Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
FGF-2 signaling in nasopharyngeal carcinoma modulates pericyte-macrophage crosstalk and metastasis
Yujie Wang, … , Yunlong Yang, Guohui Nie
Yujie Wang, … , Yunlong Yang, Guohui Nie
Published April 19, 2022
Citation Information: JCI Insight. 2022;7(10):e157874. https://doi.org/10.1172/jci.insight.157874.
View: Text | PDF
Research Article Immunology Oncology

FGF-2 signaling in nasopharyngeal carcinoma modulates pericyte-macrophage crosstalk and metastasis

  • Text
  • PDF
Abstract

Molecular signaling in the tumor microenvironment (TME) is complex, and crosstalk among various cell compartments in supporting metastasis remains poorly understood. In particular, the role of vascular pericytes, a critical cellular component in the TME, in cancer invasion and metastasis warrants further investigation. Here, we report that an elevation of FGF-2 signaling in samples from patients with nasopharyngeal carcinoma (NPC) and xenograft mouse models promoted NPC metastasis. Mechanistically, tumor cell–derived FGF-2 strongly promoted pericyte proliferation and pericyte-specific expression of an orphan chemokine (C-X-C motif) ligand 14 (CXCL14) via FGFR1/AHR signaling. Gain- and loss-of-function experiments validated that pericyte-derived CXCL14 promoted macrophage recruitment and polarization toward an M2-like phenotype. Genetic knockdown of FGF2 or genetic depletion of tumoral pericytes blocked CXCL14 expression and tumor-associated macrophage (TAM) infiltration. Pharmacological inhibition of TAMs by clodronate liposome treatment resulted in a reduction of FGF-2–induced pulmonary metastasis. Together, these findings shed light on the inflammatory role of tumoral pericytes in promoting TAM-mediated metastasis. We provide mechanistic insight into an FGF-2/FGFR1/pericyte/CXCL14/TAM stromal communication axis in NPC and propose an effective antimetastasis therapy concept by targeting a pericyte-derived inflammation for NPC or FGF-2hi tumors.

Authors

Yujie Wang, Qi Sun, Ying Ye, Xiaoting Sun, Sisi Xie, Yuhang Zhan, Jian Song, Xiaoqin Fan, Bin Zhang, Ming Yang, Lei Lv, Kayoko Hosaka, Yunlong Yang, Guohui Nie

×

Graphical abstract

Options: View larger image (or click on image)

Copyright © 2022 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts