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Introduction
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) affects and marginalizes a substantial 
portion of  people across the world, often restricting many patients to silence and isolation (1–4). Symptoms 
of  ME/CFS affect many of  the 11 organ systems of  the body. Although the inciting factor for ME/CFS 
is not yet known, substantial evidence implicates the disease as a post-viral illness (5). Many symptoms of  
ME/CFS are shared with long-term sequelae of  COVID-19, though individuals experiencing continued 
effects of  SARS-CoV-2 infection also exhibit symptoms not characteristic of  ME/CFS (6).

One of  the hallmark symptoms preventing ME/CFS sufferers from living normal lives surfaces after 
physical exertion, as well as after cognitive and/or emotional stimuli (1). This symptom, referred to as post-ex-
ertional malaise (PEM), occurs after varying levels of  stimulus, proportional to each individual’s limit. The 
strategy of  pacing, adapted to meet individual abilities and limitations, is recognized as a therapeutic option 
to reduce the severity of  exertion-related symptoms (7). PEM typically occurs 12 to 48 hours after physical 
activity and persists for days or even weeks, confining some patients to bed during recovery (4).

Monitoring plasma metabolomics changes associated with acute physical activity has led to valuable insight 
into both individual responses to an exertional stressor and to the “molecular choreography” of biological pro-
cesses in numerous pathways (8). Many studies, including from our group, have probed the metabolome of  

Post-exertional malaise (PEM) is a hallmark symptom of myalgic encephalomyelitis/chronic 
fatigue syndrome (ME/CFS). We monitored the evolution of 1157 plasma metabolites in 60 ME/
CFS (45 female, 15 male) and 45 matched healthy control participants (30 female, 15 male) before 
and after 2 maximal cardiopulmonary exercise test (CPET) challenges separated by 24 hours, with 
the intent of provoking PEM in patients. Four time points allowed exploration of the metabolic 
response to maximal energy-producing capacity and the recovery pattern of participants with ME/
CFS compared with the healthy control group. Baseline comparison identified several significantly 
different metabolites, along with an enriched percentage of yet-to-be identified compounds. 
Additionally, temporal measures demonstrated an increased metabolic disparity between cohorts, 
including unknown metabolites. The effects of exertion in the ME/CFS cohort predominantly 
highlighted lipid-related as well as energy-related pathways and chemical structure clusters, which 
were disparately affected by the first and second exercise sessions. The 24-hour recovery period 
was distinct in the ME/CFS cohort, with over a quarter of the identified pathways statistically 
different from the controls. The pathways that are uniquely different 24 hours after an exercise 
challenge provide clues to metabolic disruptions that lead to PEM. Numerous altered pathways 
were observed to depend on glutamate metabolism, a crucial component of the homeostasis of 
many organs in the body, including the brain.
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various body fluids from participants with ME/CFS, at a depth dependent on the technology selected (9–20). 
However, none have characterized temporal metabolic changes before and after a standardized exertional stress-
or aimed at inducing PEM. One study of ME/CFS cases found evidence of a shift toward branched-chain 
amino acids as an energy source during intense exercise (21). A more recent study found an association of PEM 
with glycolysis, acetylation, and hypermetabolism, based mainly on limited urine and serum metabolomics (19).

The investigation reported here differs from previous studies by combining several important aspects: 
(i) the large size of  the cohort selected, with 105 participants, including 60 participants with ME/CFS 
(45 women and 15 men) as well as controls screened for sedentary behavior; (ii) the longitudinal blood 
sampling, surrounding 2 cardiopulmonary exercise tests (CPETs) separated by a 24-hour recovery peri-
od designed to provoke PEM; and (iii) the extensive data set produced by Metabolon from its Precision 
Metabolomics platform composed of  1157 features, including 933 identified and 224 yet-to-be-identified 
metabolites, spanning 9 superpathways and 108 subpathways.

We identified several significantly differently abundant metabolites between participants with ME/CFS 
and controls. Pathway and chemical enrichment analyses were the most fruitful aspect of  this work, exposing 
the impact of  exertion on the magnitude and the number of  differences between participants with ME/CFS 
and healthy although sedentary individuals. Analysis of  plasma metabolites following an initial maximal 
exercise session and those in plasma collected 24 hours later reveals that participants with ME/CFS exhibit 
extensive differences with controls during the recovery period. One common denominator between many 
of  these pathways is glutamate metabolism. Our work also confirms divergent patterns between females and 
males following both exercise and recovery.

Results
Provocation of  post-exertional malaise. Both participants with ME/CFS and healthy controls performed 2 
maximal-effort exercise tests of  6 to 14 minutes on a stationary cycle at a 24-hour interval designed to 
induce PEM in participants with ME/CFS (Figure 1A). Blood samples were collected 15–20 minutes 
before exercise on day 1 (D1PRE) and before exercise on day 2 (D2PRE) as well as 15–20 minutes after 
exercise on day 1 (D1POST) and after exercise on day 2 (D2POST) for a total of  4 time points, as depicted 
in the timeline of  Figure 1A.

Functional surveys distinguish the ME/CFS and control cohorts. The 105-participant cohort gathered for this 
study comprised 60 participants with ME/CFS and 45 healthy, sedentary controls between the ages of  18 
and 69, with similar body mass index (BMI). Figure 1B summarizes the most representative features of  our 
cohorts, including the subdivision of  women and men, the mean age and BMI, as well as the Bell scale (2) 
scored by 5 functional levels. The Bell scale score clearly depicts the opposing trend of  the condition of  par-
ticipants with ME/CFS versus controls, with a smaller score reflecting the lower functional level of  patients 
compared with a higher score of  fully functional controls. Nevertheless, the selected ME/CFS population was 
capable of  traveling to the testing sites and performing 2 CPETs and would therefore be considered to have 
less severe symptoms compared with patients who are bedbound. However, the scores on the Bell scale and 
36-Item Short-Form Health Survey (SF-36) indicate that very few patients could be considered to have mild 
disease. Comprehensive details about the population characteristics are offered in Supplemental Tables 1 and 
2 (supplemental material available online with this article; https://doi.org/10.1172/jci.insight.157621DS1), 
including illness duration and the results of  the SF-36 (22), among other data.

Global metabolomics panel. Metabolon assayed the relative levels of  933 known metabolites grouped into 
its defined 9 superpathways, including “amino acid” (216 compounds), “carbohydrate” (26 compounds), 
“cofactors and vitamins” (37 compounds), “energy” (11 compounds), “lipid” (293 compounds), “nucleo-
tide” (37 compounds), “partially characterized molecules” (27 compounds), “peptide” (36 compounds), 
and “xenobiotics” (250 compounds). These 9 superpathways are further split into 108 subpathways detailed 
in Supplemental Data File 1, which also contains the complete data set Metabolon provided. Additionally, 
the relative quantities of  224 metabolites of  unknown identities (19% of  the data set) are provided to allow 
analysis of  currently unidentified metabolites.

No evidence for general hypometabolism. We assessed general differences between controls and patients by com-
paring fold changes (FCs) of means between controls and patients at each time point (FC of 2 reflects a mean 
twice as high in patients compared with controls for a given metabolite). For the complete cohort, 56% of the 
metabolites were lower (FC < 1) in patients compared with controls at D1PRE. This percentage marginally 
dropped throughout our experimental protocol to reach 53% at D2POST. If considering “0.9 < FC < 1.1” as 
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reflecting no change for a given metabolite, about 34% were lower (FC < 0.9) in patients compared with controls, 
while 29% were higher (FC > 1.1). The distribution of FC for the total cohort and all metabolites is illustrated 
in Supplemental Figure 1, where we can observe the symmetry of the violin plots around log2FC = 0, which is 
the same as FC = 1, or no change.

