin{gathered} \text { p.Arg438Glyfs*6 } \\ (+2) \end{gathered}$	407 VNEEGSEAAASTAVVIAGRSLNPNRVTFKANGLSWFL*EKFL* $T L L S S W A E * P T L V L S K$
5	$\begin{gathered} \text { c.1319del } \\ -T \end{gathered}$	p.Phe440Serfs*4 (+2)	407 VNEEGSEAAASTAVVIAGRSLNPNRVTFKANRPSWFL*EKFL*TLLSSWAE*PTLVLSK
6	$\begin{gathered} \text { c. } 1326 \mathrm{del} \\ -T \end{gathered}$	p.Phe443Leufs*1 (+2)	407 VNEEGSEAAASTAVVIAGRSLNPNRVTFKANRPFLVL*EKFL* $T L L S S W A E * P T L V L S K$
7	$\begin{gathered} c .1332 _1333 \mathrm{del} \\ \text {-AA } \end{gathered}$	$\begin{aligned} & \text { p.Ile444Mfs*19 } \\ & (+1) \end{aligned}$	407 VNEEGSEAAASTAVVIAGRSLNPNRVTFKANRPFLVFMRSSSEHYYLHGQSSQPLC*
8	$\begin{gathered} c .1332 _1336 \mathrm{del} \\ \text {-AAGAG } \end{gathered}$	$\begin{aligned} & \text { p.Arg445Serfs*17 } \\ & (+1) \end{aligned}$	407 VNEEGSEAAASTAVVIAGRSLNPNRVTFKANRPFLVFISSSEHYYLHGQSSQPLC*
9	$\begin{gathered} \text { c. } 1347 \mathrm{del} \\ -G \end{gathered}$	p.Asn450Thrfs*8 (+2)	407 VNEEGSEAAASTAVVIAGRSLNPNRVTFKANRPFLVFIREVPLTLLSSWAE*PTLVLSK
10	$\begin{gathered} \text { c. } 1366 \mathrm{del} \\ -\mathrm{G} \end{gathered}$	p.Gly456Alafs*2 (+2)	407 VNEEGSEAAASTAVVIAGRSLNPNRVTFKANRPFLVFIREVPLNTIIFMAE*PTLVLSK
11	c.1373_1384del -TAGCCAACCCTT	p.Val458Glyfs*3 (+2)	407 VNEEGSEAAASTAVVIAGRSLNPNRVTFKANRPFLVFIREVPLNTIIFMGRGVK*
12	c.1375-1383del -GCCAACCCT	p.Ala460-Pro462del (inframe)	407 VNEEGSEAAASTAVVIAGRSLNPNRVTFKANRPFLVFIREVPLNTIIFMGRVCVK*
13	c.1390-1393del -AAGT	p.Stop465Metfs*13 (+2)	407 VNEEGSEAAASTAVVIAGRSLNPNRVTFKANRPFLVFIREVPLNTIIFMGRVANPCVKMFLFFAPLPIFGL*

[^0]Supplementary Table 2. Summary of SERPINC1 exon 7 deletions (cont.)

ID	$\begin{gathered} \text { MW } \\ \text { (KDa)t } \end{gathered}$	IP†	N (overall) \ddagger	N (our cohort)	Age of $1^{\text {st }}$ thromb. event (y.o.) ${ }^{\S}$	AT activity (\%)ๆ	HGMD ${ }^{\text {® }}$	Ref.
1	52.47	6.290	1	0	37	48	CD994760	$\begin{aligned} & \text { Tsuda } \\ & \text { (1999) } \end{aligned}$
2	48.3	5.422	1	0	-	.	CD982444	Jochmans (1998)
3	52.45	5.890	2	1	30	55	CD036071	$\begin{gathered} \text { Raja } \\ \text { (2003) } \end{gathered}$
4	50.19	5.625	1	0	-	-	CD117608	Celinska (2011)
5	50.28	5.749	1	1	19	34	New	.
6	50.22	5.749	1	0	-	52	CD930909	Chowdhury (1993)
7	52.44	5.860	2	1	-	50	CD941603	Emmerich (1994)
8	52.27	5.737	6	5	28 (16-45)	39 (33-51)	CD930910	Millar (1993)
9	51.85	5.638	1	0	-	-	CD061469	Schleithoff (2006)
10	51.88	5.638	1	0	-	-	CD024464	$\begin{gathered} \mathrm{Fu} \\ (2002) \end{gathered}$
11	52.17	6.080	1	1	-	75	New	-
12	52.32	6.074	1	0	-	-	CD961791	$\begin{gathered} \text { Perry } \\ (1996) \end{gathered}$
13	108.72	6.070	1	0	-	-	CD125926	Castaldo (2012)

