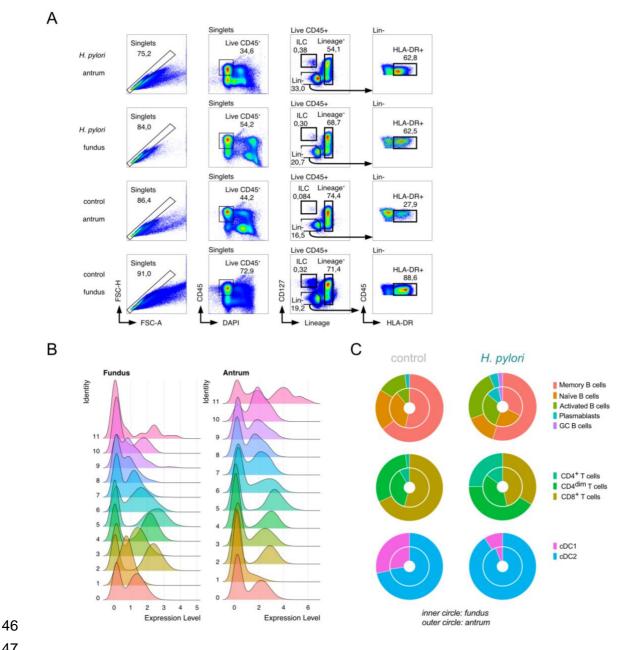
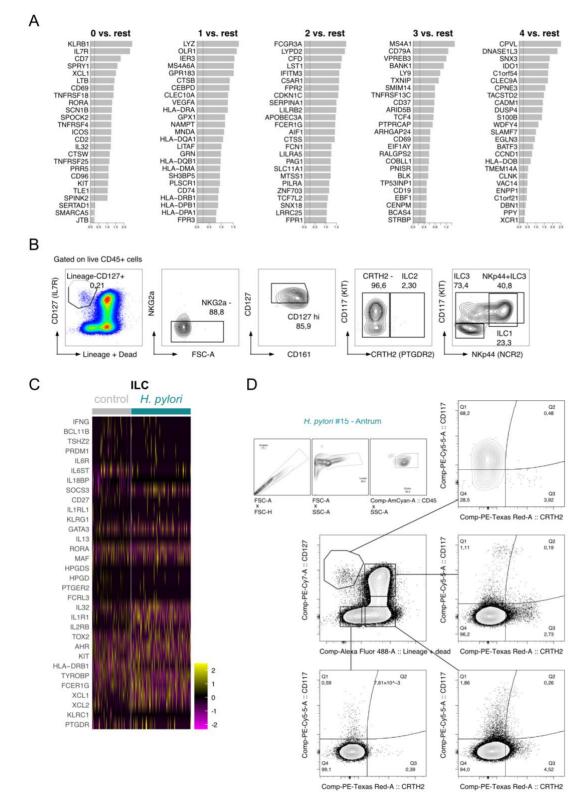

1 SUPPLEMENTAL MATERIAL

3	Metagenomic and single-cell RNA-seq survey of the H. pylori-
4	infected stomach in asymptomatic individuals
5	
6	Short Title: Microbiome and immunology survey of stomach
7	
8	Chiara Sorini ^{1,2,*} , Kumar P. Tripathi ^{1,2,*} , Shengru Wu ^{3,*} , Shawn M. Higdon ³ , Jing Wang ³ , Liqin
9	Cheng ³ , Sanghita Banerjee ^{1,2} , Annika Reinhardt ¹ , Taras Kreslavsky ¹ , Anders Thorell ⁴ , Lars
10	Engstrand ³ , Juan Du ^{3,§,#} and Eduardo J. Villablanca ^{1,2,§,&,#}
11	
12	¹ Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet
13	and University Hospital, Stockholm, Sweden
14	² Center of Molecular Medicine, Stockholm, Sweden
15	³ Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome
16	Research (CTMR), Karolinska Institutet, Stockholm, Sweden
17	⁴ Ersta Hospital, Stockholm, Sweden
18	
19	* and $^{\$}$ These authors contributed equally to this work
20	
21	#Correspondence: J.D. (juan.du@ki.se) and E.J.V. (eduardo.villablanca@ki.se)
22	^{&} Lead contact E.J.V. (<u>eduardo.villablanca@ki.se</u>)

