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Introduction
Atrial fibrillation (AF) has a 25% lifetime risk and accounts for one-third of  all cardiovascular diseases (1, 
2). Debilitating complications linked to AF include stroke and heart failure, making early diagnosis, accu-
rate prognosis, and effective treatment of  the utmost importance (3). AF is characterized by a constant, 
disorganized atrial activity (2), which results most commonly from ectopic electrical impulses originating 
from pulmonary veins (PVs), which trigger left atrium (LA) depolarization competing with sinus rhythm 
(4). Because of  the importance of  the PV in AF pathophysiology, and because the PV is poorly understood, 
we performed a robust molecular interrogation of  the PV alongside the better understood LA (5, 6).

AF risk is linked to common single nucleotide polymorphisms (SNPs) at dozens of loci (7, 8), including 
the noncoding AF-associated region (AFAR) at the 4q25 locus in enhancers controlling PITX2 expression (9), 
which encodes the developmentally critical, paired-like homeodomain transcription factor (TF), PITX2. Our 
recent work demonstrated that the AFAR contains multiple cis-regulatory element (CRE) signatures, and makes 
3-dimensional contact with the Pitx2 promoter in mouse LA cardiomyocytes (CMs), and has enhancer activity 
(9). PITX2, required for the development of the PV and LA, is expressed in the CMs of the adult LA, where it 
has been implicated in AF pathophysiology in both patients and animal models (9–14). Deletion of the AFAR 
in mice results in decreased Pitx2 expression and increases in inflammation, Bmp10 expression, and AF suscepti-
bility (9), similar to human patients with AFAR SNPs (15). Although these previous studies suggested a molecu-
lar role for Pitx2 in adult LA myocardium in AF susceptibility (9, 13, 16), a comprehensive understanding of the 
downstream transcriptional and epigenetic role of Pitx2 is limited in the LA and unexplored in the PV (6, 17).

PITX2, as do all TFs, functions cooperatively and antagonistically through interaction with other TFs to 
regulate transcription at CREs in CMs. For example, PITX2 interacts with NRF2 to cooperatively regulate 
oxidative stress response in CMs (17–19), while antagonistically regulating TBX5-dependent CREs in LA 
CMs, indicating that PITX2 acts in various cis-regulatory grammars to regulate transcription in adult CMs 
(20, 21). A comprehensive understanding of  how PITX2 acts on TF grammars in PV CMs is unknown.

To investigate Pitx2 function in the adult PV and LA, we performed single nuclei RNA sequencing 
(snRNA-Seq) and single nuclei assay for transposase-accessible chromatin sequencing (snATAC-Seq) on 

Atrial fibrillation (AF), the most common sustained cardiac arrhythmia and a major risk factor for 
stroke, often arises through ectopic electrical impulses derived from the pulmonary veins (PVs). 
Sequence variants in enhancers controlling expression of the transcription factor PITX2, which is 
expressed in the cardiomyocytes (CMs) of the PV and left atrium (LA), have been implicated in AF 
predisposition. Single nuclei multiomic profiling of RNA and analysis of chromatin accessibility 
combined with spectral clustering uncovered distinct PV- and LA-enriched CM cell states. Pitx2-
mutant PV and LA CMs exhibited gene expression changes consistent with cardiac dysfunction 
through cell type–distinct, PITX2-directed, cis-regulatory grammars controlling target gene 
expression. The perturbed network targets in each CM were enriched in distinct human AF 
predisposition genes, suggesting combinatorial risk for AF genesis. Our data further reveal that PV 
and LA Pitx2-mutant CMs signal to endothelial and endocardial cells through BMP10 signaling with 
pathogenic potential. This work provides a multiomic framework for interrogating the basis of AF 
predisposition in the PVs of humans.
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nuclei from PV and LA from control and Pitx2-mutant mice. We found 3 CM populations, 2 of  which are 
resident in PV, including 1 with an expression signature of  automaticity. Pitx2-mutant CMs exhibited differ-
entially expressed genes (DEGs) that are associated with accessible PITX2 binding motifs. Moreover, these 
PITX2 binding motifs are associated with distinct regulatory grammars in different CM populations. These 
downstream DEGs are enriched for other AF predisposition genes identified in humans. Last, mutant CMs 
of  the PV and LA signal to endothelial and endocardial cells through BMP10. Together, our work provides 
a robust set of  transcriptional and epigenetic data sets that will provide a platform for interrogating the LA 
and PV in AF predisposition.

Results
Single nuclei profiling of  Pitx2-mutant LA and PV. Pitx2 is expressed in and required for the development 
of  the PV and left atrial myocardium (11–13). Moreover, Pitx2 expression persists into the adult, albeit 
at reduced levels (13). To investigate Pitx2 function in adult PV and LA, we used the MCK-cre Pitx2fl/– 
(referred to as Pitx2 mutant, Methods) mouse model, which we have shown has sinus node dysfunction 
and atrial conduction defects, 2 AF-predisposing conditions in humans (22, 23). We microdissected 
and isolated nuclei from PV and LA of  Pitx2 controls (Pitx2fl/+) and Pitx2 mutants (Figure 1A) and per-
formed snRNA-Seq and snATAC-Seq.

Following quality control and removal of  low-quality nuclei by CellRanger and CellBender 
(24) (Methods and Supplemental Figure 1; supplemental material available online with this article; 
https://doi.org/10.1172/jci.insight.158895DS1), we performed dimension reduction and integrated 
cluster analysis on 41,940 nuclei across the 4 samples using Seurat (25–27) (Figure 1B). We identified 
18 clusters representing 14 cell types, including 3 clusters of  CMs, based on marker gene expression 
(Figure 1B, Supplemental Figure 2, and Supplemental Table 1). Likewise, for snATAC-Seq, we per-
formed dimension reduction and integrated cluster analysis on 18,654 nuclei across 4 samples fol-
lowing quality control and removal of  low-quality nuclei using Signac (26, 28) (Methods, Figure 1C, 
and Supplemental Figure 1). Cluster cell type annotations for snATAC-Seq nuclei, derived from snR-
NA-Seq, revealed 15 distinct clusters based on chromatin accessibility (Methods; Figure 1, B and C; 
and Supplemental Figure 3).

We asked whether the composition of  the 4 major PV and LA cell types, making up 67%–82% of  all 
nuclei per sample, had significant differences between genotypes. Using a stringent cutoff  (FDR < 1 × 10–5), 
we found that in both the snRNA-Seq and snATAC-Seq data sets, CMs (snRNA-Seq: χ2 = 119.7 and FDR 
= 3.0 × 10–27; snATAC-Seq: χ2 = 39.5 and FDR = 8.6 × 10–10) and endocardium (EndoC) (snRNA-Seq: χ2 
= 43.5 and FDR = 1.1 × 10–10; snATAC-Seq: χ2 = 21.4 and FDR = 7.4 × 10–6) represented a greater pro-
portion of  nuclei in Pitx2-mutant LA (Figure 1, D and E). There was an approximate gain of  6% in CMs 
and 4% in EndoC for both data types in the Pitx2-mutant LA. Additionally, Pitx2-mutant LA fibroblasts 
(FBs) represented a reduced proportion of  nuclei overall (snRNA-Seq: 9% less, χ2 = 246.1, and FDR = 1.5 
× 10–54; snATAC-Seq: 11% less, χ2 = 144.3, and FDR = 2.5 × 10–32). In contrast, the PV had no cellular 
compositional changes between control and Pitx2-mutant samples apart from PV endothelium (Endo) from 
snATAC-Seq data, which had a reduced proportion of  nuclei in Pitx2-mutant condition (5% less, χ2 = 69.3, 
and FDR = 3.4 × 10–16; Figure 1, D and E). Together, our data suggest that Pitx2 regulates LA cellular 
composition, consistent with compositional differences observed in the LA and right atrium of  human 
snRNA-Seq (29); however, we did not detect strong differences in PVs (Figure 1, D and E).

Distinct CM subpopulations in PVs. Using iterative clustering, we identified 3 CM clusters in the snR-
NA-Seq data, namely CM1, CM2, and CM3 (Figure 2A). By separating samples by tissue source, PV 
versus LA, we found that both the control and Pitx2-mutant LA were predominantly composed of  CM1 
(Figure 2, B–D). In contrast, the PVs from both control and Pitx2-mutant samples were composed of  a 
mixture of  CM1 (75%), CM2 (20%), and CM3 (5%) (Figure 2, B–D).

We next performed pairwise differential gene expression testing between CM1, CM2, and CM3 (Sup-
plemental Table 2). Among the genes with highest expression in CM1, we identified several atrial mark-
ers, including Nppa and Kcnj3, which are both associated with AF (30, 31) (Figure 2E). Genes enriched 
in CM2 included the L-type calcium channel Cacna1c, associated with sustained AF (32); Ablim1, which 
encodes an actin binding protein associated with left-right asymmetry and is expressed in the developing 
LA (33); Ivnsabp1, encoding an actin binding protein that functions in cytoskeleton stabilization (34); 
Fhl2, encoding a LIM-containing protein associated with adrenergic stress signaling (35); and Tacc2, a 
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centrosomal protein (36). For genes enriched in CM3, we identified several ion channels associated with 
AF and cardiac automaticity, including Hcn1, Cacna1d, and Slc24a2 (7, 37).

To further characterize CMs, we performed pathway analysis on the complete set of  CM-enriched genes 
(Figure 2F) (38). CM3 exhibited many overlapping terms associated with neuronal, ion channel, and cell-
cell adhesion and intercellular communication due to many expressed ion channel genes (Figure 2F and 
Supplemental Table 3). Intriguingly, CM3 also expressed genes associated with sinoatrial node cell devel-
opment, specifically the transcription factors Tbx3, Tbx18, and Shox2, consistent with the hypothesis that 
CM3 has automaticity at homeostasis (Figure 2, E and F, and Supplemental Tables 2 and 3). CM2 exhib-
ited several overlapping pathways associated with muscle cell development, muscle contraction, and cyto-
skeletal organization owing to its enrichment in several core components of  the cardiac contractile machin-
ery consistent with previous ultrastructural studies of  PV CMs (39) (Figure 2F and Supplemental Table 3).  

Figure 1. Single nuclei profiling of the pulmonary vein and left atrium. (A) Experimental outline used to profile the transcriptome and chromatin acces-
sibility of single nuclei of the left atrium (LA) and pulmonary vein (PV) from pools of 6- to 8-month-old Pitx2 control (Ctrl: Pitx2fl/+) and mutant (Mut: 
MCK-cre Pitx2fl/–) mice. (B) Uniform manifold approximation and projection (UMAP) representation of all filtered nuclei identified by single nuclei RNA-se-
quencing (snRNA-Seq) and color-coded and labeled in clusters. (C) UMAP representation of single nuclei assay for transposase-accessible chromatin using 
sequencing (snATAC-Seq) with colors and labels lifted from the snRNA-Seq (in B). (D) Percentage of total nuclei per sample from the 4 major clusters 
identified in the snRNA-Seq data set. (E) Percentage of total nuclei per sample identified in the snATAC-Seq data set. Adjusted P value (FDR) of signifi-
cant comparisons (FDR < 1 × 10–5) between LA or PV control and mutant samples are presented.
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In addition, CM2-enriched genes were uniquely associated with carbohydrate metabolism, e.g., Gck, Ugp2, 
and Gys1 (Supplemental Tables 2 and 3). CM1-enriched genes represented pathways of  cardiac contraction 
and ion channels (Figure 2F and Supplemental Table 3).

To test for differences in chromatin accessibility between CM populations, we identified differentially 
accessible regions (DARs) by comparing the snATAC-Seq of  CM1 and CM2, since chromatin accessibility 
of  CM1 and CM3 was indistinguishable (Supplemental Figure 3). We found 1634 DARs with 126 regions 
more accessible in CM1 and 1508 regions more accessible in CM2 (Figure 2G and Supplemental Table 4). 
Utilizing available Hi-C data to identify topologically associating domains (TADs) and inter-TAD spaces 
(40, 41), we linked DARs with transcriptional start sites (TSSs) present within the same TAD/inter-TAD. 
We identified 54 genes more highly expressed in CM1 that were associated with more accessible DARs 
(Fisher’s exact test, FET, P = 5.2 × 10–16; odds ratio, OR = 4.1) and 194 genes more highly expressed in 
CM2 associated with more accessible DARs (FET P = 1.2 × 10–39; OR = 5.3; Figure 2H and Supplemen-
tal Table 4). In CM1, we identified several AF-associated genes, namely, Tbx5, Sox5, Slit3, Smad7, and 
Nppa. CM2 expressed AF-associated genes Efna5, Cpeb4, Myot, Pln, Rpl3l, Arhgap26, Thrb, Mapt, and Mypn 
(Figure 2I and Supplemental Figure 4). Together, DARs of  CM1 and CM2 identify a strong association 
between gene expression and chromatin accessibility.

Next, we performed motif  enrichment analysis to identify the potential TFs driving the DARs in CM1 
and CM2. For CM1, we found DARs were enriched for T-box, GATA, and POU homeodomain factors 
compared with CM2 DARs, while CM2 DARs were enriched for MADS, CP2 Grainyhead, and Jun-relat-
ed bZIPs relative to CM1 (Figure 2J). Of  interest, the DEG analysis between CM1 and CM2 identified sev-
eral factors in these families that corresponded with the motif  analysis, including Tbx5, Tbx20, and Gata4 
for CM1 and Creb5 and Nfe2l2 for CM2 (Figure 2J). In both cases, these factors are consistent with the 
Gene Ontology (GO) term analysis of  all DEGs (Figure 2F and Supplemental Table 3). CM1 represents 
atrial-like CMs, for which TBX5 is a master regulator of  identity (16, 42). On the other hand, CM2 has a 
signature of  oxidative stress mediation and metabolic regulation, exemplified by Nfe2l2, encoding NRF2, a 
well-established regulator in multisystem disorders (43) and a cofactor of  PITX2 in oxidative stress respons-
es of  the heart and eye (19, 44).

Pitx2-dependent transcription of  PV and LA CMs. To test PITX2-regulated gene expression in PVs and 
LA, we performed differential gene expression testing between controls and Pitx2 mutants for each of  the 
LA CM1, PV CM1, PV CM2, and PV CM3 populations (Figure 3A and Supplemental Table 5). Among 
the comparisons, we identified hundreds of  up- and downregulated DEGs in the Pitx2-mutant populations 
(Figure 3A and Supplemental Table 5). While many DEGs were only detected in 1 comparison, there 
were several DEGs with shared differences; i.e., Malat1, Mapk10, Sorbs2os, and Actn2 were downregulated 
across all 4 comparisons, while Ccnd3, 9530026P05Rik, and Ckm were consistently upregulated (Supplemen-
tal Table 5). In addition, in Pitx2 mutants, the CM1 populations of  the PV and LA both showed a gain in 
Bmp10 and Etv1 and a loss in Stat3, Nr4a3, Pdlim5, and Slc24a2, among other genes with known roles in AF 
predisposition (Supplemental Table 6).

To test the association between PITX2 binding and transcriptional cis-regulation of  DEGs, we first 
computed PITX2 normalized motif  scores (NMSs), which are a function of  chromatin accessibility and 
PITX2 motif  occurrences weighted by length, at accessible regions (Methods). PITX2 footprinting using 
snATAC-Seq (45) was associated with sites of  high PITX2 NMS (Supplemental Figure 5A). Using pub-
lished TADs (40, 41), we next assigned each scored region to DEGs within the same TAD (Figure 3B, 
Methods). The vast majority (73%–93%) of  DEGs from each of  the LA CM1, PV CM1, and PV CM2 
comparisons were associated with accessible regions containing PITX2 motifs. We refer to these regions as 
PITX2-containing CREs at DEGs (Supplemental Table 7). Comparing the PITX2-containing CREs with 

Figure 2. Identification of PV-enriched cardiomyocyte populations. (A) Uniform manifold approximation and projection (UMAP) representation of the 
cardiomyocyte (CM) subsets alone. (B) UMAP of CM subsets separated and colored by sample source. (C) The percentage of each CM subset in each sam-
ple. (D) The percentage CM subset from a given sample source. (E) Top CM subset markers identified by multiple pairwise comparison. Full list of markers 
is in Supplemental Table 2. (F) Heatmap of top 20 parent Gene Ontology (GO) terms identified across the 3 CM subsets. Complete details and child terms 
can be found in Supplemental Table 3. (G) Volcano plot showing the distribution of differentially accessible regions (DARs) between CM1 and CM2 (Sup-
plemental Table 4). (H) Odds ratio plot by Fisher’s exact test for the association between differentially expressed genes (DEGs) and DARs enriched in CM1 
or CM2. Significance values represent the adjusted P value (FDR). (I) Genome browser views at Tbx5 (top) and Myh7b (bottom). Pseudo-bulk ATAC signal 
plotted for CM1 and CM2 with DARs highlighted. On the right, violin plots representing normalized RNA expression. (J) Top 3 differential motifs identified 
for CM1 DARs and CM2 DARs alongside the list of any differentially expressed transcription factors (DE TFs) corresponding to each identified motif family.
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Figure 3. Systems biology approach to PITX2-dependent regulatory networks. (A) Quantification of differential-
ly expressed genes (DEGs) identified by subset comparing controls and Pitx2 mutants. Complete list including PV 
CM3 is in Supplemental Table 5. (B) Number of DEGs associated with a cis-regulatory element (CRE) with a PITX2 
normalized motif score (NMS) > 1 for each subset. (C) The mean percentage of colocalized motifs by transcription 
factor (TF) family. Colocalization was defined as the occurrence of at least 1 motif at a PITX2-containing CRE 
(NMS > 1) associated with a DEG in the given comparison. Only expressed TFs in each cell type were considered. 
Complete breakdown for each expressed TF by comparison is located in Supplemental Figure 6. (D) Identification 
of differentially correlating TF family networks at PV CM1 by Pearson’s correlation coefficient. Detailed correlation 
heatmaps for PV CM1 along with LA CM1 and PV CM2 are located in Supplemental Figure 8.

https://doi.org/10.1172/jci.insight.158895
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the VISTA (46) and ENCODE (47) databases revealed a significant enrichment of  these sites as predicted 
or validated CREs in the heart (Supplemental Figure 5B). Together, these data support the conclusion that 
DEGs of  the PV and LA are associated with PITX2 binding and transcriptional activity.

To further elucidate PITX2-mediated transcriptional cis-regulatory mechanisms, we focused on 
PITX2-containing CREs associated with genes whose expression was changed in Pitx2 mutants compared 
to control (Pitx2-dependent genes). We hypothesized that identification of  co-occurring motifs would 
uncover PITX2 cofactors, which would provide insight into the underlying differences in Pitx2-dependent 
gene expression of  PV and LA CMs. We performed motif  scanning on the union set of  accessible chro-
matin in CM1 and CM2 and binned individually expressed TFs by TF family. Globally, many TF family 
motifs co-occurred with PITX2 at similar rates, irrespective of  CM population or directionality of  gene 
expression difference. Included among the TF families we uncovered are previously validated PITX2 cofac-
tors including T-box, SMAD, and Forkhead families (Figure 3C and Supplemental Figure 6) (16, 48–50).

CREs are constrained in terms of  the identity and the number of  TF motifs that they contain, i.e., 
the TF grammar, an essential component of  combinatorial TF activity directing transcription. Disruption 
to TF grammar is sufficient to disrupt transcriptional activity at target genes (21). In our analysis (Figure 
3C), we focused on a one-to-one relationship between PITX2 and other motifs. We hypothesized that 
Pitx2-dependent gene expression depends on cis-regulatory grammar within PITX2-containing CREs and 
that differentially expressed TFs play a combinatorial role in cis-regulation of  Pitx2 target genes. To address 
this, we correlated previously identified motif  families in PITX2-containing CREs at up- and downregu-
lated genes in each of  the PV and LA CMs (Figure 3C and Supplemental Figure 6). Using these correla-
tion matrices, we performed spectral clustering to generate interaction networks of  PITX2 co-occurring 
motif  families (Supplemental Figure 7). Spectral clustering is a method of  clustering after dimensionality 
reduction to identify groups of  nodes based on their connecting edges, i.e., clusters of  TF families based 
on pairwise overlap fixed on occurrences with a PITX2 motif. Through this method, we identified several 
consistent interactions in PITX2-containing CREs at both up- and downregulated DEGs, e.g., bHLH-Sox-
SMAD or C2H2 ZF-IRF (Supplemental Figure 7). Second, differentially expressed TFs were often strong 
nodes within each network, e.g., Tbx20 (T-box) at PV CM1 upregulated genes or Tcf7l2 (Sox) at PV CM2 
up- and downregulated genes (Supplemental Figure 7).