In the female cohort, 50% of  the metabolites were lower (FC < 1) in patients versus controls at D1PRE. 
This percentage dropped throughout the remaining time points to reach 43% at D2POST. Excluding metab-
olites considered constant at 0.9 < FC < 1.1, 30% of  metabolites were lower (FC < 0.9) in patients com-
pared with controls for all time points, while 29% were higher (FC > 1.1) at D1PRE, constantly increasing 
through our timeline to reach 35% at D2POST. Again, the violin plots for the female cohort in Supplemen-
tal Figure 1 are symmetric around log2FC = 0.

The trend slightly deviated from the above observations in the male cohort. Indeed, 59% of  metabo-
lites were lower (FC < 1) in patients compared with controls at D1PRE, 57% at D1POST, 63% at D2PRE, 
and 61% at D2POST. Moreover, the exclusion of  constant metabolites at 0.9 < FC < 1.1 revealed that 
44% of  remaining metabolites were lower (FC < 0.9) in patients compared with controls, while only 
20% were higher (FC > 1.1). The limited size of  our male cohort must be considered when interpreting 
the data on relative levels of  metabolites. The violin plots for the male cohort in Supplemental Figure 1 
are slightly skewed in favor of  negative log2FC, meaning more metabolites were lower in male patients 
compared with male controls.

High-dimensional clustering groups participants by time points. A t-distributed stochastic neighbor embedding 
(t-SNE) plot shows strong clustering of  time points for each participant of  our cohort (similarly colored dots 
in Figure 2), representing each individual’s plasma metabolic environment. However, superimposing sample 
phenotypes and sexes did not reveal any clustering. We also never observed any clustering by sex or disease 

Figure 1. Study design and population statistics. (A) Overview of the blood collection timeline surrounding 2 maximal 
cardiopulmonary exercise tests (CPETs) separated by a 24-hour recovery period. (B) Summary of the most representa-
tive features of the population. A score of 100 on the Bell scale (2) corresponds to no symptoms at rest, while a score 
of 0 means continuous symptoms, a bedbound state, and inability to take care of oneself. D1PRE, before exercise on 
day 1; D1POST, after exercise on day 1; D2PRE, before exercise on day 2; D2POST, after exercise on day 2.
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status after comparable iterations of  clustering attempts were performed using sub–data sets created through 
various criteria using the comparable principal component analysis (PCA) method (not shown).

Both the t-SNE and PCA methods aim to reduce the complexity of  a data set and retain the features that 
best explain variability. The strong but sole clustering of  time points by participant reflected the robust individ-
uality of  the plasma metabolic environment, even as strong physical exertion occurred. This is identical to the 
clustering Contrepois et al. described in their multidisciplinary molecular choreography work (8).

The number of  metabolites statistically different between cohorts increases after exercise in a sex-specific manner. The 
summary of nonparametric Wilcoxon’s rank-sum tests at each time point is displayed in Figure 3 for each 
cohort at 3 statistical cutoffs: q < 0.05, q < 0.15, and P < 0.05. Details concerning our choice of multiple statis-
tical cutoffs are in the Methods section, while the complete output is available in Supplemental Table 4.

The total cohort (Figure 3, gray bars) depicts an increasing number of  metabolites significantly dif-
ferent between controls and patients as the study proceeded, for all 3 of  the statistical cutoff  values. This 
sequence reflected the escalating differences between cohorts during progression through our experimental 
protocol. Similarly, for the female cohort (Figure 3, purple bars) at q < 0.05, there were 8 times more sig-
nificantly different metabolites between D1PRE and D2POST. Although a constant but more moderate 
increase also existed at P < 0.05, a slight decrease of  significantly different metabolites at D1POST com-
pared with D1PRE was observed for q < 0.15.

On the other hand, statistically significant metabolic differences were identified only at P < 0.05 in the 
male cohort (Figure 3, orange bars). A notable difference compared with the female cohort (Figure 3, pur-
ple bars) was the doubling of  significantly different metabolites during the recovery period, while the exer-
cise neither on day 1 nor the exercise on day 2 amplified the difference in plasma metabolites (the number 
of  significantly different metabolites was actually a little lower after each set of  exercise).

Significantly different metabolites are predominantly lower in patients. The metabolites with the highest statis-
tical differences (Figure 3) were generally lower in individuals with ME/CFS. For instance, for q < 0.05 at 
D1PRE, 86% of  the 7 metabolites were lower in female participants while 5 (71%) were also lower in male 
participants (Figure 4). At P < 0.05 and D1PRE, 75% of  metabolites were lower in female participants 
while 67% were lower at D2POST. Further details can be computed from Supplemental Table 4 for each 
cohort, each time point, and at any provided statistical cutoff.

At baseline, 7 metabolites out of  1157 (0.6%) are highly significantly different in women. The data distribution 
of  the 7 metabolites significantly different out of  the 1157 (0.6%) after multiple-testing correction (q < 0.05) 
is shown in Figure 4 for all 3 cohorts (total, women, and men) at D1PRE.

Metabolites of unknown identity were the 3 most significantly different metabolites (Figure 4, A–C). 
Although 07765 and 23680 had similar patterns between the 3 cohorts, male patients and controls did not differ 
for 18921. Out of the next 4, tridecenedioate (C13:1-DC) (Figure 4D) is classified as a “fatty acid dicarboxyl-
ate” (part of lipid); indoleacetoylcarnitine (Figure 4E) as an “amino acid” part of “tryptophan metabolism”; 
1,5-anhydroglucitol (1,5-AG) (Figure 4F) as a “carbohydrate” part of “glycolysis, gluconeogenesis, and pyru-
vate metabolism”; and 3,5-dichloro-2,6-dihydroxybenzoic acid (Figure 4G) as a “chemical xenobiotic.”

The only significant baseline metabolite with an associated Human Metabolome Database (HMDB) num-
ber (HMDB0002712) is 1,5-AG. According to the curated database (https://hmdb.ca), 1,5-AG is validated as 
a blood marker of glycemic control, because it is metabolically inert and it competes with glucose reabsorption 
in the kidney. It can be used as a proxy to monitor long-term fluctuations of glucose in the blood.

Unknown metabolites are enriched among significantly different metabolites. The number of metabolites of  
unknown identity (19% of our data set) increased with statistical significance. The bars within the histograms in 
Figure 3 represent the number of unknown metabolites while percentages are provided in Supplemental Table 3.

As mentioned above for the female cohort in Figures 3 and 4, 3 out of 7 metabolites from D1PRE at q < 0.05 
were of unknown identity (43%). At D1POST, it was 9 out of 24 (38%) and for D2PRE and D2POST around 
26%. At the higher threshold of q < 0.15, the percentages dropped to 22%, 29%, 21%, and 20%, respectively, out 
of the numbers graphed in Figure 3. At P < 0.05, the percentages averaged around 19% (Supplemental Table 3).

Concerning the total cohort, apart from D1PRE at q < 0.05 where 9 out of  20 metabolites were 
unknowns (45%), the percentages for the other time points and statistical thresholds hovered under 19% 
(from 14 to 18%, Supplemental Table 3).

