Supplemental material

Figure S 1: Plasma viral load of individual animals. Viral load was determined in individual animals. The same control animals DB258 and DB368 receiving nonimmune sera (<10 μ PRNT₅₀) are shown for all four panels in blue. The other animals receiving VLA1553-specific serum **A.** HS d14 (titer range 33-91 μ PRNT₅₀) **B.** MHS d84 (titer range 22-75 μ PRNT₅₀) **C.** MS d180 (titer range 19-45 μ PRNT₅₀) and **D.** HS d180 (titer range 18-50 μ PRNT₅₀) are shown in red. μ PRNT₅₀ titer for the individual animal is shown in brackets. LLOQ: 500 RNA copies/mL, LLOD: 60 RNA copies/mL (5 copies/reaction). p.e.: post-exposure.

Table S 1: Neutralizing antibody titers (μPRNT₅₀) of individual NHPs and peak **viremia titers (copies/mL) after WT CHIKV challenge**. μPRNT₅₀ titers prior to WT

CHIKV challenge were measured by Nexelis using an Asian genotype, the liveattenuated CHIKV vaccine strain TSI-GSD-218 or 181/clone 25 developed by the Walter Reed Army Institute of Research (WRAIR, US). Viremia was determined using RT-qPCR.

		Day -1 (*Day -6)	Day 0	Day 2-6	
Serum transferred	Sample ID	µPRNT₅₀ titer	µPRNT₅₀ titer	Viremia peak (copies/mL)	Day of peak viremia
	BT337	<10	<10	7.00 × 10 ⁷	Day 3
Control	MF1508	<10	<10	8.5 × 10 ⁸	Day 2
Control	DB229	<10	<10	1.00 × 10 ⁹	Day 3
	DB257	<10	<10	1.70 × 10 ⁹	Day 2
	DB277	<10	10	7.79 × 10 ²	Day 3
	DB295	<10	15	2.10 × 10 ⁵	Day 4
ULS d28	DB311	<10	15	6.20 × 10 ¹	Day 3
	DB315	<10	13	3.50 × 10⁵	Day 6
	DB316	<10	12	1.90 × 10 ³	Day 3
LS d28	MF1401	<10	17	8.35 × 10 ²	Day 2
	MF1402	<10	20	8.07 × 10 ²	Day 2
	BV256	<10	26	5.87 × 10 ³	Day 3
	CD876	<10	14	4.08 × 10 ³	Day 3
	CG181	<10	22	1.04 × 10 ³	Day 3
	MF1403	<10	37	3.22 × 10 ³	Day 2
	MF1404	<10	82	8.96 × 10 ³	Day 3
MS d28	BT913	<10	52	5.07 × 10 ²	Day 3
	BT914	<10	31	0	Day 3
	BU365	<10	21	4.45 × 10 ³	Day 3
HS d28	DB322	<10	103	7.00 × 10 ¹	Day 3
110 020	DB355	<10	155	0	Day 3

		Day -1 (*Day -6)	Day 0	Day 2-6	
				Viromia poak	Day of
Serum transferred	Sample ID				peak
		titer	titer	(copies/mL)	viremia
	DB366	<10	155	0	Day 3
	DB367	<10	109	0	Day 3
	DB374	<10	82	0	Day 3
	DB236	<10*	75	2.69 × 10 ⁴	Day 2
	DB262	<10*	30	2.48 × 10 ⁴	Day 3
MHS d84	DB276	<10*	46	2.78 × 10 ³	Day 4
	DB362	<10*	22	6.22 × 10 ³	Day 4
	DB399	<10*	25	1.59 × 10 ⁴	Day 3
	DB230	<10*	91	2.98 × 10 ⁴	Day 4
	DB247	<10*	77	5.87 × 10 ⁴	Day 3
HS d14	DB281	<10*	68	6.19 × 10 ³	Day 3
	DB339	<10*	89	3.69 × 10 ³	Day 4
	DB340	<10*	33	4.39 × 10 ⁴	Day 3
Control	DB258	<10*	<10	6.70 × 10 ⁸	Day 2
	DB368	<10*	<10	7.40 × 10 ⁹	Day 3
	DB273	<10*	27	7.70 × 10 ⁴	Day 3
	DB304	<10*	19	1.04 × 10 ⁴	Day 4
MS d180	DB329	<10*	34	2.14 × 10 ³	Day 4
	DB364	29	45	2.38 × 10 ⁴	Day 4
	DB389	<10*	20	7.31 × 10 ⁴	Day 2
	DB263	<10*	26	2.00 × 10 ⁴	Day 3
	DB318	<10*	50	1.32 × 10⁵	Day 3
HS d180	DB363	<10*	18	3.27 × 10 ⁴	Day 2
	DB375	<10*	27	2.13 × 10 ⁴	Day 2
	DB379	<10*	22	1.89 × 10 ³	Day 4