Last, we wanted to identify the strongest differences between the CRE grammar dictating up- and 
downregulated genes, including whether PITX2 may be a direct driver. To do this, we contrasted the cor-
relation matrices of  motifs at all accessible chromatin sites irrespective of  PITX2 NMS associated with 
up- and downregulated genes for each of  LA CM1, PV CM1, and PV CM2 (Figure 3D and Supplemental 
Figure 8). The most striking difference was found in the PV CM1, where the T-box, bHLH, Sox, and 
SMAD motifs were more strongly associated with the PITX2 motif  (homeodomain family) and MBD fam-
ily at upregulated genes, while those same families of  motifs were more strongly associated with the MADS 
box motifs at downregulated genes (Figure 3D). Additionally, for PV CM2, SMAD and bHLH families 
demonstrated a strong interaction at upregulated genes (Supplemental Figure 8), and the SMAD/E-box 
factor Nfia and bHLH factor Tcf12 were both upregulated in the PV CM2 population from Pitx2 mutants 
(Supplemental Figure 7), suggesting that gain of  these factors in PV CM2 may be driving the upregulated 
DEGs. Altogether, our data suggest that the Pitx2-dependent gene expression changes observed in each of  
the LA and PV CM subsets may be governed by different sets of  TF interaction networks and that these 
regulatory grammars are responding differently in the different populations and tissues.

Pitx2-dependent gene expression associates with AF SNPs and gene targets. As the variation detected by human 
GWAS affects CREs and gene expression (17, 51), overlaying mouse snRNA-Seq data with GWAS can 
illuminate cell types and genetic pathways important for disease susceptibility (52). To understand the 
effects perturbed PITX2-dependent genes have on AF risk, we compared our snRNA-Seq data from mice 
with the GWAS catalog of  reported AF SNPs (53). We identified all human genes within ±500 kb of  the 
reported SNP (54) with homology in the mouse (55–58), as synteny is well conserved at this distance (59), 
and defined these as SNP-associated genes. We compared the relative gene expression of  the SNP-associat-
ed genes (Methods) between our 18 cell types (Figure 1) and asked which clusters had a higher SNP-asso-
ciated gene expression relative to non-SNP-associated gene expression. Using this approach, we identified 
SNP-associated enrichment for CM1, CM2, and CM3 (Figure 4A), consistent with recent reports from 
human snRNA-Seq data sets (29, 60). We also identified the adipocyte population (Figure 4A). While 
not previously associated with AF GWAS, a biologically related trait, PR interval, was associated with 

https://doi.org/10.1172/jci.insight.158895
https://insight.jci.org/articles/view/158895#sd
https://insight.jci.org/articles/view/158895#sd
https://insight.jci.org/articles/view/158895#sd
https://insight.jci.org/articles/view/158895#sd
https://insight.jci.org/articles/view/158895#sd
https://insight.jci.org/articles/view/158895#sd
https://insight.jci.org/articles/view/158895#sd
https://insight.jci.org/articles/view/158895#sd
https://insight.jci.org/articles/view/158895#sd
https://insight.jci.org/articles/view/158895#sd


8

R E S O U R C E  A N D  T E C H N I C A L  A D V A N C E

JCI Insight 2022;7(11):e158895  https://doi.org/10.1172/jci.insight.158895

adipocyte gene expression in humans (29). Interestingly, this analysis identified no link between AF GWAS 
and the fibroblast populations, suggesting genetic predisposition is decoupled from FBs whose role in the 
pathogenesis of  AF may be secondary to changes in the CMs.

Next, we asked which SNPs and genes were identified by each population (Figure 4B). Using only SNP-as-
sociated genes binned in the top 20th percentile for each population (Methods), we examined the overlap of  
SNPs between the populations (Figure 4C). First, we found that almost all the AF SNPs (91%) are represented 
by at least 1 gene in any CM population. Furthermore, 60% of the AF SNPs are associated with a top 20th per-
centile gene in all 3 CM populations. Since there was a strong overlap between the SNPs identified, we asked 
whether the associated genes were the same (Figure 4D). Once again, while the CM populations did share 
several genes, many of the subsets demonstrated uniquely identified genes (Figure 4D). While the adipocytes 
identified many of the same SNPs as the CMs (Figure 4C), almost none of the genes identified were shared 
with the CMs (Figure 4D) and were strongly enriched with terms associated with adipocytes (Supplemental 
Figure 9). This adipocyte observation is certainly of interest (61) but may ultimately prove a red herring (62).

Loss-of-function SNPs associated with PITX2 are known to be one of  the strongest predictors of  AF 
and AF recurrence (63–65), and we have demonstrated previously that decreased Pitx2 expression pre-
disposes mice to AF (9, 13) with PITX2 transcriptional networks disrupted (Figure 3). To identify if  the 
disrupted networks are associated with other GWAS candidate genes, we compared Pitx2-dependent gene 
expression changes with the SNP-associated genes enriched among the top 20th percentile identified pre-
viously (Figure 4D). Genes downregulated in LA CM1, PV CM1, PV CM2, and PV CM3 from Pitx2 
mutants were all significantly enriched among the AF GWAS–associated genes (Figure 4E). Furthermore, 
genes upregulated in LA CM1 and PV CM2 were also enriched among the 20th percentile genes (Figure 
4E). Consistent with our observation that PITX2 networks are different in the various CM populations, 
the DEGs overlapping SNP-associated genes were different, with a few notable exceptions like Etv1, Erbb4, 
Slc24a2, and Lpl (Supplemental Figure 9).

BMP10 mediates cell non-autonomous effects of  Pitx2 in the EndoC and Endo. While Pitx2 is expressed in 
CMs, AF also results from defects of  fibroblasts, myofibroblasts, EndoC, epicardium, macrophages, and 
leukocytes (66–69). To investigate the cell non-autonomous effects of  decreased Pitx2 in CMs, we com-
pared ligand-receptor interactions of  CM1, CM2, and CM3 in controls and Pitx2 mutants, irrespective 
of  tissue source. We identified evidence for increased angiopoietin, BMP10, neuregulin, and visfatin sig-
naling in Pitx2 mutants (Figure 5A and Supplemental Figure 10). We found that Pitx2-mutant CMs had 
increased expression of  Angpt1 and Bmp10, which signal to EndoC and Endo, where expression of  the 
respective receptors, Tek and Bmpr2, was significantly increased (Figure 5B). In the other direction, we 
found increased EndoC signaling of  neuregulin, transcribed by Nrg1, to CM1 through the upregulated 
Erbb4 receptor (Figure 5B).