However, for the only threshold with significantly different metabolites in male participants (P < 0.05 in 
Figure 3), the trend was distinctive, with percentages of  unknowns slowly increasing from 23% for D1PRE, 
to 24% for both D1POST and D2PRE and 28% for D2POST (Supplemental Table 3).

https://doi.org/10.1172/jci.insight.157621
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Overlap analysis reveals sex-dependent patterns. One important detail missing from Figure 3 is the identity 
overlap of  significantly different metabolites between each time point within each cohort. We investigated 
this overlap at the statistical threshold of  P < 0.05 to include the male cohort, which at q < 0.05 or q < 0.15 
did not include any metabolites (Figure 3). The Venn diagram in Figure 5 depicts the percentages of  unique 
metabolites across the 4 time points for each cohort (383 for total, 385 for women, and 142 for men). Per-
centages are used to take into account the smaller number of  metabolites in the male cohort (Figure 3). Of  
prime interest to us are the darkened percentages, which represent 75% and 70% of  metabolite distinctions 
in the female and the male cohort, respectively.

The first observation is that the male cohort pattern for the darkened percentages of  the Venn dia-
gram differed from the total and female cohort percentages. The exception is for the D2PRE/D2POST 
intersection, where the percentage was approximately 10% for all cohorts. Those metabolites include 
changes occurring specifically 24 hours after the initial maximal CPET, independently of  the second 
maximal CPET.

The intersection of  all time points at the center of  the Venn diagram is at 21% for women and 6% for 
men. In other words, a fifth of  the metabolites are independent from exercise stress in the female cohort, 
while that proportion is only one-twentieth in the male cohort.

Distinctive patterns between women and men are displayed in the outer parts of  the Venn diagram, 
specific to each time point. Although 7% of  the metabolites different in the female cohort were specific 
to D1PRE, the percentage increased to 11% at D1POST, 12% at D2PRE, and 13% at D2POST. This 
reflects a gradual transformation of  the plasma metabolome as the effect of  the exercise stress pro-
gressed in women. On the contrary, the male percentages were 10% for D1PRE and 6% for D1POST 
before jumping to 18% after a 24-hour recovery period (D2PRE) and to 19% at D2POST. In summary, 
49% of  the male plasma metabolome transformations occur during the 24-hour recovery period and 
during the exercise on the second day.

Pathway analysis at baseline reveals the pathways ME/CFS influenced. Because an HMDB number is necessary 
for classification purposes in this analysis, only 618 out of  the 933 known metabolites could be included. We 
mapped those metabolite values using the Pathway Analysis module from MetaboAnalyst against 2 libraries: 
Kyoto Encyclopedia of  Genes and Genomes (KEGG) and Small Molecule Pathway Database (SMPDB). 
Each panel of  Figure 6 compares controls to participants with ME/CFS and is an independent output for 
either of  the KEGG and SMPDB libraries containing 64 or 84 pathways, respectively. The x axis sorts the 
pathways by pathway impact while the y axis represents P values. Additional details including unlabeled path-
ways’ names in Figure 6 are available in Supplemental Table 5.

Figure 2. Output from t-SNE using the complete data set. Each dot represents a single plasma sample. Coloring is specific 
to each participant.

https://doi.org/10.1172/jci.insight.157621
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Although the KEGG and SMPDB libraries label some pathways differently, there are many common-
alities when comparing each panel in Figure 6. First, the pathway labeled “nicotinate and nicotinamide 
metabolism” is common to both and, in both cases, significantly different between controls and patients 
(KEGG P = 0.0006, q = 0.04; and SMPDB P = 0.001, q = 0.1). Nicotinate and nicotinamide, more widely 
known as vitamin B3, are precursors of  NAD+ and NADP+, which are essential for redox reactions and 
carrying electrons between reactions.

We grouped some of  the other labeled pathways (all with P < 0.05 or –log10[0.05] = 1.3; above the black 
“drops” on the y axis in Figure 6) under a category related to energy and sugars. They include “amino sugar 
and nucleotide sugar metabolism,” “glycolysis/gluconeogenesis,” and “pentose phosphate pathway” in the 
KEGG panel. In the SMPDB panel, they are “fructose and mannose degradation,” “amino sugar metab-
olism,” “starch and sucrose metabolism,” and “galactose metabolism.” The KEGG “pentose phosphate 
pathway” is also an important producer of  cytoplasmic NADPH.

A second category that is evident in Figure 6 encompasses lipids, including “alpha-linolenic acid 
metabolism,” “linoleic acid metabolism,” “fatty acid elongation,” “fatty acid degradation,” and “biosyn-
thesis of  unsaturated fatty acids” in the KEGG panel. The SMPDB panel contains similar pathways, such 
as “fatty acid elongation in mitochondria,” “fatty acid metabolism,” “pentothenate and CoA biosynthesis,” 
as well as “alpha linoleic acid and linolenic acid metabolism.” Pentothenate, or vitamin B5, is a precursor 
of  CoA, an essential molecule in fatty acid metabolism.

The outputs from the analogous analysis for each of  the other 4 time points are gathered in Supplemen-
tal Figure 2 using the KEGG library. This figure exhibits the changes occurring throughout our experimental 
protocol. Although some pathways were not affected, others were affected by either one or both exercises; 
still others were affected during the recovery period. Independent of  those fluctuations was the increase in 
significant differences between controls and participants with ME/CFS as they underwent the experimental 
protocol. Indeed, an increased number of  pathways reached significance (P < 0.05 or –log10[0.05] = 1.3), 
with 11 pathways at D1PRE, 19 at D1POST, 17 at D2PRE, and 28 at D2POST. This observation is comple-
mentary to the conclusion illustrated by Figure 3.

Exercise influences the ME/CFS female cohort differently on day 1 versus day 2. We used the same MetaboAnalyst 
module to investigate a particular data set against the SMPDB library. For this analysis we examined the FC 
differences between the effect of exercise on day 1, ΔD1, and the effect of exercise on day 2, ΔD2, for both the 
controls (top panel of Figure 7) and participants with ME/CFS (bottom panel of Figure 7), in the female cohort.

The most striking observation is the lack of  significant differences in the controls (no P < 0.05). This 
suggests that the consequences of  exercise on day 1 and day 2 are similar for the control cohort. We labeled 

Figure 3. Bar graph of the number of significantly different metabolites between controls and participants with 
ME/CFS based on Wilcoxon’s testing, at each time point for the 3 cohorts (total, women, and men), and for 3 statis-
tical cutoffs (q < 0.05, q < 0.15, and P < 0.05). The bars within the histogram bars represent the number of unknown 
metabolites for each cohort and each time point.
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the top pathways for comparison with the ME/CFS panel, which features 14 pathways with significant FC 
differences (P < 0.05) between the 2 maximal CPETs, including “butyrate metabolism” (q = 0.02). The next 
6 pathways have a q < 0.1, and the subsequent 6 pathways have a q < 0.15 (all 14 pathways are labeled in 
Figure 7). In contrast to the controls, the influence of  day 1 exercise and day 2 exercise on the ME/CFS 
plasma metabolome is markedly distinct.

Glutamate is a common factor for many of  the top pathways according to the curated SMPDB, 
including “butyrate metabolism,” where many of  the molecules intestinal fermentation produces can 
be used for glutamate synthesis. Glutamate is a precursor for arginine and proline and is linked to 
lysine and alanine metabolism. Glutamate is also a precursor to many nucleic acids and proteins in 
addition to its role in the central nervous system, where it is an excitatory neurotransmitter and plays 
a role in neuronal plasticity. Dysfunctional glutamate metabolism can cause many disorders affecting 

Figure 4. Box plots of metabolites significantly different between female controls and patients at D1PRE for q < 0. 05. The yellow diamond rep-
resents the mean of the logged values. Plots depict the minimum and maximum values (whiskers) and interquartile range (length of filled shape). 
(A–C) Unknowns. (D) Tridecenedioate. (E) Indoleacetoylcarnitine. (F) 1,5-anhydroglucitol (1,5-AG). (G) 3,5-dichloro-2,6-dihydroxybenzoic acid.

https://doi.org/10.1172/jci.insight.157621
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vision, hemolysis (red blood cell destruction), disrupted nitrogen metabolism, or the accumulation of  
toxic metabolites in the brain, to name a few from the curated SMPDB description.