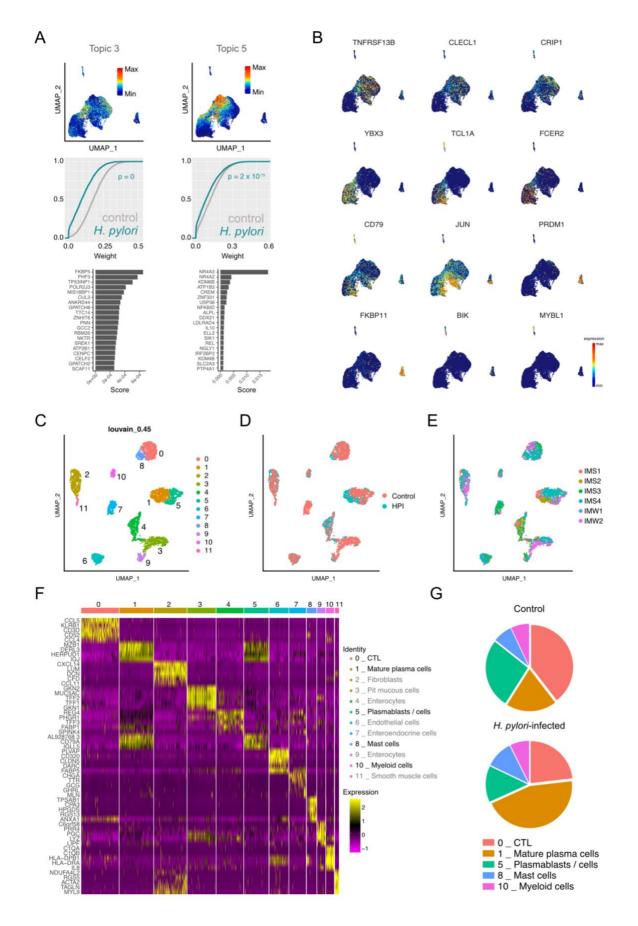

24 SUPPLEMENTAL FIGURES

Legend on the next page

Suppl. Figure 1 | Composition and function of the gastric microbiome are altered in H. pylori-infected tissues.

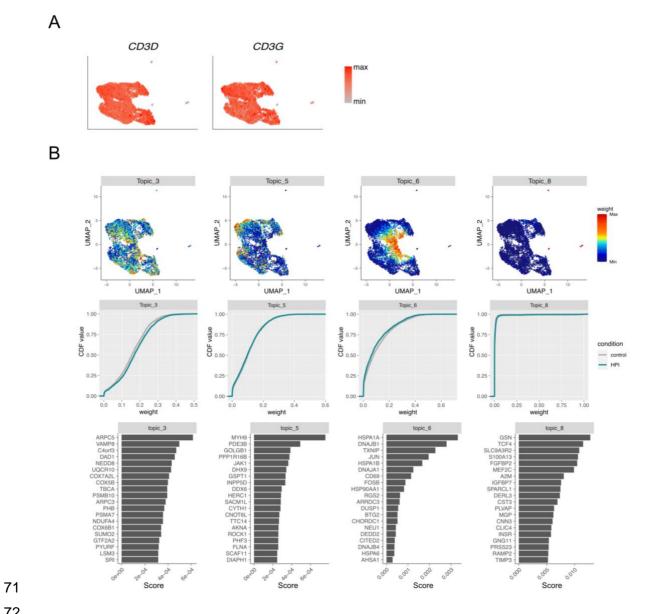

- 28 a. The ten most abundant bacteria at the Phylum level and sample clustering of the HPI and 29 uninfected tissues based on Bray-Curtis distance. b. The PCoA plot of fundus and antrum 30 samples with identified bacterial species based on Bray-Curtis distance. The analysis of 31 similarities (Anosim) showing no difference in the microbial diversity between the fundus and 32 antrum regions. c. The PCoA plot based on functional abundance in KEGG database. The analysis of similarities (Anosim) showed a significant difference in the functional abundance 33 34 of the HPI and uninfected tissues. d. Heatmap highlighting the significantly altered microbial 35 functional pathways in KEGG database between HPI and uninfected tissues. The differential 36 metagenome functions were obtained using Metastats analysis with q value < 0.05. e. Significantly changed microbial carbohydrate-active enzymes families from the gastric 37 microbiome of the HPI tissues using linear discriminant analysis (LDA) effect size (LEfSe) 38 39 analysis (LDA>3). f. Significantly changed enzymes observed from the gastric microbiome of 40 the HPI tissues compared to uninfected tissues from KEGG enzyme database. The 41 differential metagenome enzymes were obtained using Metastats analysis with q value < 42 0.05. g. Only resistance gene hp1181, expressed in the H. pylori-infected tissues, was 43 identified based on the comprehensive antibiotic research database (CARD). The differential
- 44 metagenome gene was obtained using Metastats analysis with q value < 0.05.