Table S 2: TCID₅₀ **titers at time of peak viremia and post peak viremia**. NHP plasma samples from control animals receiving non-immune serum and VLA1553 Phase 1 serum treated animals were analyzed at peak viremia (day 2 and 3 p.e.), day 4 p.e. and post-peak viremia (day 6 and 7 p.e.). Replicating CHIKV was determined in a conventional Vero-cell based TCID₅₀ assays or with a pre-amplification step on mosquito cells for detection of replicating CHIKV in expected low titer samples.

Treatment	Animala	Sorum	Day	oonioo/ml		
group	Ammais	p.e.		copies/inc		
	BT337		2	5.79E+07	3.50 × 10 ⁵ *	
	BT337		2	5.80E+07	3.16 × 10 ⁵	
	BT337		3	7.00E+07	4.22 × 10 ⁴	
	BT337		4	3.50E+06	n.d.	
	DB229		2	8.70E+08	2.37 × 10 ⁶	
	DB229	human	3	1.00E+09	7.50 × 10 ⁵	
Controls	DB229	non-	4	7.00E+06	6.25 × 10 ³	
	DB229	immune	7	4.40E+05	n.d.	
	DB258	serum	6	1.92E+06	n.d. *	
	MF1508		2	8.50E+08	1.78 × 10 ⁶	
	MF1508		6	1.70E+05	n.d.	
	DB257		2	1.70E+09	2.37 × 10 ⁶	
	DB257		3	9.30E+08	1.78 × 10 ⁶	
	DB257		7	2.10E+04	n.d.	
VLA1553-	BV256	MS d28	3	5.87E+03	n.d. *	
specific	MF1404	LS d28	3	8.96E+03	n.d. *	
human	DB295	ULS d28	3	9.30E+03	n.d. *	
serum	DB295		4	2.08E+05	n.d. *	

DB2	95	6	5.52E+04	n.d. *
DB3	15	7	2.46E+04	n.d. *
DB3	15	9	1.98E+03	n.d. *
DB2	30	3	2.98E+04	n.d. *
DB3	40 HS d14	3	4.40E+04	n.d. *
DB2	47	3	5.87E+04	n.d. *
DB2	81	3	6.19E+03	n.d. *
DB2	62 MHS d84	3	2.48E+04	n.d. *
DB3	99	3	1.59E+04	n.d. *
DB3	64 MS d180	4	2.38E+04	n.d. *
DB3	04	4	1.04E+04	n.d. *
DB3	63	2	3.27E+04	n.d. *
DB3	75 HS d180	4	2.00E+04	n.d. *
DB2	63	3	2.00E+04	n.d. *
DB3	18	3	1.32E+05	n.d. *

p.e.: post-exposure; n.d.: not-detectable; HS: high titer serum; MHS: medium high titer serum; MS: medium titer serum; LS: low titer serum; ULS: ultra-low titer serum.

*, TCID $_{50}$ assay with a pre-amplification step on mosquito cells.

