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Introduction
Anaphylaxis is a type I hypersensitivity reaction that is potentially life-threatening if  not adequately treat-
ed. Although the simultaneous onset of  skin symptoms and hypotension (in patients with a history of  
allergic reactions) suggests an anaphylactic episode, reactions may present atypically and skin symptoms 
may not be present in up to 20% of  patients (1, 2). To more confidently administer adrenaline as the  
first-line treatment in cases where the elicitor of  anaphylaxis is unknown and the diagnosis uncertain, 
there is a high medical need for objective laboratory parameters supporting the diagnosis of  anaphylaxis  
(preferably using easy-to-acquire biological samples, e.g., blood).

Currently, total mast cell tryptase is the only laboratory parameter routinely used for the diagnosis of  
anaphylaxis, but its moderate sensitivity and specificity require improvement (3). Moreover, the values of  
tryptase during acute reaction need to be related to their baseline levels in the same individual because of  
substantial interindividual variability even at baseline (4). In addition, the relatively late diagnostic win-
dow for serum tryptase between 30 and 120 minutes after the onset of  first anaphylaxis symptoms is too 
late given the necessity of  rapid treatment initiation. Therefore, multiple efforts have been undertaken in  
identifying other potential biomarkers of  anaphylaxis (5–8).

BACKGROUND. There is a need to support the diagnosis of anaphylaxis by objective markers. 
miRNAs are promising noncoding RNA species that may serve as serological biomarkers, but their 
use in diagnosing anaphylaxis has not been systematically studied to our knowledge. We aimed to 
comprehensively investigate serum biomarker profiles (proteins, lipids, and miRNAs) to support 
the diagnosis of anaphylaxis.

METHODS. Adult patients admitted to the emergency room with a diagnosis of anaphylaxis (<3 
hours) were included. Blood samples were taken upon emergency room arrival and 1 month later.

RESULTS. Next-generation sequencing of 18 samples (6 patients with anaphylaxis in both acute 
and nonacute condition, for 12 total samples, and 6 healthy controls) identified hsa-miR-451a to 
be elevated during anaphylaxis, which was verified by quantitative real-time PCR in the remaining 
cohort. The random forest classifier enabled us to classify anaphylaxis with high accuracy using 
a composite model. We identified tryptase, 9α,11β-PGF2, apolipoprotein A1, and hsa-miR-451a 
as serological biomarkers of anaphylaxis. These predictors qualified as serological biomarkers 
individually but performed better in combination.

CONCLUSION. Unexpectedly, hsa-miR-451a was identified as the most relevant biomarker in our 
data set. We were also able to distinguish between patients with a history of anaphylaxis and 
healthy individuals with higher accuracy than any other available model. Future studies will need to 
verify miRNA biomarker utility in real-life clinical settings.

FUNDING. This work is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research 
Foundation) as part of the clinical research unit (CRU339): Food Allergy and Tolerance (FOOD@) 
(project number 409525714) and a grant to MW (Wo541-16-2, project number 264921598), as well 
as by FOOD@ project numbers 428094283 and 428447634.
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miRNAs are small noncoding RNAs that regulate gene expression usually by silencing transcription 
(9). Their use as serological biomarkers has been proposed in various diseases (10). Data on the role of  
miRNA in human anaphylaxis are largely unavailable. A recent study of  food allergies in 4 children 
reported differential expression of  several miRNAs during the reaction, indicating miRNAs’ potential 
to assist in the diagnosis of  anaphylaxis (11). Since several miRNAs were shown to play a role in acute 
asthma via airway inflammation and hyperresponsiveness (12), we hypothesized that miRNA secretion 
may also occur in hypersensitivity reactions. The aim of  this study was therefore to identify biomarkers 
predictive of  anaphylaxis, with a special emphasis on miRNAs.

Results
Study cohort characteristics. We prospectively recruited 81 patients from the emergency room with a sus-
pected diagnosis of  anaphylaxis. Out of  this cohort, 31 patients had to be excluded from the analysis 
because of  low severity, or prolonged time (>3 hours) from the onset of  the first symptoms until blood 
draw in the emergency room, or diagnostic criteria for anaphylaxis not being fulfilled. Second sampling 
during a diagnostic visit was performed in 24 out of  47 patients with anaphylaxis at the Allergy and 
Immunology Division (Figure 1A). Twenty-four healthy individuals without a history of  hypersensitivi-
ty reactions were recruited as controls. The mean age of  patients and healthy controls was 48.77 (median 
= 52) and 46.26 (median = 40) years, respectively, and the sex distribution was comparable (Figure 1, B 
and C). The majority of  patients were White (European 85.11%; 5 or 10.64% were of  Middle Eastern 
descent), and 2 (4.26%) were east Asian. The classification was made by the investigators. The study 
participants are summarized in Supplemental Table 1 (supplemental material available online with this 
article; https://doi.org/10.1172/jci.insight.156669DS1).

The majority of  cases in our cohort were venom-induced anaphylaxis (VIA, n = 22) and food-induced 
anaphylaxis (FIA, n = 19), followed by drugs (n = 3) and 3 cases of  idiopathic anaphylaxis (Figure 1D). 
VIA did not show significantly more severe reactions, classified as Ring and Messmer (13) grade III, than 
FIA (P = 0.089). There were no significant differences in severity between sexes (data not shown).

Skin symptoms were most prevalent regardless of  elicitor. Symptoms of  VIA were more often associ-
ated with the cardiovascular system (P = 0.036), whereas there was a tendency of  greater gastrointestinal 
and respiratory involvement in FIA than in VIA without reaching significance (P = 0.386 and P = 0.204, 
respectively). There were no cases of  respiratory or cardiac arrest (Figure 1E).

Identification of  19 miRNA candidates via next-generation sequencing. The initial screening of  6 patients 
with anaphylaxis (3 VIA and 3 FIA) resulted in successful labeling and counting of  2656 miRNAs after 
removing entities with fewer than 100 counts. We observed differential expression of  19 miRNAs, with P 
values less than 0.05 after FDR adjustment using Benjamini-Hochberg correction, between samples taken 
from the patients in anaphylaxis and their respective baselines (Figure 2A). The samples from an acute 
reaction clustered together when unsupervised clustering was performed, separating them from healthy 
and baseline as indicated in the dendrogram (Figure 2A).

Principal component analysis showed some but no precise differentiation across the groups (regard-
less of  the number of  differentially expressed miRNAs, Figure 2B). Based on the differential expression 
analysis (with the DESeq2 package for R; ref. 14; Figure 2C), we selected 5 miRNAs as potential candi-
date biomarkers for further study: hsa-miR-451a, hsa-miR-143-3p, hsa-miR-486-5p, hsa-miR-25-3p, and 
hsa-miR-484, performing quantitative real-time PCR (RT-qPCR) validation on the sera of  patients who 
provided baseline samples.

hsa-miR-451a and hsa-miR-486-5p showed a significant difference in values between groups, which 
was highly enhanced in anaphylaxis samples (Figure 2, D and E). Notably, a control group of  patients 
with atopic dermatitis and no medical history of  anaphylaxis showed similar levels of  hsa-miR-451a 
to healthy controls (Supplemental Figure 6). Conversely, hsa-miR-25-3p and hsa-miR-484 showed sig-
nificantly higher values (Figure 2, F and G) in both anaphylaxis and baseline samples when compared 
with healthy controls but did not differ between anaphylaxis and baseline samples of  the same patients.  
hsa-miR-143-3p did not show significant differences across the groups (Supplemental Figure 1).

Patterns of  serological biomarkers in anaphylaxis — a collective view. We observed elevated tryptase in 
anaphylaxis compared with baseline and healthy control samples (Figure 3). Moreover, we were able to 
confirm our recently identified markers 11β-prostaglandin F2α (PGF2, increase) and apolipoprotein A1 
(ApoA1, decrease) in this independent cohort (6, 8). In addition, we identified arachidonic acid (AA) to be 
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significantly decreased in our anaphylaxis samples when compared with healthy controls (Figure 3D). No 
significant differences were observed for other potentially relevant proteins, including cysteinyl leukotriene 
(cys-LT; Figure 3E), CCL13, CCL27, apolipoprotein E (ApoE), CCL17, eosinophil cationic protein, or 
chitinase-3-like protein 1 (YKL-40), as shown in Supplemental Figure 1, A–F.

To better understand the biomarker profiles during anaphylaxis, we stratified the patients according 
to the elicitor and grade of  reaction. Ring and Messmer grade III reactions mostly showed greater dif-
ferences in the measured biomarkers when compared with healthy controls and baseline (Supplemental 
Figure 2A). Biomarker levels were not altered by adrenaline therapy, except for AA, which was lower in 
patients who did not receive adrenaline (Supplemental Figure 2B).

hsa-miR-451a was higher in patients undergoing VIA when compared with FIA (Supplemental Figure 
2C). Baseline levels of  hsa-miR-25-3p were elevated in VIA both at baseline and during anaphylaxis when 
compared with FIA. YKL-40 and AA showed the expected trends in VIA but not in FIA, despite compara-
ble levels in the baseline of  both groups (Supplemental Figure 2C). Levels of  hsa-miR-25-3p were elevated 
at baseline and anaphylaxis in VIA when compared with FIA.

Cross-sectional time analysis of  the biomarker levels in various time intervals from the studied cohort 
indicated that tryptase and PGF2 levels peaked (and ApoA1 bottomed) between 60 and 100 minutes  
after anaphylaxis onset. The hsa-miR451a showed a sideways trend in time, with the highest value 
observed at around 60 minutes. AA levels after anaphylaxis were lower in cases when the time interval 
from anaphylaxis onset to blood draw was extended. The highest levels of  hsa-miR-25-3p were observed 
120 minutes after the onset of  anaphylaxis symptoms (Supplemental Figure 3, A–F).

Random forest accurately classified samples using a set of  biomarkers. To assess the diagnostic value of  the 
distinct biomarkers, we performed a classification of  samples using the random forest algorithm. In the ini-
tial model, all candidates were supplied as predictors and the importance of  each predictor was calculated, 
indicating hsa-miR-451a as the most important predictor (Figure 4A). To minimize the set of  predictors, 
we performed recursive feature elimination and arrived at a model with 4 predictors having the highest 
accuracy (Figure 4C). Hyperparameter tweaking optimally indicated 2 randomly selected variables for each 
split (Supplemental Figure 4B). We performed 10 runs of  10-fold repeated cross-validation using the caret 

Figure 1. Studied cohort shows clinically relevant reactions. (A) Flowchart illustrating the exclusion criteria of the study. (B and C) Age and sex distribu-
tion in the studied cohort and their corresponding controls (ANA, acute anaphylaxis; HC, healthy control; 2-tailed Student’s t test, n = 71). (D) Distribution 
of elicitors and severity of anaphylaxis according to Ring and Messmer (13) (FIA, food-induced anaphylaxis; VIA, venom-induced anaphylaxis). VIA did not 
show significantly more severe reactions, classified as Ring and Messmer (13) grade III, than FIA (P = 0.089). (E) Frequency of symptoms in FIA and VIA.
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package for R (15) and arrived at 0.93 area under the receiver operating characteristic (ROC) curve for the 
top 4 predictors (out-of-bag error = 12%, Supplemental Figure 4A). This was 0.15 higher when compared 
with a model where random forest used 3 predictors for classification: tryptase, PGF2, and ApoA1. Thus, 
the addition of  hsa-miR-451a increased the precision to detect an acute reaction (Figure 4D).

To validate the model, we used the remaining 30% of  randomly preselected observations (n = 9 during 
anaphylaxis; n = 8 on baseline). The final model correctly classified 16 cases (94.12%). Only 1 sample 
originating from the baseline group was incorrectly assigned as anaphylaxis (Figure 4B).

Enrichment analysis of  the differentially expressed miRNAs. We used 2 computational tools (miEAA2.0, 
ref. 16; MIENTURNET, ref. 17) and FANTOM5 mammalian expression miRNA atlas (18) to predict 
the pathomechanistic relevance of  selected miRNAs in anaphylaxis. The miEAA2.0 analysis yielded 163 
enriched subcategories (out of  over 13,000) in 7 categories out of  19 used. Figure 5A summarizes the first 
25 most significantly enriched subcategories.

Most of  the enriched subcategories came from the Gene Ontology (miRWalk) category, indicating 
enrichment in protein transport, carbohydrate metabolism, oxidative stress, inflammation through the TNF-α 
signaling pathway, and cell activation with the PI3 kinase pathway. Regarding the localization of  miRNAs 
based on the RNALocate2.0 database (19), we saw enrichment in the exosome subcategory, as expected.

Concurrent analysis was performed using the MIENTURNET online tool (17) with 19 differentially 
expressed miRNAs (2 minimum miRNAs per gene target and FDR < 0.05) using the miRTarBase database 
(20). Target prediction indicated highly significant involvement of  trans-Golgi network proteins (Golgin A8 
A and B, vacuolar protein sorting-associated protein) as well as signaling (protein phosphatase 1 regulatory 