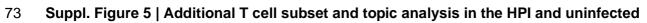
Suppl. Figure 2 | Sorting and clustering of immune cells from the stomach of HPI and 48 uninfected tissues. 49


a. Gating strategy for the sorting of selected immune cells from the stomach of HPI and 50

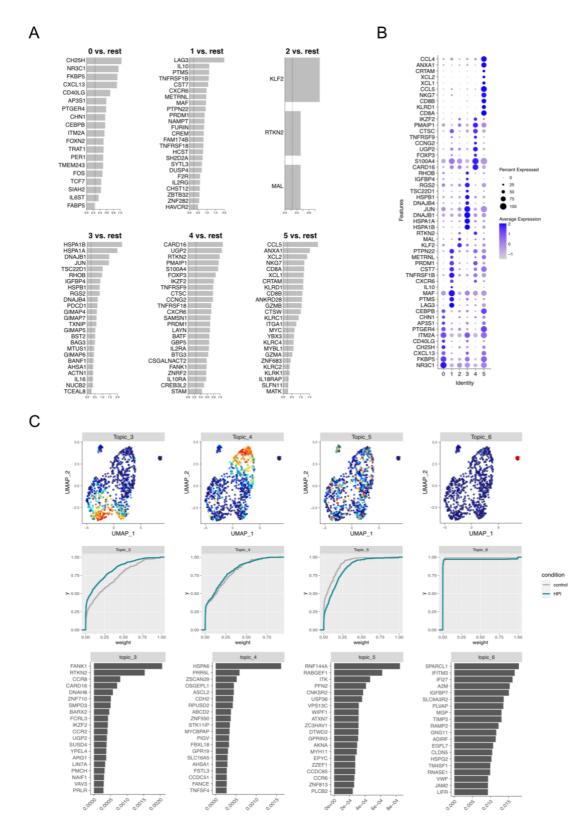
- 51 uninfected tissues. b. Histograms showing expression of fundus- and antrum-associated
- hashtags within each cluster identified in Figure 2b. c. Pie charts comparing percentages of 52
- clustered immune cells from Fig. 2B in antrum and fundus, within the three major groups of 53
- co-enriched cells: B cells, T cells and myeloid cells. 54
- 55

57 Suppl. Figure 3 | Innate immune cells from the HPI and uninfected tissues.


- **a.** Top differentially expressed genes in clusters shown in Figure 3a. **b.** Complete gating
- 59 strategy used for the identification of ILC subsets in the gastric lamina propria. c.
- 60 Transcriptomic insight of cells annotated as ILC in Figure 5a. d. Example of CD117 and
- 61 CRTH2 protein expression in CD45⁺ cells other than Lineage⁻CD127⁺ ILCs.

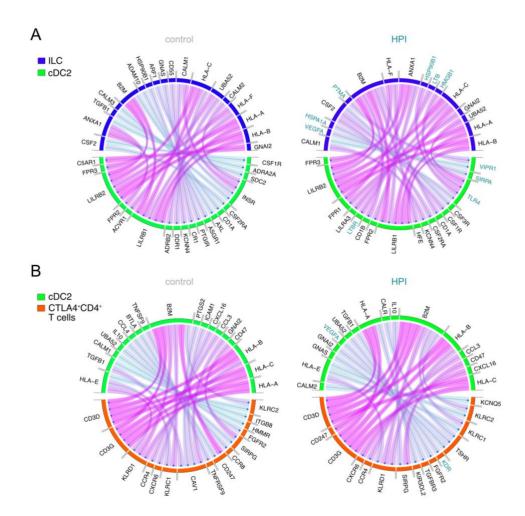


Legend on the next page


63 Suppl. Figure 4 | Additional B cell topic analysis in the HPI and uninfected tissues.

- a. B cell topics left out from analysis in Figure 4d. b. Weight of selected genes that define B
- 65 cell topics. **c-e**. UMAP visualization of gastric cells from intestinal metaplasia patients
- 66 sequenced by Zhang et al., Cell Rep (2019) (GSE134520) (40), color-coded based on
- 67 unbiased clustering (c), *H. pylori* status (d), and their sample origin in the published paper
- 68 (e). f. Heatmap of the clustered GSE134520 dataset. g. Percentages of immune cells
- 69 detected in the clustered GSE134520 dataset.
- 70

- tissues.
- a. UMAP plots showing expression of CD3D and CD3G in T cells. b. T cell topics left out
- from analysis in Figure 5d.



79

80 Suppl. Figure 6 | Characterization of activated CD4⁺ T cell subsets in the HPI and

81 uninfected tissues.

- 82 **a.** Top differentially expressed genes in clusters shown in Figure 6a. **b.** Dotplot showing
- 83 expression of selected cell markers that were used to annotate clusters in Figure 6a. **c.** T cell
- 84 topics left out from Figure 6d.