1 2 3 4 5 6 7 Time relative to challenge (day)

-1

ò

8

9 10

В

Figure S 2: Cell blood counts post WT CHIKV challenge. Cell blood counts were compared between animals receiving VLA1553 Phase 1 serum and NHPs receiving human non-immune serum (CTL, black lines) prior to WT CHIKV challenge. Data represent Mean ± standard deviation of percentages of **A.** lymphocytes, the same six control animals (CTL) are shown on all four graphs and **B.** neutrophils within animals from each group, the same six control animals (CTL) are shown on all four graphs.

Ó

250 200 150

50

ō

10

Day p.e.

-10

10

Figure S 3: Expression of inflammatory markers. Comparison of inflammatory response in VLA1553 Phase 1 and non-immune serum treated NHPs. IFN- γ , IL-2, IL-4, IL-6, IL-8, IL-10, IL-12/IL-13 (p40), IL-18 and TNF- α were measured using the Milliplex system and Granzyme B, IFN- α , IL-1 β , IL-1RA, IL-12 (p70), IL-15, IL-17A, MCP-1 and MIP-1 β were measured using the ProcartaPlex system. p.e.: post-exposure.

Figure S 4: CHIKV RNA titers in tissues day 28 post challenge. Results are expressed as the ratio CHIKV RNA / GAPDH RNA = 2- Δ CT. The median is plotted. Human non-immune sera injected animals are shown in blue; animals receiving the LS d28 shown in square pink; animals receiving MS d28 shown in red; animals receiving ULS d28 shown in black; animals receiving HS d28 shown in bright green; animals receiving HS d14 shown in orange; animals receiving MS d180 are shown in purple and animals receiving HS d180 are shown in brown. ANOVA non parametric Kruskal-Wallis test p<0.0001; post test Dunn's multiple comparisons: * p<0.05; ** p<0.01, *** p<0.001. To note, for reproductive tract, results are combined values from vagina of the female and seminal vesicle from the male. Below limit of quantification (CHIKV Cq ≥35), below limit of detection (1E-07). LN: lymph node; cap.: capsule

Table S 3: Sera from Yoon *et al.*, 2015 tested in µPRNT compared to PRNT₅₀ or PRNT₈₀ titers reported by AFRIMS.

	µPRNT₅₀	PRNT ₈₀ Titer	Ratio
	Valneva	AFRIMS	µPRNT₅₀/PRNT ₈₀
CPC C 0004 00 Y01 S01 B 001	<20	<10	-
CPC C 0004 00 Y02 S02 B 002	299	64	4.67
CPC C 0047 00 Y01 S01 B 001	<20	<10	-
CPC C 0047 00 Y02 S02 B 002	2086	537	3.88
CPC C 0092 00 Y01 S01 B 001	<20	<10	-
CPC C 0092 00 Y02 S02 B 002	1075	415	2.59
CPC C 0097 00 Y01 S01 B 001	<20	<10	-
CPC C 0097 00 Y02 S02 B 002	2621	661	3.97
CPC C 0139 00 Y01 S01 B 001	<20	<10	-
CPC C 0139 00 Y02 S02 B 002	1216	408	2.98
CPC C 0147 00 Y01 S01 B 001	<20	<10	-
CPC C 0147 00 Y02 S02 B 002	1208	425	2.84
CPC C 0175 00 Y01 S01 B 001	<20	<10	-
CPC C 0175 00 Y02 S02 B 002	576	111	5.19
CPC C 0178 00 Y01 S01 B 001	<20	<10	-
CPC C 0178 00 Y02 S02 B 002	2417	625	3.87
CPC C 0273 00 Y01 S01 B 001	<20	<10	-
CPC C 0273 00 Y02 S02 B 002	2143	811	2.64
CPC C 0406 00 Y01 S01 B 001	<20	<10	-
CPC C 0406 00 Y02 S02 B 002	5297	569	9.31
CPC C 0458 00 Y01 S01 B 001	<20	<10	-
CPC C 0458 00 Y02 S02 B 002	804	238	3.38
CPC C 0658 00 Y01 S01 B 001	<20	<10	-
CPC C 0658 00 Y02 S02 B 002	1808	488	3.70
CPC C 0673 00 Y01 S01 B 001	<20	<10	-
CPC C 0673 00 Y02 S02 B 002	3105	3347	0.93