We hypothesized that increased BMP10 or ANGPT1 outgoing signaling from CMs would change 
gene expression profiles of  Endo and EndoC populations. We performed differential gene analysis on 
each of  the PV and LA Endo and EndoC populations (Supplemental Table 8). First, using ingenui-
ty pathway analysis (IPA) (70), we examined DEGs to identify potential upstream regulators of  the 
DEGs observed (Figure 5C). Of  note, this analysis identified BMP10 and ACVRL1, the type I TGF-β 
superfamily receptor for BMP10, in agreement with our previous analysis (Figure 5, A and B). Next, 
we examined functional consequences of  the DEGs (38). We found widespread upregulation of  a very 
similar complement of  genes in both populations. We identified several GO pathways associated with 
cell-cell interactions, in particular the morphology and junctions of  endothelial cells (Figure 5D and 
Supplemental Table 9). In other studies, these pathways have been associated with increased BMP10 
signaling in both cardiac and noncardiac endothelial cells during development (71–73). Furthermore, 
we identified an increase in gene expression associated with platelet formation in the EndoC popula-
tion of  the LA (Figure 5D). As human PITX2 variants have been associated with increases in cardi-
oembolic stroke, this CM-to-EndoC BMP10 signaling serves as a proposed mechanism for increased 
AF-associated inflammation and stroke risk.

Discussion
For over 20 years, the PV has been implicated as a common source of  ectopic beats in AF (4, 74). Despite 
this critical role in the development of  AF, the transcriptional and epigenetic regulation within the adult 
PV has been largely unexplored (4–6). Through this work, we examined the chromatin accessibility and 
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transcriptional output of  the mouse PVs and LA at single nuclei resolution (Figure 6). Additionally, our 
work explored the cell-autonomous and cell non-autonomous roles of  Pitx2, one of  the most strongly 
linked genes with AF in human patients (7, 8), in this context (Figure 6). This work builds upon a strong 
foundation of  using mouse genetics to interrogate the role of  Pitx2 in AF that we have established (9, 13, 
16, 17, 22), which in turn will inform future work.

Figure 4. Human AF GWAS enrichment in perturbed PITX2 networks. (A) Enrichment scores of normalized and 
binned gene expression by cell subset for AF GWAS–associated genes. (B) Example AF-SNP loci (arrows) with coding 
genes within the 1 Mb window demonstrating top 20th percentile enrichment in CM1 (orange), CM2 (green), CM3 (red), 
or adipocytes (blue. (C) Venn diagram comparing the overlapping AF SNPs associated with at least 1 highly cell type–
enriched gene (20th percentile). A total of 22 SNPs were not associated with any of the 4 cell types by our method. (D) 
Venn diagram comparing the 20th percentile cell type–enriched genes underlying the SNPs in C. (E) Enrichment scores 
by Fisher’s exact test for the overlap of previously identified Pitx2-dependent genes in CMs and adipocytes with the 
SNP-associated, cell type–enriched genes identified in D. Adjusted P value (FDR) for each enrichment test shown. 
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In their seminal work, Haïssaguerre and colleagues demonstrated that ectopic beats originating from the 
PV often trigger underlying AF (4). To explain these ectopic beats, various cell types have been identified in 
the PVs of  human patients and animal models of  AF and been proposed as the source (75–78). Two of the 
most often proposed are a population of  c-Kit+ interstitial Cajal cells and a population of  sinoatrial node–like 
CMs (75–77, 79). Our analysis revealed the identity of  3 CM populations within the PVs, 2 of  which are 
enriched in the PVs over the LA (Figure 6A). Of these 2 PV-enriched populations, CM3 is notable for having 
a gene expression signature consistent with electrical automaticity (Figure 6A and Supplemental Tables 2 and 
3). Based on this gene expression profile, the CM3 cells appear akin to the sinoatrial node–like CMs previous-
ly reported. Furthermore, the CM3 population is enriched in several transcripts identified through AF GWAS 
in humans, many of  which are known regulators of  automaticity, e.g., Tbx3, or the channels that allow auto-
maticity, e.g., Hcn4 and Slc24a2 (Supplemental Table 3), suggesting that this population could serve as a direct 
trigger source. Recent work has demonstrated regional variation of  CMs of  PVs underlies the ectopic foci 
seen in AF (80). Between this work and our own, it is apparent that there will be a keen interest in CM3 when 
interrogating the localization of  the CM populations within the 3-dimensional space of  the PV.

At the most basic level, the transcriptional perturbations we observe in Pitx2-mutant CMs result 
from the absence of  PITX2 acting on CREs; however, PITX2 does not act in a vacuum, but rather 
within a TF milieu. Understanding the cis-regulatory landscape on which PITX2 acts will ultimately 
depend on the other TFs present and the regulatory elements in which PITX2 binds. The combination 
of  TFs present in each CM type and the binding sites present at a CRE dictate the regulatory gram-
mars acting on the target transcript (21). We utilized network-based approaches to predict the direct 

Figure 5. Aberrant cross-signaling between CMs and endothelium/endocardium in Pitx2 mutant LA and PV. (A) Top 4 differentially expressed (control vs. 
Pitx2 mutant) networks identified for CMs. (B) Ligand-receptor expression in CMs, endocardium (EndoC), and endothelium (Endo). Boxed pairs demonstrate 
significant differential expression between controls (Ctrl) and Pitx2 mutants (Mut). (C) Predicted upstream regulators identified by Ingenuity Pathway 
Analysis (IPA) for differentially expressed genes (DEGs) comparing controls and Pitx2 mutants for Endo (left) and EndoC (right). A positive z score predicts 
addition or activation while negative z score predicts subtraction or inhibition of a pathway or ligand. A complete list of DEGs can be found in Supplemental 
Table 8. (D) Top 20 GO terms for up- and downregulated DEGs for Endo and EndoC. Complete details and child terms can be found in Supplemental Table 9.
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TF networks perturbed in Pitx2-mutant CMs. Our data predict that different sets of  TFs working in 
concert generate the DEG pattern observed in the different tissues and CM subsets of  Pitx2-mutant 
mice (Figure 6B). For example, our data highlight that PITX2 is likely interacting with a set of  cofac-
tors from the T-box, bHLH, Sox, and SMAD families at the upregulated genes of  PV CM1 specifically 
(Figure 3D). This suggests PITX2 may play a stronger role in mediating transcriptional repression 
with this set of  cofactors, such as TBX5 (16), while in the LA CM1 and PV CM2, there was no strong 
bias toward an activation or repression set of  cofactors but instead a strong correlation in each case. 
Understanding the complete cis-regulatory landscape in the LA and PV CMs will serve to illuminate 
the basis for AF in human patients. To this point, AF-associated variants identified in GWAS are rare-
ly associated with coding elements, but rather functional variations in CREs (51).

To leverage our AF predisposition mouse model to uncover clinically relevant biology, we compared 
our multiomic data with that of  previously reported human AF GWAS (53). First, we identified that CMs 
were strongly enriched for genes associated with variation, consistent with previous reports using similar 
lines of  inquiry in human snRNA-Seq data (29, 60). Unexpectedly, the DEGs identified in Pitx2 mutants 
were commonly found among the variation-associated genes identified in the CM populations (Figure 6C). 
Furthermore, the DEGs associated with human variation were largely different in the different subsets (Fig-
ure 6C and Supplemental Figure 9), likely a result from the differences in PITX2 cis-regulatory grammars 
(Figure 3). Based on our observations, we propose a model in which decreased PITX2 acts as a potent 
modifier of  AF risk through disrupted context-specific networks that genetically interact with other AF-as-
sociated genes (Figure 6C). Under this model, decreased PITX2 expression, as observed in humans with 
loss-of-function SNPs in the AFAR locus of  4q25, results in PITX2-dependent gene expression changes, 
and these PITX2 targets are associated with AF GWAS hits. While some studies have found little evidence 
for SNP-SNP interactions in AF (81), other evidence exists that this may be the case for PITX2 (82), and in 
the future a more targeted approach can be applied using the genes identified in our study.