87 Suppl. Figure 7 | Innate and adaptive immune cells interact to form gastric TLS in the

88 HPI tissues

- 89 a. Chord diagrams showing predicted communication pathways between ILC (ligands) and
- 90 cDC2 (receptors) in HPI and uninfected tissues. **b**. Chord diagrams showing predicted
- 91 communication pathways between cDC2 (ligands) and activated CD4⁺ T cells (receptors) in
- 92 HPI and uninfected tissues.
- 93
- 94
- 95

96 Supplementary Table 1. Clinical characteristics of all patients.

Patient	Age	Height	Weight	Gender	H. pylori infection	Preoperative disease	Experimental purpose			
ID							FACS	Immuno- fluorescence	Microbiome ID	scRNA seq.
163-11	51	167	121	Woman	Positive	Hypertension Hypothyreosis	X			Х
163-13	25	172.5	98	Woman	Negative	None	Х			Х
163-14	27	176	130	Woman	Negative	Type 2 diabetes	Х			
163-15	38	161	94	Woman	Positive	None	Х	X		Х
163-16	64	162	90	Woman	Negative	Hypertension Asthma Allergy	X			
163-17	35	161	103	Woman	Negative	Thyroid disease		X		
163-22	40	189	150	Man	Negative	None	Х		Control 1	Х
163-24	34	160	89	Woman	Positive	None	Х	X	H.pylori 1	
163-25	32	171	114	Woman	Negative	None	Х	X	Control 2	Х
163-30	32	165	104	Woman	Negative	None				
163-31	67	150	87	Woman	Positive	Hypertension Atrial fibrillation	X	X	H.pylori 2	Х
163-32	48	173	115	Woman	Negative	None		X	Control 3	Х
163-33	24	164	102	Woman	Negative	Asthma		1		Х
163-35	26	165	129	Woman	Negative	None		1		Х

99 Supplementary Table 2. Antibodies used for cell sorting prior to scRNA isolation

Color	Marker	Clone	Cat. No.	Company	Used for
AlexaFluor 488 /	CD3	SK7	344804	BioLegend	Lineage
FITC	TCRα/β	IP26	306706	BioLegend	
	TCRγ/δ	B1	331208	BioLegend	-
	CD94	DX22	305504	BioLegend	
	CD34	581	343504	BioLegend	
	FcεRla	AER-37	334608	BioLegend	
		(CRA-1)			
PE-Cy7	CD127	R34.34	A64618	Beckman	CD127
				Coulter	
PE-Cy5.5	HLA-DR	TU36	MHLDR18	Invitrogen	HLA-DR
APC	CD45	HI30	560973	BD Biosciences	CD45
DAPI	-	-	564907	BD Biosciences	Dead
					cells

Hashtag	Barcode sequence	Company	Region stained
TotalSeq™-B0251	GTCAACTCTTTAGCG	BioLegend	Fundus
TotalSeq™-B0252	TGATGGCCTATTGGG	BioLegend	Antrum

104 Supplementary Table 3. Antibodies used for immunophenotyping of ILCs

Color	Marker	Clone	Cat. No.	Company	Used	
					for	
AlexaFluor 488 /	CD3	SK7	344804	BioLegend	Lineage	
FITC	CD19	4G7	345776	BD Biosciences	+ dead	
	CD14	TÜK4	F0844	Dako	cells	
	CD1a	HI149	300104	BioLegend	-	
	CD123	6H6	306014	BioLegend	-	
	BDCa2	AC144	130-090-510	Miltenyi	-	
	TCRα/β	IP26	306706	BioLegend	-	
	TCRγ/δ	B1	331208	BioLegend	-	
	CD94	DX22	305504	BioLegend	-	
	CD34	581	343504	BioLegend	-	
	FcεRla	AER-37	334608	BioLegend	-	
		(CRA-1)				
	Live/Dead	-	L34969	Invitrogen		
PE-Cy7	CD127	R34.34	A64618	Beckman Coulter	CD127	
PE-Cy5.5	CD117	104D2D1	A66333	Beckman Coulter	CD117	
PE-Cy5	Nkp44	Z231	A66903	Beckman Coulter	NKp44	
	(CD336)					
PE-CF594	CRTH2	BM16	563501	BD Biosciences	CRTH2	
	(CD294)					
APC	NKG2a	Z199	A60797	Beckman Coulter	NKG2A	
	(CD159a)					
QD605	CD161	HP-3G10	339916	BioLegend	CD161	
AmCyan	CD45	HI30	560777	BD Biosciences	CD45	

108 Supplementary Table 4. Antibodies used for immunofluorescence microscopy

Reagents	Clone	Cat. No.	Company				
Primary							
Polyclonal rabbit anti-human CD3	-	GA503	Dako				
Biotinylated monoclonal mouse anti-human CD20	2H7	567709	BD Biosciences				
PE-conjugated monoclonal mouse anti-human CD11c	B-ly6	555392	BD Biosciences				
Secondary							
AF488-conjugated donkey anti-rabbit antibody	-	A-21206	Invitrogen				
AF647-conjugated streptavidin	-	405237	BioLegend				

112 Supplementary Table 5. (separate excel file). DEG analysis between clusters from

113 fundus VS antrum of figure 2.