Samala ID	µPRNT₅0	PRNT ₈₀ Titer	Ratio
Sample ID	Valneva	AFRIMS	µPRNT₅₀/PRNT ₈₀
CPC C 0751 00 Y01 S01 B 001	<20	<10	-
CPC C 0751 00 Y02 S02 B 002	289	122	2.37
CPC C 0757 00 Y01 S01 B 001	<20	<10	-
CPC C 0757 00 Y02 S02 B 002	1199	337	3.56
CPC C 0857 00 Y01 S01 B 001	<20	<10	-
CPC C 0857 00 Y02 S02 B 002	2824	1088	2.60
CPC C 0879 00 Y01 S01 B 001	<20	<10	-
CPC C 0879 00 Y02 S02 B 002	2904	347	8.37
CPC C 0901 00 Y01 S01 B 001	<20	<10	-
CPC C 0901 00 Y02 S02 B 002	355	86	4.13
CPC C 0043 00 Y01 S01 B 001	1019	284	3.59
CPC C 0043 00 Y02 S02 B 002	1514	390	3.88
CPC C 0114 00 Y01 S01 B 001	1266	705	1.80
CPC C 0114 00 Y02 S02 B 002	1875	717	2.61
CPC C 0190 00 Y01 S01 B 001	299	158	1.89
CPC C 0190 00 Y02 S02 B 002	170	203	0.84
CPC C 0278 00 Y01 S01 B 001	<20	<10	-
CPC C 0278 00 Y02 S02 B 002	2454	1228	2.00
CPC C 0421 00 Y01 S01 B 001	694	97	7.15
CPC C 0421 00 Y02 S02 B 002	349	147	2.38
CPC C 0567 00 Y01 S01 B 001	<20	<10	-
CPC C 0567 00 Y02 S02 B 002	942	116	8.12
CPC C 0607 00 Y01 S01 B 001	<20	<10	-
CPC C 0607 00 Y02 S02 B 002	2971	420	7.07
CPC C 0653 00 Y01 S01 B 001	3135	225	13.93
CPC C 0653 00 Y02 S02 B 002	1409	290	4.86
CPC C 0688 00 Y01 S01 B 001	<20	<10	-
CPC C 0688 00 Y02 S02 B 002	4136	2372	1.74

	µPRNT₅0	PRNT ₈₀ Titer	Ratio
Sample ID	Valneva	AFRIMS	µPRNT₅₀/PRNT ₈₀
CPC C 0699 00 Y01 S01 B 001	<20	<10	-
CPC C 0699 00 Y02 S02 B 002	3903	346	11.28
CPC C 0740 00 Y01 S01 B 001	<20	<10	-
CPC C 0740 00 Y02 S02 B 002	2001	297	6.74
CPC C 0814 00 Y01 S01 B 001	<20	<10	-
CPC C 0814 00 Y02 S02 B 002	1745	544	3.21
CPC C 0834 00 Y01 S01 B 001	<20	<10	-
CPC C 0834 00 Y02 S02 B 002	5133	674	7.62
CPC C 0847 00 Y01 S01 B 001	<20	<10	-
CPC C 0847 00 Y02 S02 B 002	2263	602	3.76
CPC C 0950 00 Y01 S01 B 001	702	140	5.01
CPC C 0950 00 Y02 S02 B 002	810	236	3.43
		GMR	3.73
		Lower 99% Cl of geo. mean ratio	2.86
		Upper 99% Cl of geo. mean ratio	4.87

PRNT: plaque reduction neutralization test; µPRNT₅₀: neutralization titer determined in a microneutralization assay (96 well format) using a 50% plaque reduction; PRNT₈₀: neutralization titer using a 80% plaque reduction; CI: confidence interval; GMR: geometric mean ratio.