The pathways “butyrate metabolism,” “carnitine synthesis,” “oxidation of  branched-chain fatty acids,” 
and “phytanic acid peroxisomal oxidation” are all related to lipid metabolism and ultimately to energy 
production, once products that are generated, such as acetyl-CoA, enter the TCA cycle.

Finally, 2 systems essential to energy production were affected differently between exercise on day 
1 and exercise on day 2 in participants with ME/CFS. One was the “malate-aspartate shuttle,” which is 
essential for the migration of  electrons through the impermeable mitochondrial membrane with the con-
tribution of  malate and NADH. The other was the “glucose-alanine cycle,” which is involved in muscle 
protein degradation, generating glutamate and then alanine, the latter of  which, after being transported to 
the liver, is used in gluconeogenesis to produce glucose that can then be transported back to muscles and 
provide energy, according to the curated SMPDB description.

The same analysis performed on the limited male cohort did not yield any significant results for either 
patients or controls (not shown).

The recovery process is highly disrupted in participants with ME/CFS. We tested the FC differences between the 
recovery in controls and the recovery in participants with ME/CFS against the SMPDB library. Out of the 28 
significantly different pathways at P < 0.05, 20 were also significant at q < 0.05 and all at q < 0.15. The top 18 
are labeled in Figure 8, with many familiar actors in energy metabolism, including “glucose-alanine cycle,” 
“citric acid cycle,” “malate-aspartate shuttle,” “pyruvate metabolism,” “amino sugar metabolism,” as well as 
“glycolysis.”

Although pathways related to lipids were not enriched in this output, another few notable ones were 
“urea cycle” and “ammonia recycling,” which are related to nitrogen metabolism.

The same analysis for the limited male cohort yielded 7 significantly different pathways (P < 0.05), 
including “phosphatidylethanolamine biosynthesis” and “phosphatidylcholine biosynthesis,” both lipid 
related, as well as “galactose metabolism,” “fructose and mannose degradation,” and “starch and sucrose 
metabolism” (output not shown).

The facts that the 24-hour recovery data gave rise to the only output that generated significant results in men, 
and that there were many significantly differences for the female cohort, clearly illustrate the fundamentally 
affected physiology in exercise recovery in our ME/CFS cohort compared with our healthy, sedentary cohort.

A chemical ontology analysis reveals the baseline disparities ME/CFS causes. For this inquiry, we used the 
statistical enrichment approach based on chemical similarity provided by the online tool ChemRICH 
(http://chemrich.fiehnlab.ucdavis.edu). Because of  the required input fields, only 672 out of  the 933 
identified metabolites could be included in this analysis. The output from the female data set revealed 
8 clusters enriched at D1PRE (Figure 9). Seven of  them contained metabolites that were decreased 
in patients compared with controls (blue clusters), while the “hexoses” cluster was the only one con-
taining metabolites with increased amounts in patients’ plasma compared with controls, pinpointing a 
dysfunction in carbohydrate metabolism. “Purine nucleosides,” “pyrimidine nucleosides,” and “xan-
thines” are all clusters related to nucleic acids, while metabolites in the “bile pigments” cluster are 
formed during heme degradation. The remaining clusters, “carnitines,” “unsaturated fatty acids,” and 
“saturated fatty acids,” demonstrated strong disruptions in lipid metabolism (large circles reflect more 
disrupted metabolites belonging to that cluster).

Figure 5. Venn diagram of the overlap analysis 
performed for each cohort between the 4 time 
points for metabolites statistically different 
between participants with ME/CFS and controls 
at P < 0.05. The numbers shown are percentages 
to respect the proportionality between the smaller 
number of metabolites for the male cohort and 
both the female and total cohort, which have 3 
times as many. Darkened percentages are the ones 
mentioned in the text.
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A matching ChemRICH analysis with the male data set resulted in very few clusters, namely 
“sugar alcohols” and “glycerophospholipids” for D1PRE. The difference in output between the male 
and the female cohort is again most likely due to the limited size of  the male cohort, hindering the 
statistical power of  this tool.

A chemical ontology analysis reveals the numerous changes occurring following exercise. ChemRICH was applied 
to the remaining 3 time points (Supplemental Figures 3–5). Out of  the 8 enriched clusters at D1PRE, 
“xanthines,” “carnitines,” and “unsaturated fatty acids” were enriched throughout the 4 time points. It is 
important to note that the color of  the “carnitines” cluster is purple at D2POST after being blue at all the 
other 3 time points, reflecting a shift in some metabolites from that cluster becoming higher in participants 
with ME/CFS than controls.

At D1POST (Supplemental Figure 3), 9 metabolic clusters were enriched, and 3 of  them were increased 
in ME/CFS cases, namely “hexoses,” “oligosaccharides,” and “glycerophospholipids.”

At D2PRE and D2POST (Supplemental Figures 4 and 5), the number of  enriched metabolic clus-
ters was considerably higher, with 15 and 17, respectively, and in both cases 53% were higher in partici-
pants with ME/CFS than controls. Four clusters were specific to those time points, “pyruvates,” “dicar-
boxylic acids,” “deoxycholic acids,” and “cholic acids.” The last 3 are bile acids, which are produced to 
help the digestion of  fats.

The same analysis with the male cohort resulted in no enriched cluster at D1POST; “oligosaccharides,” 
“trimethyl ammonium compounds,” and “pyruvates” at D2PRE; and “adenine nucleotides” at D2POST 
(output not shown).

Figure 6. Pathway analysis results using MetaboAnalyst for the female D1PRE time point. The pathway impact on the y 
axis from 0 (low impact) to 1 (strong impact) represents the values from the pathway topology analysis. Each circle denotes 
a pathway, and the fill color represents the significance of disturbances in that pathway from white (low significance) to red 
(higher significance). The black drop with 1.3 indicates the threshold of significance at P < 0.05.
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Chemical ontology analysis throughout our temporal sampling exposes disparities between participants with ME/CFS 
and healthy controls. We investigated the impact of exercise on day 1 (ΔD1), during the 24-hour recovery period, 
as well as the impact of exercise on day 2 (ΔD2) for female controls and participants with ME/CFS using the 
ChemRICH tool (Figure 10). The only common pattern between all panels of Figure 10 is the “arachidonic 
acids” cluster, which contains metabolites that decreased because of both exercise bouts but then increased 
during the recovery period. The 3 metabolites included in this cluster are oleoylcholine, arachidonoylcholine, 
and linoleoylcholine, all classified as “acyl cholines” (part of lipid) by Metabolon. The pattern of this cluster is 
a classic example of changes driven solely by our experimental protocol.

The “oligopeptides” cluster behaved in the opposite pattern for the control cohort (Figure 10, A–C). 
Although it was also an enriched cluster in Figure 10D, its pattern differed during recovery of  the ME/CFS 
cohort (Figure 10E), with some metabolites not recovering like others and the cluster being absent follow-
ing exercise on day 2 (Figure 10F).

Inversely, the “unsaturated fatty acids” and “saturated fatty acids” clusters were not significantly enriched in 
the control cohort while they displayed a similar pattern to the “oligopeptides” cluster in controls. Indeed, their 
metabolites increased because of exercise on both days and recovery during the 24-hour period between them, 
even if  only for certain metabolites for the “unsaturated fatty acids” cluster (purple coloring in Figure 10E).