[^1]
Supplementary Table 3. Summary of SERPINC1 exon 7 insertions

ID	cDNA	Protein (reading frame) ${ }^{\dagger}$	Amino acid sequence encoded by cDNA (exon 7) \ddagger
14	c.1233dupC	p.Ser412GInfs*1 (+1)	407 VNEEGQ*SSCKYRCCDCWPFAKPQQGDFQGQQAFPGFYKRSSSEHYYLHGQSSQPLC*
15	c.1247dupC	$\begin{aligned} & \text { p.Ser417Lysfs*47 } \\ & (+1) \end{aligned}$	407 VNEEG SEAAAKYRCCDCWPFAKPQQGDFQGQQAFPGFYKRSSSEHYYLHGQSSQPLC*
16	$\begin{gathered} \text { c. } 1255-56 \text { ins } \\ \text { ACCG } \end{gathered}$	$\begin{gathered} \text { p.Ala419Aspfs*46 } \\ (+1) \end{gathered}$	407 VNEEGSEAAASTDRCCDCWPFAKPQQGDFQGQQAFPGFYKRSSSEHYYLHGQSSQPLC*
17	c.1292dupG	$\begin{aligned} & \text { p.Val432Glyfs*32 } \\ & (+1) \end{aligned}$	407 VNEEG SEAAASTAVVIAGRSLNPNRGDFQGQQAFPGFYKRSSSEHYYLHGQSSQPLC*
18	c.1320-21insA	$\begin{aligned} & \text { p.Phe440Leufs*24 } \\ & (+1) \end{aligned}$	407 VNEEGSEAAASTAVVIAGRSLNPNRVTFKANRPLPGFYKRSSSEHYYLHGQSSQPLC*
19	c.1357dupA	$\begin{aligned} & \text { p.lle453Asnfs*11 } \\ & (+1) \end{aligned}$	407 VNEEGSEAAASTAVVIAGRSLNPNRVTFKANRPFLVFIREVPLNTINLHGQSSQPLC*
20	c.1366dupG	p.Arg457Glyfs*8 (+1)	407 VNEEGSEAAASTAVVIAGRSLNPNRVTFKANRPFLVFIREVPLNTIIFMGQSSQPLC*
21	c.1390dupA	$\begin{gathered} \text { p.Stop465Valfs*18 } \\ (+2) \end{gathered}$	407 VNEEGSEAAASTAVVIAGRSLNPNRVTFKANRPFLVFIREVPLNTIIFMGRVANPCVKVKCSYSLHLFLFLVCEQK*

\dagger The effect of the INDEL on the reading frame is indicated (inframe, frameshift +1 or frameshift +2).
\ddagger Open reading frame is highlighted in bold, whereas the non-coding sequence is highlighted in italics. The aa sequence in which the reading frame changes is highlighted in red. cDNA: complementary DNA. *: Stop codon.

Supplementary Table 3. Summary of SERPINC1 exon 7 insertions (cont.)

ID	$\begin{aligned} & \text { MW } \\ & \text { (KDa) } \end{aligned}$	IP \dagger	N (overall) \ddagger	N (our cohort)	Age of 1st thromb. event (y.o.) ${ }^{\S}$	AT activity (\%)ๆ	HGMD ${ }^{\text {® }}$	Ref.
14	46.99	5.414	1	1	50	56	-	.
15	52.78	5.630	1	0	30	47	CIO41962	$\begin{gathered} \text { David } \\ \text { (2004) } \end{gathered}$
16	52.79	5.453	1	0	45	50	CI941833	Emmerich (1994)
17	52.46	5.633	1	0	23	37	CIO41963	$\begin{gathered} \text { David } \\ \text { (2004) } \end{gathered}$
18	52.51	6.001	1	0	30	-	CI941834	Gandrille (1991)
19	52.45	5.807	1	0	-	69	CI941835	Chowdhury (1993)
20	52.48	5.752	1	0	9	52	CI941836	$\begin{aligned} & \text { Olds } \\ & \text { (1991) } \end{aligned}$
21	57.73	5.138	1	0	-	50	Cl011219	$\begin{gathered} \text { Lane } \\ \text { (1997) } \end{gathered}$

\dagger Molecular weight (MW) and isoelectric point (IP) estimated by Protein isoelectric point calculator software (http://isoelectric.ovh.org/).
\ddagger Number (N) of all cases, including the first reported in literature.
§ Age of first thrombotic event. If more than one case, median and interquartile range are shown.
If Antithrombin activity. If more than one case, median and interquartile range are shown.
AT: antithrombin. HGMD ${ }^{\circledR}$: Human Genetic Mutation Database. MW: molecular weight. N: number of cases. Ref: reference

Supplementary Table 4. Molecular dynamics setup conditions

Condition	Initial setup
Force field	Amber99sb
Number of sol/atoms/ ions/molecules Cut-off Water model Temperature Non-bonded int	0.9
Ensemble	tip3p
Simulation time	300
Integration step	PME
Box type	NPT2
P coupling	$100-680$ ns
T coupling	dodecahedron

Supplementary Figures

Supplementary Figure 1. Study design, patient flow chart and summary of SERPINC1 molecular defects identified. AT: antithrombin. C-term: C-terminal/C-terminus. CDG: congenital disorders of glycosylation.

Supplementary Figure 2. Native-urea gels of C-terminal variants associated to type II PE antithrombin deficiency due to an increase in latent AT. Western blot for AT in plasma samples of carriers of p.Phe434Leu, p.Arg438Gly, p.Pro439Thr, p.Pro439Thr, and p.Pro461Ser variants after electrophoresis in native conditions with 6 M urea. Samples from a healthy subject and a positive II PE control, corresponding to a type II PE variant that causes increased latent transformation, but is not located in SERPINC1 exon 7 (p.Met251Val), are also shown. Latent AT, that can be better appreciated in the lower panel, with higher exposition, is pointed with arrows. AT: antithrombin. II PE: II pleiotropic deficiency.


```
407 -V--N--E--E--G--S--E--A--A--A--S--T--A--V--V--I--A--G--R--S--L--N--P- 429
\begin{tabular}{llccc} 
& -T & \(-\hat{A}\) \\
\(+G\) & \(-\hat{A}\) & \(+\hat{A}\) & \(-T\) & \(-\hat{A M G A G}\)
\end{tabular}
1281 aacaGGGTGACTTTCAAGGCCaacaGGCCTttcetGGTTTTTATAAGAGAAGttcetCTGaacaCTATT 1356
```



```
        4 5 2
\begin{tabular}{rrrl} 
& -G & -GCCAACCCT & \(+\dot{A}\) \\
\(+\dot{A}\) & +G & -TAGCCAACCCTT & -A AGT
\end{tabular}
1357 ATCTTCATGGGCAGAGTAGCCAACCCTTGTGTTAAGTAAAATGTTCTTATTCTTTGCACCTCEtCCtTA 1417
4 5 3 ~ - I - - F - - M - - G - - R - - V - - A - - N - - P - - C - - V - - K - - ~ * - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1418 TTTTTGGTTTGTGaacaGAAGTAAAAATAAATACAAACTACTTCCATCTCA

Supplementary Figure 3. Cluster of INDEL in exon 7 of SERPINC1. Nucleotide and peptide sequences showing the 21 deletions/insertions collected from HGMD® and from our cohort. Deleted and duplicated nucleotides are preceded by the signs " - " and " + ", respectively. The repetitive sequences identified by Emmerich et al. between p.Phe440-Arg445, which we have also identified in the 3'UTR region, are shown in small letter.

HGMD \({ }^{\oplus}\) : Human Gene Mutation Database. 3’UTR: 3’ Untraslated región.```


[^0]:    † The effect of the INDEL on the reading frame is indicated (inframe, frameshift +1 or frameshift +2 ).
    $\ddagger$ Open reading frame is highlighted in bold, whereas the non-codifying sequence is highlighted in italics. The aa sequence in which the reading frame changes is highlighted in red. cDNA: complementary DNA. *: Stop codon.

[^1]:    $\dagger$ Molecular weight (MW) and isoelectric point (IP) estimated by Protein isoelectric point calculator software (http://isoelectric.ovh.org/).
    $\ddagger$ Number ( N ) of all cases, including the first reported in literature.
    $\S$ Age of first thrombotic event. If more than one case, median and interquartile range are shown.
    II Antithrombin activity. If more than one case, median and interquartile range are shown.
    AT: antithrombin. HGMD ${ }^{\circledR}$ : Human Genetic Mutation Database. MW: molecular weight. N: number of cases. Ref: reference.