Figure 6. Summary of PITX2’s role in the LA and PV. (A) The single nuclei RNA-sequencing (snRNA-Seq) data identified 3 populations of cardiomyocytes 
(CMs) with 2 populations resident to the PV. The identified PV CMs make up a subset of all CMs of the PV but likely contribute to tissue-specific processes not 
found in the LA. (B) The PITX2-associated cis-regulatory grammar suggests that PITX2 interacts with a particular set of cofactors to repress gene expression in 
PV CM1 but interacts with those same factors in LA CM1 and PV CM2 to both activate and repress transcription. (C) Example loci depicting the relationship of 
Pitx2-dependent, AF-SNP–associated, cell type–enriched genes with the tagging SNP (left). Our proposed model that decreased PITX2, e.g., mouse mutants 
or human loss-of-function SNPs at AF-associated region (AFAR), is a potent modifier of AF risk because downstream targets of PITX2 cis-regulatory networks 
in each cell type are enriched in other AF risk-modifying genes (right). (D) LA and PV CM1 cells demonstrate substantial upregulation of Bmp10, which signals 
to the endocardium/endothelium (EndoC/Endo) of the LA/PV. EndoC/Endo of Pitx2 mutants demonstrate differentially expressed genes (DEGs) associated 
with cell adhesion and platelet activation. Furthermore, the LA Endo appears to reciprocally signal to the CM1 through increased NRG1 signaling.
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Last, we identified that Pitx2-mutant CM1 cells are predicted to have increased levels of  multiple out-
going signals with the strongest consistent signal for BMP10 (Figure 6D). Bmp10 expression was strong-
ly upregulated in the CM1 population, particularly LA CM1, where it was associated with gained DARs 
containing PITX2 motifs (Figure 5 and Supplemental Table 5–7). The predicted target of  aberrant BMP10 
signaling was the EndoC and Endo of  the LA and PV, respectively, based on receptor expression and gene 
expression changes in those populations from Pitx2-mutant mice (Figure 5). Bmp10 is expressed throughout 
the myocardium in development, where it is required for CM proliferation, but becomes restricted to the 
right atrium (RA) during late gestation (73). In development and the adult, decreased Pitx2 is associated with 
increased LA Bmp10 and has been implicated in its repression (9, 83). Furthermore, decreased levels of  LA 
PITX2 and increased levels of  BMP10 have been identified in human patients with AF, and increased BMP10 
serum levels are correlated with relapse after cardiac ablation therapy and decreased levels with successful 
cardioversion (15, 84, 85). During development, increased levels of  Bmp10 expression from the heart are 
known to have an adverse effect on the endothelial layer of  blood vessels, including premature differenti-
ation and decreased proliferation (72, 86, 87). Furthermore, while the pulmonary circulation in the adult 
appears to be the primary target of  BMP10 signaling from the RA (88, 89), expression of  BMP10 is largely 
absent in the systemic circulation, suggesting a unique role in the maintenance or identity of  pulmonary 
vasculature that may interfere with the identity or maintenance of  the vasculature in the brain or other parts 
of  the body that may make them prone to thrombus formation or damage (90). Indeed, GO term analysis 
showed increased gene expression consistent with clot formation in the LA EndoC (Figure 5D). The 4q25 
locus is strongly associated with both AF and cardioembolic stroke risk. The stroke risk is attributed to clot 
formation in the fibrillating atrial chambers (91–93). Additionally, BMP10 has been demonstrated to drive 
NRG1 expression in the EndoC specifically (71), while NRG1 is known to regulate and drive Etv1 expression 
in LA CMs (94, 95). Our cell-cell communication analysis demonstrated both an increase in CM1-to-EndoC 
BMP10 signaling and EndoC-to-CM1 NRG1 signaling (Figure 5B), suggesting Pitx2-dependent signaling 
feedback that may be driving the increased Etv1 expression in CM1 (Figure 6D). This increased atrial Etv1 
may contribute to AF predisposition in the CMs (96). Our work suggests that this could be multifactorial sus-
ceptibility in which decreased PITX2 and increased BMP10 in the LA generates prothrombotic conditions 
and stroke risk predisposition.

We believe our data suggest developmental PITX2 acts to pattern the cis-regulatory grammars of  the 
LA and PV CMs. In situations with decreased PITX2, i.e., mouse mutants or humans with loss-of-function 
SNPs in AFAR, these cis-regulatory grammars are perturbed. In combination with external stressors, e.g., 
age, and other genetic predispositions, these perturbed cis-regulatory grammars create an increased lifetime 
risk for AF development.

Methods
Mouse lines. The Tg(Ckmm-cre)5Khn/0 (MCK-cre) mice were crossed to the germline Pitx2tm1Jfm (Pitx2–) allele 
to generate MCK-cre Pitx2+/– mice, which were crossed with homozygous Pitx2tm1.1Sac (Pitx2fl/fl) to generate 
the Pitx2 control (Pitx2fl/+) and Pitx2-mutant (MCK-cre Pitx2fl/–) mice (97–99). Mice were raised to adulthood 
(6–8 months) and genotypes confirmed by PCR prior to experimentation. 

snRNA-Seq and snATAC-Seq. For snRNA-Seq and snATAC-Seq, the LA and the PVs were dissected from 
the adult mouse heart. The left atrial dissection included both the chamber and the appendage, while the PVs 
included the proximal connection to the atrium, the primary PVs, and the branches prior to entry into the lungs.

Nuclei were harvested from the 2 tissue sources in pools of  8 Pitx2 control and 8 Pitx2-mutant mice 
using a previously published method with modifications (100). In brief, the tissues were minced with sharp 
scissors in 250 μL of  HB++ (HB: 0.25 M sucrose, 25 mM KCl, 5 mM MgCl2, 20 mM Tricine-KOH, pH 
7.8; ++: 0.15 mM spermine, 0.5 mM spermidine, 1 mM DTT) and centrifuged at 500g for 5 minutes at 
room temperature to remove excess red blood cells and fat and replaced with 250 μL of  fresh HB++. 
Sample was transferred to a 2 mL Dounce homogenizer and the tube washed with an additional 250 μL 
of  HB++ to collect any remaining sample and transferred. Tissue was homogenized 30 times with loose 
and tight pestle before adding 32 μL of  5% NP-40 (in HB) and dounced with tight pestle an additional 75 
times. Sample was strained through a 40 μM strainer and washed with 9.5 mL of  NWB (PBS with 1% BSA 
and 0.2 U RNase inhibitor from Promega) and spun down at 500g at 4°C for 5 minutes. The supernatant 
was removed and nuclei were resuspended in 500 μL of  NWB and 900 μL of  SCB (90% Nuclei PURE 2M 
Sucrose Cushion Solution and 10% Nuclei PURE Sucrose Cushion Solution; MilliporeSigma NUC-201). 
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Then 1400 μL of  nuclei suspension was layered on top of  500 μL SCB in a 2 mL Eppendorf  LoBind tube 
and centrifuged at 13,000g at 4°C for 45 minutes. The supernatant was removed, leaving approximately 50 
μL of  nuclei pellet, which was resuspended in 1 mL of  NWB. Nuclei were quantified using the INCYTO 
C-Chip DHC-F01.