These are only a few examples of  the abundant disparities between controls and participants with 
ME/CFS depicted in Figure 10. There were 8 clusters significantly enriched during the recovery period 
in controls versus 14 for the patients, with 5 in common strictly by name (“arachidonic acids,” “adenine 

Figure 7. Pathway analysis results from MetaboAnalyst of ΔD1 versus ΔD2 for female controls and participants 
with ME/CFS (ΔD1 and ΔD2 result from the subtraction for each participant of the D1PRE or D2PRE values from the 
D1POST and D2POST values for each metabolite). The pathway impact on the y axis from 0 (low impact) to 1 (strong 
impact) represents the values from the pathway topology analysis. Each circle denotes a pathway, and the fill color 
represents the significance of disturbances in that pathway from white (low significance) to red (higher significance). 
The black drop with 1.3 indicates the threshold of significance at P < 0.05.
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nucleotides,” “pyrimidinones,” “oligopeptides,” and “pregnenes”), and only 3 behaving similarly, based on 
color (“arachidonic acids,” “pyrimidinones,” and “pregnenes”).

The identical analysis on the male cohort delivered contrasting outputs (Supplemental Figure 6), 
where most of  the changes were detected in the control cohort, particularly during the 24-hour recovery 
period (Supplemental Figure 5B). “Arachidonic acids” is a familiar cluster that behaved identically to 
the female cohort throughout the 6 panels. In general, clusters from the male control cohort contained 
metabolites that increased because of  exercise on day 1 (Supplemental Figure 5A), then recovered 
during the recovery period (Supplemental Figure 6B), while few significant changes occurred because 
of  exercise on day 2 (Supplemental Figure 6C). The scarcity of  significant clusters in the ME/CFS 
panels (Supplemental Figure 6, D–F) could reflect a sex-related difference but is most likely the result of  
a mathematical artifact because of  the lack of  samples available for analysis for the post-exercise time 
points (see Methods).

Combining both cohorts to perform the same analysis produced a complex output available as Sup-
plemental Figure 7. One remarkable feature is the strong similarity between controls and participants with 
ME/CFS for ΔD2, in both cluster identity and behaviors (Supplemental Figure 7, C and F). In contrary, the 
24-hour recovery panels show very few commonalities apart from the clusters mentioned above for both the 
female and the male cohort analysis (Supplemental Figure 7, B and E). Surprisingly, the ΔD1 panels diverge 
only by a few clusters, including the presence of  “carnitine” in controls and “unsaturated fatty acids” in par-
ticipants with ME/CFS (Supplemental Figure 7, A and D).

A linear model analysis identifies metabolites with the most distinct profiles. We utilized an R script 
designed to test the significance of  mean differences (P and q values) within and between cohorts for 
all time points. The comparisons include (i) controls versus patients at each time point, (ii) time point 
to time point for each cohort, as well as (iii) time point to time point for controls versus patients, for 
a total of  22 combinations/columns. The extensive results for the female cohort are provided as Sup-
plemental Table 6.

For D1PRE to D1POST changes of  controls versus patients, with q < 0.15, 11 metabolites were of  
interest (the prior top 15, mostly drugs, were statistical artifacts). Out of  the 11 metabolites, the highest 
significance was for a metabolite of  unknown identity, 15245 (Figure 11A). The second most highly signifi-
cant is an energy metabolite from the TCA cycle, alpha-ketoglutarate (Figure 11B). Additionally, 2 of  them, 
pyruvate and lactate, are carbohydrates classified as part of  “glycolysis, gluconeogenesis, and pyruvate 
metabolism.” Six of  them are amino acids, with 3 being conjugates of  1-carboxyethyl amino acids (leucine, 
tyrosine, and valine).

Figure 8. Pathway analysis results from MetaboAnalyst of the recovery period differences between female controls 
and participants with ME/CFS (the recovery values result from the subtraction for each participant of the D2PRE values 
from the D1POST values for each metabolite). The pathway impact on the y axis from 0 (low impact) to 1 (strong impact) 
represents the values from the pathway topology analysis. Each circle denotes a pathway, and the fill color represents the 
significance of disturbances in that pathway from white (low significance) to red (higher significance). The black drop with 
1.3 indicates the threshold of significance at P < 0.05.
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Concerning 15245 (Figure 11A), the data distribution between D1PRE and D1POST is clearly differ-
ent between controls and patients, with a higher mean and median after exercise in controls compared with 
more constant values for patients. Although similar, this disparity is even more pronounced for women 
than men. The pattern is analogous from D2PRE to D2POST but not as distinct in female participants. 
Supplemental Table 6 denotes such slight variations by showing both the P and q values.

Alpha-ketoglutarate (Figure 11B) displays an opposite pattern between controls, increasing due to exer-
cise (both for day 1 and day 2), while decreasing in participants with ME/CFS for the same period (apart 
from data for day 2 women). The observed decrease is even more pronounced in male participants.

None of the changes between female participants and controls for those 11 metabolites were significantly 
different between D1PRE and D2PRE (q > 0.75), meaning that their levels were back to baseline after 24 hours 
of recovery. They were also not statistically different between D2PRE and D2POST (q > 0.75), meaning that 
the initial differences caused by exercise between controls and patients at day 1 were not repeated on day 2. Out 
of these same 11 metabolites, only pyruvate (q = 0.01), lactate (q = 0.01), and hypoxanthine (q = 0.13) were 
significantly different when considering D1PRE and D2POST, reflecting changes happening after 2 maximal 
CPETs over 24 hours. Except for hypoxanthine and the dipeptide isoleucyl-glycine, 9 out of the 11 metabolites 
were significantly different when considering the 24-hour recovery period (D1POST to D2PRE).

When sorting each column in Supplemental Table 6 and counting the metabolites with statis-
tically different profiles between controls and patients (q < 0.15), D1PRE to D2PRE adds up to 15 
metabolites, D1PRE to D2POST to 12 metabolites, D1POST to D2PRE to 61 metabolites, D1POST 
to D2POST to 14 metabolites, and D2PRE to D2POST to 15 metabolites. None of  these metabolites 
were significantly different for all comparisons. Eight of  them were significant for several comparisons 
(q < 0.15), except for D1PRE to D1POST. Those metabolites included 3 unknowns, 2 “amino acids” 
(proline and threonine), 2 “lipids” (adipoylcarnitine [C6-DC] and 2R,3R-dihydroxybutyrate), as well 
as 1 “xenobiotic (4-vinylphenol sulfate).

In the category with the most metabolite behavior differences (D1POST to D2PRE), 14 out of  61 
(23%) were unknowns (including 15245, Figure 11A; as well as the energy metabolite alpha-ketoglu-
tarate, Figure 11B), 20 of  the 47 identified metabolites were “amino acids” (43%), 15 were “lipids” 
(32%), 4 were “carbohydrates” (9%), 5 were “xenobiotics” (11%), and 1 was “cofactor and vitamins”: 
pantothenate (vitamin B5).

The 2-fold enrichment of  the “amino acid” superpathway metabolites (23% of  known metabolites are 
amino acids) could indicate a differential rebalancing of  amino acids during the 24-hour recovery period 
in participants with ME/CFS compared with controls, especially from the “leucine, isoleucine and valine 
metabolism” as well as the “arginine and proline metabolism” pathway. Half  of  those amino acids were 
significant solely for the D1POST to D2PRE period, and an additional 5 had only 1 other significant time 
point, D1PRE to D1POST.

Concerning the lipids, 8 out of  the 15 (53%) contain carnitine, all with q < 0.04 and chains shorter 
than 12 carbons. Although other short- and medium-chain carnitines also had nonsignificant differences 
between controls and patients, none of  the long-chained carnitines were significant at D1POST to D2PRE. 
Carnitine lipids represented 6% of  our data set and 20% of  the lipids but 17% of  the significant metabolites 
at D1POST to D2PRE and 53% of  the lipids.