Figure 2. Screening and validation of miRNA candidate biomarkers show different expression in anaphylaxis when compared with healthy individuals 
and baseline. (A) Heatmap of the 19 most differentially expressed miRNAs (using next-generation sequencing) in 6 anaphylaxis samples (top row red) in 
comparison to the corresponding samples on baseline (top row yellow) applying unsupervised hierarchical clustering with Euclidean distances. Additional 6 
healthy control samples (top row brown) were provided for completeness. (B) Principal component analysis of the sequenced cohort in corresponding colors 
(the 50 most differentially expressed miRNAs; data scaled and centered). (C) Volcano plot illustrating differentially expressed miRNA upon anaphylaxis  
(n = 6) compared with baseline (n = 6). Fold changes were adjusted using the Ashr algorithm. Red dots mark miRNAs with adjusted log-fold change 
greater than 1 and less than –1. Red dashed line indicates adjusted P < 0.05 (Wald test with Benjamini-Hochberg FDR, n = 2656 miRNAs per sample). 
(D–G) Quantification of selected miRNAs in serum using real-time qPCR on sera from patients with anaphylaxis in acute (ANA, n = 16), baseline (n = 16), 
and healthy controls (HC, n = 20). Comparisons for HC versus baseline and HC versus ANA; 2-tailed Student’s t test for unpaired data with Holm-Šidák 
correction. Comparisons between baseline and ANA; 2-tailed Student’s t test for paired data.
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subunit 37), carbohydrate metabolic processes (hexokinase 2), and transcription regulatory processes (zinc 
finger protein 264, RNA binding motif  protein 27) (Supplemental Figure 5). Target genes identified in 
miRTarBase overlapped with the pathways identified by miEAA2.0 analysis.

Reactome (21) pathway analysis with the predicted miRNA target genes identified enrichment in 
apoptosis and IL-4 and IL-13 signaling, activation of  metalloproteases, and multiple tyrosine kinase 
signaling (Figure 5B).

The cellular origin of  the 12 most differentially expressed miRNAs was determined based on the 
data from the FANTOM5 Project (18), providing expression levels of  known miRNAs in 118 different 
cell types. No expression of  hsa-miR-3178 or hsa-miR-10400-5p was detected. Neutrophils, monocytes, 
and B cells were the primary source of  the most differentially expressed miRNAs, and hsa-miR-451a was 
primarily expressed in neutrophils (Figure 5C).

miRNAs identified patients prone to anaphylaxis. Parameters that distinguish patients at risk of  developing 
anaphylaxis remain unknown but are highly desirable for risk assessment and the implementation of  pro-
phylactic measures or even for retrospective diagnosis.

In the preceding data (Figure 6), we fortuitously observed that in addition to the steep increase in  
hsa-miR-451a during anaphylaxis, other entities were enhanced in baseline measurements vis-à-
vis healthy controls. Since this provided a strong hint that miRNAs may serve in the identification 
of  patients at risk, we employed the same procedure as above to examine this possibility. This was  
performed by designing a random forest model. Indeed, the combination of  5 predictors (hsa-miR-484, 
hsa-miR-25-3p, hsa-miR-451a, ApoE, and YKL-40) resulted in a random forest model showing good 
accuracy to differentiate between patients prone to anaphylaxis (i.e., between baseline samples from 
patients who had anaphylaxis approximately 4 weeks prior to sampling and samples from healthy con-
trols) (Figure 6, A and C). The model was greatly improved against the reference model (tryptase, PGF2, 
ApoA1) with an area under ROC curve of  0.82 versus 0.46, respectively (0.36 difference, Figure 6D).

Though the predictive capacity of  the model was somewhat limited because of  the lower number 
of  observations used for training (n = 22, out-of-bag error = 18.18%), the model still correctly assigned 
66.67% of  cases (Figure 6B) on the 30% of  previously unseen data. Although more data are needed, this 
is arguably the first successful step toward the detection of  a biomarker panel to assist in the identification 
of  patients prone to anaphylaxis.

Figure 3. Protein and lipid candidate serum biomarkers differentiate between anaphylaxis and baseline. (A) ImmunoCAP measurement of tryptase in 
serum. (B–E) ELISA measurement of selected biomarkers in healthy controls (HC), baseline, and acute anaphylaxis (ANA). Comparisons for HC (n = 24) 
versus baseline (n = 24) and HC versus ANA (n = 24); 2-tailed Student’s t test for unpaired data with Holm-Šidák correction. Comparisons between baseline 
and ANA; 2-tailed Student’s t test for paired data.
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Discussion
This study found hsa-miR-451a to be a robust biomarker of  anaphylaxis, which may improve diagnostic 
accuracy, especially when combined with other available biomarkers. In our prospective clinical obser-
vational study, we found higher expression of  hsa-miR-451a in the serum of  patients with anaphylaxis 
compared with healthy controls and nonacute sera and were able to model its diagnostic capacity using a 
random forest classifier. Importantly, we achieved high classification accuracy when the model was tested 
on previously unseen real-life data.

The studied cohort adequately represented anaphylaxis cases in Europe. Insect venom was the most 
prevalent elicitor of  anaphylaxis in our cohort, corresponding to the previously published data for Europe 
(22). Although US epidemiological data indicate medication followed by food as the primary triggers of  
anaphylaxis (23), food anaphylaxis is most prevalent in children (24), who were not included in this study. 
In accordance with our data, the clinical presentation of  anaphylaxis with cardiovascular symptoms is 
known to be more prevalent in VIA than in FIA (1, 25), and the frequency of  grade IV cases (Ring and 
Messmer scale) is known to be low (26). We did not include cases with Ring and Messmer grade I, as they 
did not meet the definition of  anaphylaxis by National Institute of  Allergy and Infectious Disease/Food 
Allergy and Anaphylaxis Network (NIAID/FAAN) (27). In line with previous reports, we observed more 
severe cases in VIA (1). One of  the limitations of  this study was the lack of  anaphylaxis due to drugs (we 
had only 1 paired case). Therefore, this may be of  interest for future studies.

Nevertheless, acquiring samples from patients in anaphylaxis is difficult because the main concern is to 
provide immediate therapy to a patient with a potentially lethal allergic reaction. Therefore, in some cases, a 
low amount or incorrect biomaterial was sampled upon the emergency room visit. Fortunately, a substantial 
number of  patients complied with a follow-up visit to our Allergy and Immunology Division approximately 
4 weeks after the reaction so that patient-matched serum samples during anaphylaxis and baseline were 

Figure 4. Serological biomarkers allow prediction of an acute anaphylactic episode using a random forest 
classification model. (A) Feature importance score using a random forest algorithm with all potential biomarkers of 
anaphylaxis. (B) Summary of sample selection for the algorithm training and test sets. (C) Automatic selection of best 
features out of the 18 initial ones reported in A using recursive feature elimination algorithm (15). (D) Receiver operating 
characteristic (ROC) in a random forest model with 4 top predictors (hsa-miR-451a, tryptase, PGF2, and apolipoprotein 
A1 — red curve) compared with a model including tryptase, apolipoprotein A1, and PGF2 — black curve.
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available for the study. This was not possible with 48% of  patients, yet we were able to use unpaired samples 
for the random forest modeling, which allowed us to achieve good model accuracy. It needs to be pointed 
out that in real-life scenarios, patient-matched baseline sera are unavailable in most situations, so biomarker 
models that do not require the matched nonacute serum from patients will best serve in the clinic.

This study explored a molecular category rarely investigated in the context of  anaphylaxis, i.e., miRNAs, 
and comprehensively assessed them in regard to other high-confidence biomarkers to grade their utility. The 
selection of  protein and lipid biomarkers was made based on literature research and our findings.

Tryptase has been extensively studied as a biomarker of  anaphylaxis. The gold standard involves the 
measurement of  serum total tryptase during an acute phase followed by a baseline measurement (≥24 
hours; ref. 28). Although tryptase levels correlate with the severity of  anaphylaxis (29) and this is also 
visible in our data, 2 similarly designed studies conducted in emergency departments failed to confirm 
a predictive role of  tryptase or histamine in the diagnosis of  anaphylaxis (30, 31). Nonetheless, tryptase 
is the best-studied entity already in clinical use despite its limitations. However, we previously identified 
potentially new candidates, demonstrating the predictive power of  PGF2, cys-LTs, ApoA1, and ApoE in 
the diagnosis of  anaphylaxis (6, 8). Notably, PGF2 and ApoA1 were not only reproduced in our current, 

Figure 5. miRNA enrichment and localization analysis indicate the role of the most differentially expressed miRNAs in protein transport and cell 
signaling processes in immune cells. (A) Enrichment analysis on the miRNA set produced by differential expression analysis using Enrichment Analysis 
and Annotation Package 2.0 (miEAA2.0). The first most differentially expressed miRNAs visualized according to gene set membership in the 25 most 
relevant gene sets (q value < 0.005; P value adjusted using Benjamini-Hochberg FDR). (B) Result of miRNA enrichment analysis using MIENTURNET (17). 
Functional enrichment using the Reactome pathways (21). (C) Cell-specific expression of miRNA in FANTOM5 mammalian short RNA expression atlas (18). 



8

C L I N I C A L  M E D I C I N E

JCI Insight 2022;7(7):e156669  https://doi.org/10.1172/jci.insight.156669

broader study using an independent cohort, but they also turned out to be in the top 4 classifiers of  the 
random forest, and thereby part of  the best biomarker composite model to predict anaphylaxis. AA was 
selected because it is a precursor for PGF2 synthesis (32). Upon anaphylaxis, levels of  AA were expected 
to decrease as it is metabolized to prostaglandins, leukotrienes, and thromboxanes, and this was indeed 
observed. The other candidates included were mainly based on their utility in other atopic or mast cell–
driven diseases. For example, CCL27 (CTAK) is secreted in the skin and seems to be associated with 
urticaria (33). Although skin symptoms were highly prevalent during anaphylaxis in our cohort, there 
were only a few samples with an increase in CCL27 in serum. CCL13 (MCP-4) has been implicated in 
inflammatory processes in asthma (34, 35), and CCL17 (TARC) is a biomarker of  atopic dermatitis severi-
ty with a reported case of  transient increase after FIA (36). YKL-40 has been implicated in atopic diseases 
(allergic rhinitis, ref. 37; asthma, refs. 38, 39; and food allergy, ref. 40). Raised eosinophil cationic protein 
was described in food anaphylaxis (41) and food provocation (42). However, none of  them qualified as a 
potential biomarker of  anaphylaxis in our study.

ApoA1 was discovered through a proteomics screen in our previous study (8). Since the strategy proved 
successful in biomarker exploration, we reapplied an analogous unbiased approach to exploit the untapped 
potential of  miRNAs. The use of  paired biosamples (during anaphylaxis and baseline) allowed us to achieve 
decent group discrimination in unsupervised hierarchical clustering, despite the relatively low number of  
sequenced samples. By using stringent differential expression analysis and state-of-the-art tools (14, 43), we 
were able to identify 19 significantly expressed miRNAs, and we extensively tested 5 promising candidates 
by RT-qPCR in the whole cohort. The next-generation sequencing data could be reproduced with a larger 
cohort, indicating the usefulness of  this approach for the identification of  serological biomarkers.

During modeling, we used a reference random forest model with 3 predictors that have previously shown 
predictive potential in diagnosing anaphylaxis. In our previous publication, a composite linear model using 

Figure 6. Serological biomarkers show potential to predict patients at risk of anaphylaxis. (A) Feature importance score 
using a random forest algorithm with all potential biomarkers. (B) Flowchart for the modeling procedure, including model 
evaluation using repeated cross-validation. FPR, false positive rate; FNR, false negative rate. (C) Automatic selection 
of best features out of th e 17 initial ones reported in A using recursive feature elimination algorithm. (D) ROC AUC in a 
random forest model with 5 predictors (hsa-miR-484, hsa-miR-25-3p, hsa-miR-451a, apolipoprotein E, and YKL-40 — red 
curve) compared with a model including tryptase, apolipoprotein A1, and PGF2 — black curve. 
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ApoA1 and PGF2 (8) was able to discriminate between anaphylaxis cases and healthy controls (but the 
results were not cross-validated). Therefore, we benchmarked our modeling to a presumably best-performing 
composite model using ApoaA1, tryptase, and PGF2. The addition of  hsa-miR-451a significantly improved 
the model accuracy and proved valid upon testing with previously unseen data. Notably, hsa-miR-451a was 
more important as a predictor for the random forest classifier than tryptase.

Regarding cellular origin, hsa-miR-451a was identified to be expressed by neutrophils and mono-
cytes based on the differentially expressed miRNAs in FANTOM5 (18). In addition, hsa-miR-451a is 
known to be expressed by erythrocytes (44–47), which were not included in the FANTOM5 cell atlas. 
Based on that, the increase in serum levels of  hsa-miR-451a might be a) coreleased into serum along with 
cellular activation and degranulation processes; b) linked to the degradation or release from erythrocytes 
upon anaphylaxis. Future studies will have to address the major cellular sources operative in anaphylaxis 
and mechanisms of  release (direct versus effector cell driven, e.g., via mast cells or basophil activation). 
Although we demonstrated that hsa-miR-451a was not increased in other atopic diseases (atopic der-
matitis), it would be crucial to verify its specificity when compared with other shock syndromes (i.e., 
myocardial infarction, sepsis, and hypotensive shock).

An intriguing and unexpected outcome of  this study was the differential miRNA profile in patients 
prone to anaphylaxis (patients with anaphylaxis sampled during baseline) versus healthy individuals. Not 
all individuals with an increased specific IgE (sIgE) to a particular allergen respond to the allergen in 
question, and the severity of  the reaction and organ involvement are likewise unpredictable by sIgE levels 
or other diagnostic tests, such as a skin prick test or basophil activation test (48). Most importantly, the 
use of  skin prick tests or sIgE failed to be predictive of  reaction severity in children allergic to certain 
foods (49). Currently, the only usable predictors of  future anaphylaxis severity are clinical symptoms of  
the previous reaction and the presence of  the cofactors of  anaphylaxis (50). The European Guidelines for 
the Management of  Anaphylaxis (PRACTALL) underline the need for an objective, predictive biomarker 
of  future reaction severity (51). At the moment, there are no point-of-care tests available for anaphylaxis, 
and the first step toward achieving their creation is to confirm the value of  miRNAs as a diagnostic tool in 
a clinical setting. With the rapid development in nucleic acid tests seen during the COVID-19 pandemic 
(52), we can expect increasing use of  similar technology for the diagnosis of  other diseases.

It is therefore a major unmet clinical need to identify patients who are at risk of  severe hypersensitivity 
reactions based on serum biomarkers alone. This knowledge can be used to increase patients’ awareness, pro-
vide additional prophylactic measures, and even help in the differential diagnosis of  anaphylaxis retrospec-
tively using serum. So far, no single or composite biomarkers are available to meet this aim. Here, we found 
that our proposed composite biomarker (hsa-miR484, hsa-miR-25-3p, hsa-miR-451a, ApoE, and YKL-40) 
could distinguish between patients prone to anaphylaxis and healthy individuals with a higher accuracy than 
any other available model. Interestingly, the miRNAs that distinguish patients prone to anaphylaxis from 
healthy individuals were different than the aforementioned hsa-miR-451a, the latter best suited to diagnose 
acute symptom precipitation. This was further emphasized by random forest analysis whereby the most 
significant predictors of  the 2 independent questions (i.e., to diagnose acute anaphylaxis and to identify 
patients at risk) barely overlapped (compare Figure 4 with Figure 6). In fact, of  all biomarkers measured, 
only miRNAs turned out to be reasonable predictors of  anaphylaxis risk, highlighting the major potential 
of  this class of  biomolecules. Thus, the results can serve as a basis to implement miRNAs in the analytic 
makeup to diagnose an acute anaphylaxis attack. In addition, they provide a rationale for future research to 
prospectively identify patients at risk based on serological miRNA profiles alone.

Methods
Inclusion criteria, sample collection, and storage. We obtained serum samples from adult patients undergoing 
anaphylaxis who were admitted to the emergency room and provided written informed consent, as well 
as control (baseline) serum samples at least 1 month after anaphylaxis. The diagnosis of  anaphylaxis 
was made according to the NIAID/FAAN criteria (27). We also acquired serum samples from healthy 
individuals who did not report a history of  allergic diseases as well as a second control group consisting 
of  patients with atopic dermatitis without previous medical history of  anaphylaxis. After collecting the 
whole blood, it was left undisturbed at room temperature for 20 to 30 minutes to allow blood to clot.  
Samples were then centrifuged in a prechilled centrifuge with a horizontal rotor (swing-out head) for  
5 minutes at 1500g at 4°C, aliquoted, and stored at –80°C.
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Protein and lipid biomarker measurement. Human serum samples were analyzed using ELISA kits pro-
vided by R&D Systems (human CCL17, DY364; human CCL13, DY327; human CCL27, DY376; human 
YKL-40, DC3L10), Cusabio Technology (human AA, CSB-E09040h; human eosinophilic cationic  
protein, CSB-E11729h), Cayman Chemical Company (11β-prostaglandin F2α, 516521; cysteinyl leukot-
riene, 500390-96), Abcam (human ApoA1, ab108804), and Raybiotech Life (human ApoE, ELH-ApoE) 
following the manufacturers’ protocols. The total concentration of  tryptase in serum was measured by 
ImmunoCAP (Thermo Fisher Scientific).

Serum miRNA extraction and profiling by next-generation sequencing. Circulating miRNAs were isolated from 
200 μL serum by the miRNeasy serum/plasma kit (Qiagen, 217184) and quantified with the Agilent 2100 
Bioanalyzer system. Library preparation was performed using the QIASeq miRNA library kit (Qiagen, 
331502) according to the manufacturer’s instructions. Briefly, a total of  5 μL RNA was used for miRNA 
library preparation. After ligation of  the RNA 3′ and RNA 5′ adapter, universal cDNA synthesis with unique 
molecular identifier assignment, cDNA cleanup, library amplification, and library cleanup were performed. 
Library preparation quality control was performed using TapeStation (Agilent Technologies).

Sequencing was performed on the Illumina miSeq platform. Samples from 6 patients undergoing 
anaphylaxis were compared with their corresponding sera taken outside of  an allergic reaction (i.e., 
baseline). The obtained reads were initially trimmed with cutadapt version 2.4 (53) using the first 10 
bases of  the Qiagen 3′ adapter sequence. Reads shorter than 10 bases after trimming were removed. 
Over 96% of  reads in each sample contained an adapter. Reads were aligned to the mirBase (release 
22.1) human miRNA sequences (54) and counted using the Mirdeep2 package (55) (v. 2.0.1.2). To this 
end, reads were trimmed as described above, converted to the FASTA format, and collapsed using the 
collapse_reads_md.pl program. Quantification was performed with the quantifier.pl program. Quality 
control was performed using fastQC v. 0.11.8 (56), RNA-Seqc, and dupRadar (57).

Differential expression analysis. Differential expression of  miRNA sequencing data from 6 paired  
samples was analyzed using the DESeq2 package (14) for R (58), with log-fold change shrinkage using 
the Ashr algorithm (59). Stringent FDR adjustment was applied for the P values (60). A heatmap of   
differentially expressed miRNA was produced using the heatmaply package (61), with row-wise scaling 
and automatic clustering using Euclidean distances.

Validation of  miRNA using RT-qPCR. The differentially expressed miRNAs were further validat-
ed using reverse transcription RT-qPCR. Briefly, total RNA was isolated from 200 μL serum by the  
miRNeasy serum/plasma kit (Qiagen, 217184) according to the manufacturer’s instructions. In addition, 
3.5 μL miRNeasy serum/plasma spike-in control (Qiagen, 219610) at 1.6 × 108 copies/μL was added to 
each sample. The total RNA was reverse-transcribed using miRCURY LNA RNA kit (Qiagen, 339340) 
that generates universal cDNA templates for all miRNAs present in the sample. The synthetic spike-in 
(UniSp6, Qiagen, 339340) was added to each sample, and the reaction was performed in the GeneTouch  
thermal cycle (Bioer). Then, miRNA-specific quantification was performed using miRCURY LNA 
SYBR Green kit (Qiagen, 339347) according to the manufacturer’s instructions. The expression of  target  
miRNAs was normalized to the cel-miR-39-3p synthetic spike-in added during total RNA extraction.

Classification model. The supervised machine learning classification model was done using a random 
forest algorithm with the help of  the caret package (15). All samples with complete observations (without 
missing values) were included in the training set and divided into anaphylaxis and baseline groups (the lat-
ter contained healthy controls and patients’ baseline samples). Features for the final random forest model 
were selected by a recursive feature elimination algorithm on the set of  initially available biomarkers. Vari-
able importance was derived from the initial random forest model, which included all predictors. Hyper-
parameter optimization was internally performed by the caret package to identify the optimal number of  
randomly drawn candidate variables at each decision tree split, based on the out-of-bag error estimate 
(62). The model fitness was calculated using 10 sets of  10-fold repeated cross-validation.

Target gene prediction and functional enrichment. The functional miRNA set enrichment analysis was per-
formed using the miEAA2.0 online tool (16). The following steps were performed: a) An ordered set of  
the 500 most differentially expressed miRNAs based on the output from DESeq2 (adjusted P values of  
the 6 screened patients with anaphylaxis and their corresponding baseline samples) was provided for the 
miEAA2.0. b) Subsequently, the algorithm cross-referenced known and predicted miRNA-gene interaction 
targets, restricting the significance level to 0.005 and the minimum required miRNA hits per subcategory of  
5. We used FDR (Benjamini-Hochberg) P value adjustment for the whole set of  analyses in all categories. c) 
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The resulting miRNA list for miRNA Set Enrichment Analysis (miRSEA) in all available 19 default gene-
set categories included miRTarBase and miRWalk (for gene ontology), cell type–specific atlas, immune cell 
gene sets, localization (based on RNALocate), and pathways (based on miRWalk database). The 25 most 
significantly enriched sets were subsequently plotted to indicate the presence (or lack thereof) of  the 13 
most significantly differentially expressed miRNAs in each of  the gene sets.

Additionally, a set of  the 19 most differentially expressed miRNAs was provided for the  
MIENTURNET (17) online tool. After predicting the gene targets using miRTarBase 8.0 (20), the resulting 
gene sets were used in an enrichment analysis using the Reactome database (21) with 2 intersections.

Data from the FANTOM5 Project promoter level mammalian expression atlas (18) were used to 
determine the cellular origin of  the most differentially expressed miRNAs. Relative abundance was calcu-
lated as a ratio of  each candidate miRNA expression in a specific cell type (tags per million) to the global 
expression level in all characterized cells.

Data availability. The sequencing data presented in this study have been deposited in the European 
Nucleotide Archive under accession number PRJEB50710.

Statistics. A 2-tailed Student’s t test was used for comparing normally distributed values between 
unpaired observations, with Holm-Šidák P value correction for multiple comparisons. Paired data 
were analyzed using a paired 2-tailed Student’s t test with Holm-Šidák correction where appropriate.  
Next-generation sequencing–derived data were analyzed using a Wald test with Benjamini-Hochberg 
FDR to correct for multiple comparisons. The box plots in the figures depict the minimum and maxi-
mum values (whiskers), the upper and lower quartiles, and the median. The length of  the box represents 
the interquartile range. P values less than 0.05 were considered significant.

Study approval. The IRB of  the Charité Universitätsmedizin Berlin approved this study (EA1/079/06). 
Written informed consent was acquired from individuals prior to participation in this study.
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