The snRNA-Seq libraries were generated using the 10x Genomics Chromium Single Cell 3’ v3 reagent 
kit, and in parallel the snATAC-Seq libraries were generated using the Chromium Single Cell ATAC v1 
with a target of  10,000 nuclei per library according to the manufacturer’s instructions. The libraries were 
sequenced on an Illumina NovaSeq6000 with the Genome and RNA Profiling Core at Baylor College of  
Medicine and an Illumina NextSeq 500. Raw sequencing data were handled by the 10x Genomics Cell 
Ranger software (cellranger-3.0.1 and cellranger-atac-1.2.0) and mapped to the mouse mm10 genome. For 
snRNA-Seq, the gene counts were quantified using Cell Ranger count to the mouse transcriptome includ-
ing pre-mRNA (v3.0.0) and passed to Seurat (25–27) for downstream analysis. For snATAC-Seq, samples 
were individually aligned using cellranger-atac count and aggregated using cellranger-atac aggr (--nosec-
ondary --normalize=none) using the peak output from each individual sample. Following initial clustering 
(see below for downstream analysis) and per-cluster and per-sample peak calling using MACS2 callpeak 
(v2.1.1.20160309) with parameters -f  BAMPE -g mm -B -q 0.1 (101, 102), samples were reaggregated using 
cellranger-atac aggr using a union set of  peaks and passed to Seurat and Signac (26, 28) for downstream 
analysis. Raw sequencing data and other associated files have been uploaded to the National Center for 
Biotechnology Information’s (NCBI) Gene Expression Omnibus (GSE183310).

snRNA-Seq analysis cell quality control and filtering. After performing snRNA-Seq, preprocessing steps 
were performed using CellRanger 3.0.1 followed by postprocessing using CellBender v0.1 (24) with the 
remove-background module in default settings. This allowed the removal of  ambient RNA background 
molecules and random barcode swapping from (raw) snRNA-Seq gene-by-cell count matrices. Each data 
source was processed and annotated separately to account for source-specific quality differences. These 
metrics are included as covariates for further processing. Single nuclei were filtered (Supplemental Figure 
1) for unique molecular identifier (UMI) counts (500 < UMI counts < 25,000), genes (no genes > 500), 
mitochondrial genes (mitochondrial % < 5%), and doublet score (doublet score < 0.25). Seurat toolkit ver-
sion v.4.0 (26) in R v.3.8 was used to perform downstream analyses. The UMI count matrices of  cells that 
passed previous filtering were normalized using the Seurat function SCTransform regressing out unwanted 
sources of  variation (mitochondrial % and cell cycle scoring). For each sequenced library we calculated the 
top 5000 most variable features using FindVariableFeatures.

Batch alignment. We found anchors across subsets, also known as mutual nearest neighbors, using the 
Seurat function FindIntegrationAnchors. We then integrated using canonical correlation analysis (CCA) as 
implemented in Seurat using the IntegrateData function (26). In brief, the algorithm first jointly reduces the 
dimensionality of  both data sets using diagonalized CCA, then applies L2 normalization to the canonical 
correlation vectors, and finally searches for mutual nearest neighbors in this shared low-dimension repre-
sentation. Ultimately, an integrated matrix is constructed for each cell applying a correction vector (based 
on anchor score and similarity score) (26).

Principal component analysis and unsupervised clustering. The resulting integrated data were scaled, 
and principal component analysis (PCA) was performed to reduce the dimension into 100 principal 
components (PCs). Clusters were identified using k-nearest-neighbor-graph based clustering imple-
mented in Seurat as FindNeighbors and FindClusters. We performed a grid search of  different com-
binations of  parameters, aiming to optimize the biological relevance of  the resulting clusters. Results 
yielded a clustering based on the top 50 PCs, and using a resolution of  0.8 maximized both our estima-
tion of  biological relevance and numbers of  clusters obtained.

DEGs. To annotate the populations and subpopulations of  each cell cluster and comparison between 
genotypes, we calculated the DEGs using the Wilcoxon rank sum test as implemented in the Seurat work-
flow as FindMarkers. A gene is differentially expressed if  it has a log2 fold change > 0.25 and an FDR < 
0.01, unless stated otherwise.

Cell-cell interactions. A systematic analysis of  cell communication was based on the network analysis 
and pattern recognition approaches provided by CellChat v.1.0.0 R package (103). We used the standard 
workflow to predict major signaling inputs and outputs of  cells and how these cells and signals coordinate 
for functions. Subsequently, we classified signaling pathways and depicted conserved and context-specific 
pathways between controls and Pitx2 mutants.
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GO term and pathway analysis. All GO term analyses were performed using Metascape (38) using the 
multiple gene list comparison function with default settings. Predicted upstream pathway analysis was 
performed using IPA (Qiagen) for control versus Pitx2-mutant DEGs identified from each of  the Endo and 
EndoC populations (70).

snATAC-Seq quality control. We removed low-quality snATAC-Seq cells based on quality control metrics 
(Supplemental Figure 1) (26, 28). We first filtered out the cells that had fewer than 15% of  fragments (reads) 
in peaks. These cells with low total fragments falling within ATAC-Seq peaks may represent technical arti-
facts or low-quality cells that need to be removed. We also removed cells with peak region fragments greater 
than 30,000 and less than 1500. Cells with few reads have low sequencing depth, while cells with extremely 
high reads often represent nuclear clumps or doublets (26).

Harmony alignment and unsupervised clustering. To align the 4 snATAC-Seq data sets, we utilized the RunHar-
mony function using lsi reduction on all peaks (26, 28). Similar to the snRNA-Seq, the resulting aligned and 
integrated data were reduced to 50 PCs. Clusters were identified using k-nearest-neighbor-graph–based cluster-
ing implemented in Seurat as FindNeighbors and FindClusters using the Harmony reduction (26, 28). We per-
formed a grid search of different combinations of parameters, aiming to optimize the biological relevance of the 
resulting clusters. Results yielded a clustering based on the top 50 PCs, and using a resolution of 1.25 maximized 
both our estimation of biological relevance and numbers of clusters obtained. Following this, a UMAP was gen-
erated using the RunUMAP function with the Harmony reduction graph and a repulsion strength of 2 (26, 28).