Figure 9. ChemRICH output of D1PRE 
for the female cohort. Only clusters 
enriched at P < 0.05 are shown. The x 
axis is the cluster order on the similarity 
tree. The y axis is the –log(P value), with 
the most significantly altered clusters 
at the top. The color scale represents 
the portion of metabolites with a ratio 
of patients/controls either decreased (in 
blue) or increased (in red).
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Many of  the most altered metabolites contain carnitine. One of  the modules of  MetaboAnalyst supports 
varying time-series approach, including multivariate analysis, such as the Multivariate Empirical Bayes 
Analysis of  Variance (MEBA). Supplemental Table 7 is available for further exploration of  the complex 
output beyond what is discussed below. It includes each individual cohort (total, women, and men) for 
controls and patients, as well as the controls/patients combined comparison, for a total of  9 columns and 
over 10,000 Hotelling T2 tests.

Figure 10. ChemRICH output of ΔD1, the 24-hour recovery period, and ΔD2 for female controls and participants with ME/
CFS (ΔD1 and ΔD2 result from the subtraction for each participant of the D1PRE or D2PRE values from the D1POST and 
D2POST values for each metabolite, while the recovery values result from the subtraction for each participant of the 
D2PRE values from the D1POST values for each metabolite). (A) ΔD1 controls. (B) Recovery controls. (C) ΔD2 controls. (D) 
ΔD1 ME/CFS. (E) Recovery ME/CFS. (F) ΔD2 ME/CFS. Only clusters enriched at P < 0.05 are shown. The x axis is the cluster 
order on the similarity tree. The y axis is the –log(P value), with the most significantly altered clusters at the top. The color 
scale represents the portion of metabolites with a ratio of patients/controls either decreased (in blue) or increased (in red) or 
an equal number of metabolites both increased and decreased (in purple).
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The highest Hotelling T2 value was 419 for lactate within the female control cohort, which means that 
this metabolite incurred the most changes of  all 1157 metabolites during this experimental protocol. The 
corresponding Hotelling T2 value for female participants with ME/CFS was 150, ranking fifth after malate 
(T2 = 293), 3-methyl-2-oxobutyrate (T2 = 258), 4-methyl-2-oxopentanoate (T2 = 244), 3-methyl-2-oxovaler-
ate (T2 = 209), and pantothenate/vitamin B5 (T

2 = 163). Those 5 metabolites also ranked high in the control 
cohort Hotelling T2 scores. Figure 12A displays the plasma lactate changes for each female participant 
throughout the 4 time points. We noticed similar patterns between controls and participants with ME/CFS 
where lactate increased during both maximal CPETs (D1PRE to D1POST panel and D2PRE to D2POST 
panel). During the 24-hour recovery period (D1POST to D2PRE panel), lactate amounts decreased. In the 
D1PRE to D2PRE panel, we observed a consistency of  lactate amount in the blood between the baseline 
value and after 24 hours of  recovery. Comparatively, the D1POST to D2POST panel shows slopes that 
tend to be more negative, reflecting a lesser increase of  plasma lactate during the second maximal CPET 
compared with the first one. Finally, the D1PRE to D2POST panel reflects the state of  the participants 
immediately after the complete course of  this study compared with their original baseline, with a similar 
pattern as the D1PRE to D1POST and D2PRE to D2POST panels for lactate.

When sorting the female control/patient Hotelling T2 scores by descending values, the highest value, 
of  43, was for a compound of  unknown identity, 16397. The fluctuations for this metabolite were dif-
ferent than the ones described for lactate (Figure 12B). Moreover, there were clear differences between 
controls and participants with ME/CFS. For instance, during the 24-hour recovery period (D1POST to 
D2PRE panel), the amounts of  plasma metabolite 16397 went down in 84% of  the patients, while 50% 
behaved similarly in controls. The 3 bottom panels also have distinct percentages between controls and 

Figure 11. Box plot distri-
bution of logged values 
for the top 2 metabolites 
with the most significant 
differences for controls 
versus participants with 
ME/CFS between D1PRE 
and D1POST. (A) 15245. (B) 
Alpha-ketoglutarate. The 
yellow diamond represents 
the mean of the logged 
values. Plots depict the 
minimum and maximum 
values (whiskers) and 
interquartile range (length 
of filled shape). The black 
arrows follow the changes 
of the means of the logged 
values.
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patients, especially when comparing baseline and 24-hour recovery (D1PRE to D2PRE panel) as well as 
the D1POST and D2POST panel, with inverted percentage patterns.

Another compound of unknown identity, 15245 (also mentioned in Figure 11A), had an elevated Hotelling 
T2 score of 39. This metabolite had a reasonably similar pattern between controls and patients for most panels 
(Figure 12C), apart from the 24-hour recovery period (D1POST to D2PRE panel), where the amount of plas-
ma 15245 decreased in controls but increased in more than half  (58%) the patients. This pattern was amplified 
when examining the D1POST to D2POST panel, where plasma 15245 increased in 69% of the patients.

Although each metabolite had a distinctive pattern, by examining the female control/patient 
Hotelling T2 scores higher than an arbitrary value of  15, we determined that 16 out of  65 metabolites 
(25%) were unknown. Of  the remaining 49, 13 out of  20 lipids were carnitine-containing compounds 
(65%); 6 out of  14 amino acids were part of  “leucine, isoleucine and valine metabolism” (43%); 3 were 

Figure 12. Spaghetti plots showing the amplitude of the variations for selected metabolites between all 4 time 
points for controls versus patients. (A) Lactate. (B) 16397. (C) 15245.
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“carbohydrates,” namely pyruvate, 1,5-AG, as well as lactate; and 1, alpha-ketoglutarate, was part of  the 
“energy” superpathway.

A similar implementation with the male control/patient Hotelling T2 scores that were higher than 15 
produced 19 metabolites, with 2 of  unknown identity (10%); 1 carnitine-containing lipid out of  9 lipids 
(10%); and gluconate as a metabolite part of  the “energy” superpathway (Supplemental Table 7).

Discussion
Historically, ME/CFS blood metabolomics studies have been observations of  the baseline status of  the par-
ticipants, and our study design also allows such analysis (D1PRE data). Two recent reviews (23, 24) orga-
nized the ME/CFS metabolomics literature to assess consistency between groups and measurement meth-
ods used. When the reviews focused on reproducibility, the pathways that were most consistent between 
studies included amino acid metabolism and urea cycle, glycolysis, lipid metabolism, and redox-related 
pathways. It is important to reaffirm that disparities in the methods used affected the number of  metabolites 
assessed with a strong impact on pathway output estimates. Notably, earlier studies were limited to just 
over 20 metabolites, whereas contemporary ones range from 144 (12) to 832 (11) or 880 (20), and even 933 
identified metabolites for this latest data set (1157 when including the unknowns).

Most of  the metabolites significantly different between participants with ME/CFS and controls in the 
female cohort had lower means in patients, with only 1 higher at q < 0.05 (indoleacetoylcarnitine) out of  
the 7 (Figure 1 and Supplemental Table 4). At both q < 0.15 and P < 0.05, only 25% had higher means 
(Supplemental Table 4). Nevertheless, out of  the 1157 plasma metabolites assessed, we did not identify any 
discriminatory metabolite or group of  metabolites that could serve as a biomarker on its own. However, the 
identification of  1,5-AG as one of  the few highly significantly different features of  our data set and its pat-
ented use to monitor short-term glycemic control directs attention to energy metabolism as do the pathway 
analysis results (Figure 6). Unlike in our first study where glucose appeared to be reduced in patients (10), 
glucose here was slightly elevated in our patient cohorts, consistent with our second study (11).

Fluctuations between studies and between subjects within a study are often argued as resulting from 
ME/CFS symptom variations, from outside factors, or as the proof  for a need to seek and establish sub-
groups (17, 20). Certainly it is possible that subgroups exist, but describing them after inspection of  the data 
can lead to invalid conclusions because of  HARKing (25). Large-scale cohorts combined with large-scale 
untargeted metabolomics are needed, permitting the dissociation of  individual metabolic environments 
(depicted in Figure 2) from the disease metabotype.

Sex differences in metabolomes of  participants with ME/CFS. Subgroups that can easily be hypothesized 
before viewing any sort of  molecular data are women versus men. ME/CFS is a female-dominant disease; 
an estimated 25% to 35% of  the patients affected are men (1). Due to the difficulty in obtaining sufficient 
numbers of  men in small-scale studies, including some of  our prior ones (9–11), exclusively female cohorts 
are sometimes selected (13–15). Other studies, which have approximately 20% men and small size cohorts 
(50 patients or less), acknowledge the lack of  power to test sex disparities (12, 17, 19). In 2016, a cohort 
evenly split between sexes, gathered by Naviaux et al. (18), revealed that the metabolic features of  women 
and men have some commonalities as well as many differences in the pathways ME/CFS affects. Using 
another evenly split cohort, Nkiliza et al. (26) observed sex-specific effects on lipid metabolites. In a cohort 
of  200 participants with 20% men (16), trends were distinctive between sexes but fell short in statistical 
significance for the male component. A recent study using a plasma Metabolon data set of  880 serum 
metabolites from a cohort of  83 participants with ME/CFS and 20% men did not separate women from 
men. Instead, a correlation analysis separated patients into metabotypes unrelated to sex (20).

Because female participants compose 71% of  our cohort, most of  the significant results depicted in the 
figures focus on female patterns. Nevertheless, we strived to exploit the data derived from the limited num-
ber of  male participants by drawing comparisons in most analyses, while acknowledging the reduced size 
of  the male cohort. Figures 3, 4, 5, and 11; Supplemental Figure 6; as well as various other nonillustrated 
results lay out converging evidence of  sex-specific metabolic patterns.

A unique feature of  our ME/CFS study is the exercise component that includes a majority-female 
patient cohort. Blood metabolomics studies of  exercised patients have been carried out since the 1970s 
(27–30), but these studies were male dominant, especially when athletes were recruited. An elegant mul-
tiomic study of  response to exercise of  healthy individuals, where 58% of  the 36 participants are men, was 
compiled without sex specificity (8).
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Unidentified metabolites may play a critical role in ME/CFS. One aspect of  this Metabolon data set is the 
compilation of  metabolites yet to be identified. We requested this extra information to weigh the impor-
tance of  unknowns in our quest to elucidate the mechanisms of  ME/CFS, which might serve to motivate 
future studies. Our data demonstrate an enrichment of  unknown metabolites for higher statistical thresh-
olds (25% to 43% depending on the time point, while composing 19% of  the original data set). The prev-
alence of  such a category certainly has far-reaching consequences in our ability to decode ME/CFS and 
its complex features. At the time of  writing, we know that 07765 (Figure 4) is possibly a sulfated phenol, 
23680 (Figure 4) is possibly a fatty acid carnitine, 18921 (Figure 4) appears to be acetylated, and 15245 
(Figures 11 and 12) is possibly an acetylated organic acid. Although such limitations are part of  the field of  
metabolomics, this information is helpful, as it brings up the percentage of  carnitine compounds that are 
significantly different at q < 0.05 for D1PRE to 29% (2 out of  7).

Several pathways previously noted to be altered in ME/CFS also appear in our study. Fatty acid metabolites 
have previously been noted to be at different levels in ME/CFS and control plasma (9, 10). Carnitine is 
an ammonium compound essential for fatty acid oxidation, and both “oxidation of  branched-chain fatty 
acids” and “carnitine synthesis” were affected in ME/CFS patient pathway analysis (Figure 7). The oxi-
dation of  branched-chain fatty acids is necessary to produce an even-numbered carbon chain that can then 
enter fatty acid oxidation and produce acetyl-CoA, a source of  energy in the heart and brain. “Phytanic 
acid peroxisomal oxidation” is another important component of  fatty acid intake.

The Contrepois et al. study of  healthy individuals (8) assessed metabolites from the TCA cycle and 
found them increased at both 15 and 30 minutes after exercise. The enhanced increase in ME/CFS cases 
(Figure 7) most likely reflects some compensation for a lack of  alternative energy sources. A shift in amino 
acid metabolism is also observed in Figure 7, especially for alanine, aspartate and glutamate, arginine, and 
proline metabolism. The levels of  most of  those amino acids were found to be reduced after exercise in 
healthy participants (8). Armstrong et al. (13) previously reported altered amino acid and nitrogen metab-
olism in ME/CFS. Another category of  pathways in our study is related to nitrogen metabolism, includ-
ing “urea cycle” and “ammonia recycling,” in which glutamate and glutamine also play an important role 
according to SMPDB curation.

Many of  the highly significant pathways in Figure 8 are related to energy metabolism, including ami-
no acid metabolism, sugars, “citric acid cycle,” “pyruvate metabolism,” and “glycolysis.” Such pathways 
are familiar from the metabolomics ME/CFS literature (23, 24), but their evolution through the recovery 
period is probably novel. The differences of  recovery of  these key energy pathways illustrate the effect 
of  ME/CFS on those pathways. Among altered pathways is one labeled “Warburg effect,” which refers 
to the mode of  energy production of  cancer cells, where glucose is preferentially used to produce lactate 
(aerobic glycolysis). We cannot know from our data whether alteration in this pathway might be due to 
differential levels of  hypoxia.

Glutamate metabolism is central to many of  the pathways disturbed in ME/CFS. Out of  all the signifi-
cantly different pathways in the ME/CFS panel output of  Figure 7, “glutamate metabolism” caught our 
attention, due to its wide-ranging roles in numerous metabolic pathways, including many among the high-
lighted pathways of  Figure 7. Apart from being an amino acid precursor to many nucleic acids and pro-
teins, glutamate also plays a role in the central nervous system as an excitatory neurotransmitter; it affects 
memory and learning through the modulation of  neuronal plasticity. According to the curated SMPDB 
description, disorders resulting from a dysfunctional glutamate metabolism affect ammonia levels (hyper-
ammonemia), brain activity (γ-hydoxybutyric aciduria), red blood cells (hemolytic anemia), and amino 
acid metabolism (5-oxoprolinuria).

The SMPDB description of  several of  the other pathways in Figure 7 involves glutamate, including 
“butyrate metabolism,” in which molecules are produced that are precursors for glutamate synthesis. 
We previously reported lower levels of  butyrate-producing bacteria in the gut microbiome of  individ-
uals with ME/CFS (31, 32). Glutamate is an intermediate precursor in “arginine and proline metab-
olism.” In “citric acid cycle,” alpha-ketoglutarate can serve as a precursor to glutamate. Glutamate is 
produced during “lysine degradation.” “Glucose-alanine cycle” involves muscle protein degradation 
and glutamate as an intermediate transported to the liver, where it is funneled into gluconeogenesis 
for glucose to be transported back to muscles for ATP production. “Alanine metabolism” is involved 
in pyruvate conversion. Glutamate can also be catabolized into ammonium in the mitochondria and 
then enters the “urea cycle.”

https://doi.org/10.1172/jci.insight.157621
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We note that neither glutamate nor glutamine itself  was statistically different between controls and 
participants with ME/CFS at D1PRE (P = 0.4 and P = 0.9 respectively) and throughout the time points 
(Supplemental Table 4). Lack of  differential abundances of  1 or 2 components of  a pathway does not mean 
that the pathway itself  is not altered between 2 groups of  participants. Instead, glutamate is a common 
denominator of  the pathways significantly affected by exertion in participants with ME/CFS. Glutamate 
variations have been associated with ME/CFS before but not always with reproducibility. Indeed, while 
glutamate was slightly decreased in our previous female cohort (9), it was actually slightly increased in the 
plasma of  both women and men in this data set. Armstrong et al. reported significant reduction in gluta-
mate amounts (14), specifically in women and not in men according to Fluge et al. (16). On the other hand, 
Naviaux et al. noted normal levels of  glutamate in both their female and male cohorts (18).