Label transfer. To transfer labels from snRNA-Seq to snATAC-Seq (Supplemental Figure 3), we first identi-
fied the common correlation patterns in the gene activity matrix derived from the snATAC-Seq data and snR-
NA-Seq data. This gene activity matrix was created by summing the fragments that intersected with the gene 
body and promoter region. This calculation was performed using the GeneActivity function in the Seurat (26, 
28), which enables mapping of  fragments of  each cell to the 2 kb region upstream of gene coordinates. In 
the integration step, we identified patterns in the biological states of  2 modalities using FindTransferAnchors 
function. Here, we used the Harmony algorithm, which iteratively corrects PCA embeddings, for dimension-
ality reduction when finding anchors. Then, we used the reference cell type labels defined in snRNA-Seq 
data to assign scores to each snATAC-Seq nuclei. For each cluster identified in the UMAP, we assigned the 
plurality cell type for those cells assigned to different cell type yet in the same cluster (Supplemental Figure 3).

Computing NMSs. We first identified the peaks that had the PITX2 motif  occurrences using MEME 
suite tool FIMO with P value cutoff  of  1 × 10–4 and CisBP (v2.0.0) database (104, 105). For every DEG 
and every PITX2-containing peak, we assigned it to a TAD/inter-TAD space using published data (40, 41). 
We then assigned the PITX2-containing peaks to DEGs within the same TAD/inter-TAD space as putative 
CREs for that target gene. We also calculated the accessibility count for an “average” single nuclei in LA 
and PV using the Seurat:AverageExpression(slot=“counts”) function. Briefly, the method works as follows: 
first, for every peak of  PITX2 occurrence, we multiply the accessibility score Ai with the number of  PITX2 
occurrences Oi and weighted by the peak length Li. The NMS was defined as: NMSi = ([Ai × Oi]/Li) × 
10,000. For purposes of  identifying only accessible regions in the LA or PV CM1 or CM2 populations, we 
defined active sites as those with NMS > 1.

DAR motif  analysis. To identify motifs associated with CM1 and CM2 DARs, we utilized the findMo-
tifsGenome function from HOMER (106). To do this, we used the CM2 DARs as the background for the 
CM1 analysis and CM1 DARs as the background for CM2 in order to find the motifs that make the biggest 
difference. The list of  known motifs was ranked by q value, and the top 3 unique motifs, i.e., those represent-
ing unique families of  TFs, were selected for further examination. All motifs shown have a q value < 3 × 10–4.

PITX2 TF-TF colocalization and network analysis. To understand the transcriptional cis-regulatory gram-
mar in the context of  PITX2 motifs, we performed a series of  analyses on the peaks with PITX2 motif  
hits. We retained the motif  families present in the CisBP (v2.0.0) database that hit those peaks identified 
by FIMO with a P value cutoff  1 × 10–4 (104, 105). TF motif  families were defined using published anno-
tations (105, 107). We calculated the Pearson’s correlation coefficient for each motif  family (Supplemental 
Figure 6). We created a network representation of  the motifs that co-occurred in PITX2-associated peaks 
(Supplemental Figure 7). Each node represents a motif  family, and the edges represent the colocalization 
across peaks. To find communities in the graph, we performed spectral community detection (108). This 
method iteratively calculates the eigenvector of  the modularity matrix for the largest positive eigenvalue 
and then separates vertices into communities based on the corresponding element in the eigenvector (108). 
R v.3.8 and Igraph v1.2.6 were used to perform these analyses.
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Footprinting analysis. In order to generate a list of  DNA footprinted sites using the snATAC-Seq, we 
utilized the TOBIAS package (45). To do this, we extracted the reads corresponding to each of  the LA 
WT CM1, PV WT CM1, and PV WT CM2 to generate pseudo-bulk ATAC-Seq library files. The TOBIAS 
ATACorrect function was run on each of  these pseudo-bulk bam files against the reference genome at the 
list of  all CM peaks and ENCODE blacklist sites (109). Following this step, the TOBIAS FootprintScores 
function was run for LA WT CM1, PV WT CM1, and PV WT CM2 corrected signals in the list of  all CM 
peaks. Finally, the TOBIAS BINDetect function was run using the CisBP database (105) in order to gener-
ate a list of  all sites containing a PITX2 footprint.

Examination of  public databases. The predicted and validated CREs were pulled from VISTA (46) and 
ENCODE (47). For VISTA, validated cardiac CREs were defined as “VISTA Cardiac Enhancer” while 
noncardiac validated CREs were defined as “VISTA Other Enhancer” (Supplemental Figure 5B). For the 
ENCODE list of  candidate CREs, the complete list was pulled from ENCFF904ZZH, while the P0 and 
8-week-old whole heart sets are from ENCFF509ZNV and ENCFF656HRU, respectively (47). The list of  
sites used in overlap fit the criteria of  promoter-like signature; TSS-proximal, enhancer-like signature; or 
TSS-distal, enhancer-like signature (Supplemental Figure 5B).

Comparison of  human GWAS with mouse snRNA-Seq. Human AF SNPs (EFO_0000275) were retrieved 
from the GWAS catalog on January 23, 2021 (53). Association of  AF SNPs with genes was performed 
using MAGMA and the provided NCBI38 annotation to associate TSSs within ± 500 kbp of  the tagging 
SNP (54). Mouse-to-human gene transfer was performed using the union of  the Ensembl database (release 
103) and NCBI HomoloGene catalog (build 68) (55–58). Identification of  cluster enriched gene expression 
and within cell cluster expression binning was performed as previously described using 25 equally sized 
bins and a 0 bin for genes with no expression (52). Enriched cluster expression was identified by 1-sided 
Welch’s 2-sample t test followed by multiple testing correction as many cell types demonstrated unequal 
variance between SNP-associated and non-SNP-associated gene bins.

Statistics. For comparing cluster proportion differences, we used a 2-tailed χ2 test followed by multi-
ple-testing correction; a comparison was considered significant at FDR < 1 × 10–5 (Figure 1, D and E). 
For snRNA-Seq analyses, DEGs were identified using the Wilcoxon rank sum test as implemented in the 
Seurat workflow as FindMarkers (Supplemental Tables 1, 2, 5, and 8). A gene is differentially expressed if  
it has a log2 fold change > 0.25 and an FDR < 0.01, unless stated otherwise. Tests of  enrichment (Figure 
2H and Figure 4E) utilized 2-tailed FET followed by multiple-testing correction. An FDR < 0.01 was con-
sidered significant. Identification of  footprint enrichment was done using an unpaired, 2-tailed Wilcoxon 
rank sum test (Supplemental Figure 5A). Test of  PITX2 NMS enrichment at validated and predicted CREs 
utilized the 2-sided FET followed by multiple-testing correction (Supplemental Figure 5B). An FDR < 
0.01 was considered significant while an FDR < 1 × 10–10 was considered very significant. Identification 
of  motif-motif  correlation (Supplemental Figure 6) utilized the Pearson’s correlation coefficient. Enriched 
cluster expression (Figure 4A) was identified by 1-sided Welch’s 2-sample t test followed by multiple-testing 
correction.

Study approval. All murine experiments were approved and performed under the Baylor College of  Med-
icine Institutional Animal Care and Use Committee protocol number 5713.
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