The literature on glutamate-related metabolism is extensive and addresses all aspects of  glutamate’s 
numerous roles in the homeostasis of  the body.

Although all the changes we have observed exist in the plasma, blood is a system directly in contact 
with all other systems of  the body. Dysfunctions in glutamate metabolism affect inflammation in the brain 
(33–35), many neurological diseases including epilepsy and Alzheimer’s (36–38), the microbiome (39, 40), 
the immune system (41), and redox status (42), to mention a few examples. However, glutamate/glutamine 
was not found to be altered when its level was assessed by neuroimaging of  participants with ME/CFS 
and controls (43). This finding is consistent with the lack of  altered levels in plasma, though it cannot be 
assumed that plasma levels of  a metabolite reflect its abundance in particular tissues and organs.

The recovery period of  participants with ME/CFS is highly disrupted compared with healthy controls. Few studies 
investigate metabolomics evolution during the recovery period after a brief  but intense exercise, and the ones 
that do focus on male athletes, where they find metabolite shifts return to baseline levels after 24 hours (44).

The major trend displayed in Figure 8 and Figure 10, A and E, shows that over the 24-hour recovery 
period, an increasing number of  significant metabolic disturbances accumulated between participants with 
ME/CFS and controls. This trend is also noticeable when comparing the panels in Supplemental Figure 
2 as well as between Figure 9 and Supplemental Figures 3–5, where most of  the original clusters shown in 
blue remain constant throughout the 4 figures, while the ones that become significant are depicted mainly 
as red or purple, reflecting a shift from hypometabolism of  significant metabolites toward hypermetabo-
lism for newly significantly different metabolites. An association between PEM and hypermetabolism has 
already been inferred in ME/CFS in an uncontrolled PEM induction setting (19).

Our longitudinal study design has allowed us to identify a number of  pathways that diverge between 
healthy individuals and those with ME/CFS 24 hours after an exercise challenge, at which time patients 
typically experience PEM. Inability to recover properly after exertion is one of  the most disabling symptoms 
of  ME/CFS. Our study provides insight into the metabolic changes that are inimical to proper response to 
physical effort.

Methods
Cohort selection. A total of  105 participants, subdivided between 60 participants with ME/CFS (45 women 
plus 15 men) who fulfilled the Canadian consensus criteria for ME/CFS diagnosis (45) and 45 controls (30 
women plus 15 men), underwent 2 successive CPETs at 3 sites. Participants were identified as ME/CFS 
cases or healthy sedentary controls by medical doctors and tested at Ithaca College, Weill Cornell Medi-
cine, and Workwell Foundation.

Exercise protocol and blood collection. Samples were collected before and after 2 maximal-effort CPETs on a 
stationary cycle that were separated by a 24-hour recovery period. The protocol was a 15-Watt ramp increment 
every 1 minute until the participant could no longer maintain a cadence of at least 50 rpm. The duration of  
cycling to maximal effort varied by participant from 6 to 14 minutes. Patients and corresponding healthy but 
sedentary participants were exposed to the same exercise protocol to allow statistical comparison. Four longi-
tudinal blood samples were drawn from a vein in the antecubital fossa into EDTA tubes and conveyed to pro-
cessing laboratories the same day. Plasma was isolated following centrifugation of blood at 500g for 5 minutes 
at room temperature. Plasma samples were immediately stored at –80°C.

Metabolomics data set. Plasma samples thawed once for aliquoting were shipped on dry ice to Metabolon’s 
facility in North Carolina (https://www.metabolon.com), where the Precision Metabolomics LC-MS global 
metabolomics platform was carried out to provide a spreadsheet data output of relative concentrations. An 
initial step undertaken was to populate the missing values by finding the minimum value for each metabolite 
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and imputing that value to any missing value within that metabolite. The exception was for drug-related and 
tobacco-related metabolites, for which a 0 was used for imputation, as the missing values were likely due to true 
absence rather than instrument detection limits.

When the tools described in the next section required all 4 time points, some participants had to be 
excluded because some blood draws were not possible, especially after exercise. For those analyses, the 
female cohort consists of  28 controls and 45 participants with ME/CFS while the male cohort consists of  
14 controls and 10 participants with ME/CFS.

Tools used for data organization. Participants provided demographic data and completed the Bell scale 
and SF-36 questionnaires, which were organized using REDCap (https://www.project-redcap.org).

Statistics. R scripts were used to perform Wilcoxon’s rank-sum tests, to perform the t-SNE analysis, and to 
draw box plots and spaghetti plots. The original Venn diagram analyses were done using http://bioinformatics.
psb.ugent.be/webtools/Venn. The MetaboAnalyst 5.0 modules used throughout this manuscript were carried 
out with the online tool at https://www.metaboanalyst.ca (46). MetaboAnalyst is an open-source suite of ana-
lytic tools provided by the Xia lab since 2009 (47), with an increasing number of analytic modules with each new 
version (48–50). Each module relies on established models developed by varying groups and mathematical units. 
For instance, the MEBA we applied uses the Hotelling T2 test, where the null hypothesis represents consistency 
in time and/or between cohorts, based on the work by Tai et al. (51). The higher the ranking score, the higher the 
differences between temporal points or cohorts. The pathway analysis integrates pathway enrichment analysis 
and pathway topology analysis. The ChemRICH analyses were performed online at http://chemrich.fiehnlab.
ucdavis.edu by providing the required input files (52). ChemRICH is described by its founders as “a statistical 
enrichment approach based on chemical similarity” rather than traditional pathway analysis approaches, which 
rely on previous knowledge of the involvement of a metabolite in a given pathway. Other simple calculations 
were done in Microsoft Excel. Supplemental Figure 1 was drawn using JMP Pro 16.0.

When thousands of  hypothesis tests, in this case Wilcoxon’s rank-sum tests, are conducted at the same 
time, the probability for metabolites to be wrongfully called significantly different at P < 0.05, also known 
as false positives, increases proportionally to the number of  tests conducted. Mathematically, this statisti-
cal error requires correction by controlling for the FDR. We used the Benjamini-Hochberg procedure to 
calculate q values for each series of  tests performed. On the other hand, the relevance of  arbitrary cutoffs 
has been a subject of  debate when interpreting biological data sets (53). Overcorrection will inevitably 
result in false negatives and hinder the biological interpretation of  the significantly different features. We 
designed our presentation of  the data around the pursuit of  transparency and display 3 cutoffs from the 
most conservative (q < 0.05), to a slightly less conservative one (q < 0.15), and finally with no correction for 
multiple testing (P < 0.05). This allows for flexibility in our data interpretation and trend discovery as well 
as leniency for our size-limited male cohort.

Study approval. Protocols regarding human participants were approved by the Institutional Review 
Boards of  Weill Cornell Medical College (Protocol 1708018518) and Ithaca College (IRB 1017-12Dx2). 
Written informed consent was received prior to participation.
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